표면 개질에 의한 생물학적 인터페이스 제작연구

Title
표면 개질에 의한 생물학적 인터페이스 제작연구
Other Titles
Fabrication of Biological Interfaces by Surface Modification
Author
안수지
Alternative Author(s)
Ahn, Suji
Advisor(s)
Justyn Wayne Jaworski
Issue Date
2015-02
Publisher
한양대학교
Degree
Master
Abstract
지난 수십 년 동안, 2차원 표면은 전자, 재료 과학, 생명 공학의 여러 분야에서 많은 주목을 받고 있다. 일반적으로 2차원 지지체의 제작은 생체 재료, 조직 공학 및 의학 연구에 중요한 부분이다. 이에 따라, 본 연구에서는 안정적인 2D 바이러스 패턴과 하이드로 겔 지지체가 넓은 분야에 걸쳐 활용될 수 있다는 것을 보여준다. 나노재료로써, 섬사상 바이러스는 유전적 그리고 화학적 변형이 용이하기 때문에, 특수한 특성을 갖는 물질을 생산하기 위해 최근 광범위하게 사용되어 왔다. 따라서 이 기술은 표면 공학을 위한 기능적 요소로서 생체분자, 형광 프로브 및 나노 입자로 표지된 고밀도 바이러스의 표면 디스플레이를 용이하게 한다. 섬사상 바이러스의 한 종류인 fd-tet을 유전자 재조합 기술을 이용하여 표면에 시스테인(cysteine)을 발현시킨 후, 효소와 반응하여 알데히드(aldehyde)로 표면을 개질하였다. 표면이 개질 된 바이러스를 아민(amine)유리패턴에 고정화시켜 2D패턴을 제작함으로써, 2D 바이러스 패턴을 제조하였다. 이 뿐만 아니라, 하이드로 겔은 세포를 관찰하기 위한 도구로서, 좋은 지지체가 될 수 있다. 하이드로 겔로, 간단한 촉매제의 첨가에 의해 쉽게 고분자네트워크를 형성할 수 있는 폴리아크릴아마이드 하이드로 겔을 이용하였다. 하지만 대부분의 세포는 하이드로 겔 형성 고분자에 대한 수용체가 없기 때문에, 하이드로 겔에 점착하기가 어렵다는 문제점을 가지고 있다. 이 문제점을 해결하기 위하여 세포의 integrin에 강한 결합능력을 가지고 있는 특정 펩타이드를 합성한 공액고분자를 중간체로 사용하여 하이드로 겔의 세포점착을 가능하게 하였다. 우리는 세포 모니터링을 위한 도구 역할을 하는 하이드로 겔을 만들기 위해 최적의 방법과 좋은 하이드로 겔 상태를 구현하였다. 전체적으로 본 연구에서는 바이오 칩 그리고 조직공학에 상당한 가치가 있을 것으로 예상되는 안정한 바이러스 패턴과 하이드로 겔을 생성하기 위한 제작 방법과 결과를 보여준다.|Over the past decades, the surfaces of two-dimensional (2D) have received a lot of attention in the various fields of electronics, material science, and biotechnology as the potential application. In general, the fabrication of two-dimensional scaffolds is important areas in biomaterial studies, tissue engineering and medicine research. Accordingly, the present research shows that stable 2D virus patterns and hydrogel scaffolds can be utilized over large area. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with special properties, owing to their ease of genetic and chemical modification. Therefore, this technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. In this paper, filamentous virus using recombinant DNA technology was expressed to cysteine in the surface. And, the surface was modified to aldehyde by the enzyme. As manufacturing the 2d pattern by immobilizing the virus on amine-glass slide, 2D virus pattern was fabricated. As well as, hydrogel can be a good scaffold as a tool for cell adhesion. Polyacrylamide hydrogel was used as hydrogel that can easily form a polymer network by the addition of a simple catalyst. However, most of the cells have a difficult problem about the attachment on the hydrogel because most of the cell does not include the receptor for the hydrogel-forming polymer. In order to solve this problem, conjugated polymer synthesized using a specific peptide which has a strong binding ability to integrin of a cell was to enable the cell adhesion of the hydrogel. We revel some good hydrogel condition and the optimum methods to make hydrogel which act as a tool for scientists to determine cell traction forces. Overall, this paper shows the detailed methodology and outcome of our reliable fabrication scheme for generating stable virus patterns and hydrogel surface that are expected to be of significant value to the biochips and tissue engineering community.; Over the past decades, the surfaces of two-dimensional (2D) have received a lot of attention in the various fields of electronics, material science, and biotechnology as the potential application. In general, the fabrication of two-dimensional scaffolds is important areas in biomaterial studies, tissue engineering and medicine research. Accordingly, the present research shows that stable 2D virus patterns and hydrogel scaffolds can be utilized over large area. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with special properties, owing to their ease of genetic and chemical modification. Therefore, this technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. In this paper, filamentous virus using recombinant DNA technology was expressed to cysteine in the surface. And, the surface was modified to aldehyde by the enzyme. As manufacturing the 2d pattern by immobilizing the virus on amine-glass slide, 2D virus pattern was fabricated. As well as, hydrogel can be a good scaffold as a tool for cell adhesion. Polyacrylamide hydrogel was used as hydrogel that can easily form a polymer network by the addition of a simple catalyst. However, most of the cells have a difficult problem about the attachment on the hydrogel because most of the cell does not include the receptor for the hydrogel-forming polymer. In order to solve this problem, conjugated polymer synthesized using a specific peptide which has a strong binding ability to integrin of a cell was to enable the cell adhesion of the hydrogel. We revel some good hydrogel condition and the optimum methods to make hydrogel which act as a tool for scientists to determine cell traction forces. Overall, this paper shows the detailed methodology and outcome of our reliable fabrication scheme for generating stable virus patterns and hydrogel surface that are expected to be of significant value to the biochips and tissue engineering community.
URI
https://repository.hanyang.ac.kr/handle/20.500.11754/128727http://hanyang.dcollection.net/common/orgView/200000426683
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > CHEMICAL ENGINEERING(화학공학과) > Theses (Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE