31 0

Ultrathin WO3 Nanosheets Converted from Metallic WS2 Sheets by Spontaneous Formation and Deposition of PdO Nanoclusters for Visible Light-Driven C−C Coupling Reactions

Title
Ultrathin WO3 Nanosheets Converted from Metallic WS2 Sheets by Spontaneous Formation and Deposition of PdO Nanoclusters for Visible Light-Driven C−C Coupling Reactions
Author
김종호
Keywords
chemical conversion; ultrathin WO3 nanosheet; metallic WS2; PdO nanocluster; visible light photocatalysis; Suzuki reaction
Issue Date
2019-09
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 11, No. 40, Page. 36960-36969
Abstract
It is not facile to obtain ultrathin two-dimensional (2D) WO3 nanosheets through the exfoliation of their bulk counterpart in solution due to strong covalent interaction between interlayers. In addition, they require additional functionalization with cocatalysts to expand their applicability in photocatalytic organic reactions owing to their insufficient conduction band edge position. Here, we report a chemical approach for the simultaneous production and functionalization of ultrathin 2D WO3 nanosheets through the direct conversion of metallic WS2 nanosheets, accomplished by the spontaneous formation and deposition of PdO nanoclusters on the nanosheet surface in H2O. When chemically exfoliated metallic WS2 nanosheets were simply mixed with K2PdCl4 in H2O under mild conditions (50 degrees C, 1 h), they were converted to semiconducting WO3 nanosheets on which PdO nanoclusters of a uniform size (similar to 3 nm) were spontaneously formed, leading to the production of PdO-functionalized ultrathin WO3 (PdO@WO3) nanohybrids. The conversion yield of WO3 nanosheets from metallic WS2 nanosheets increased with increasing coverage of PdO nanoclusters on the nanosheet surface. In addition, the conversion of WO3 nanosheets induced by PdO nanocluster formation was effective only in H2O but not in organic solvents, such as N-methylpyrrolidone and acetonitrile. A mechanical study suggests that the chemisorption of hydrated Pd precursors on the chalcogens of metallic WS2 nanosheets leads to their facile oxidation by water molecules, producing WO3 nanosheets covered with PdO nanoclusters. The as-prepared PdO@WO3 nanosheets exhibited excellent photocatalytic activity and recyclability in Suzuki cross-coupling reactions of various aryl halides under visible light irradiation.
URI
https://pubs.acs.org/doi/abs/10.1021/acsami.9b12371https://repository.hanyang.ac.kr/handle/20.500.11754/122040
ISSN
1944-8244; 1944-8252
DOI
10.1021/acsami.9b12371
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE