255 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김선정-
dc.date.accessioned2020-01-17T02:02:25Z-
dc.date.available2020-01-17T02:02:25Z-
dc.date.issued2019-02-
dc.identifier.citationJOURNAL OF POWER SOURCES, v. 414, Page. 460-469en_US
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0378775319300333?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/121958-
dc.description.abstractThe low electrical conductivity and slow rate capability of vanadium oxide limit its utilization in high rate energy storage applications. Many studies are trying to overcome these drawbacks, but it remains a challenge. In this study, we propose a simple strategy to produce conducting polymer-intercalated ammonium vanadate nanofiber composites exhibiting high capacitance and high rate capability. The poly(3,4-ethylene dioxythiophene)intercalated ammonium vanadate nanofiber composites are produced in a very short time ( ˂ 4 h) using a sonochemical method. The composite exhibits a high surface area of 85.5 m(2) g(-1) and excellent electrical conductivity of 4.1 x 10(-2) S cm(-1). In addition, the lattice distance of the vanadate nanofiber is expanded by insertion of the conducting polymer, which can facilitate transportation of K+ ions into the vanadate nanofibers. These are great benefits for enhancing the specific capacitance and rate capability of the energy storage devices. Therefore, the proposed simple approach can provide a new research direction in the field of high rate energy storage devices.en_US
dc.description.sponsorshipThis research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A6A1029029 and 2018R1A2B6009208), Republic of Korea.en_US
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.subjectAmmonium vanadateen_US
dc.subjectConducting polymeren_US
dc.subjectIntercalation pseudocapacitanceen_US
dc.subjectNanofiberen_US
dc.subjectSonochemical methoden_US
dc.titleSynthesis of conducting polymer-intercalated vanadate nanofiber composites using a sonochemical method for high performance pseudocapacitor applicationsen_US
dc.typeArticleen_US
dc.relation.volume414-
dc.identifier.doi10.1016/j.jpowsour.2019.01.031-
dc.relation.page460-469-
dc.relation.journalJOURNAL OF POWER SOURCES-
dc.contributor.googleauthorLee, Se Hun-
dc.contributor.googleauthorPark, Changyong-
dc.contributor.googleauthorPark, Jong Woo-
dc.contributor.googleauthorKim, Seon Jeong-
dc.contributor.googleauthorIm, Seung Soon-
dc.contributor.googleauthorAhn, Heejoon-
dc.relation.code2019003415-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF ELECTRICAL AND BIOMEDICAL ENGINEERING-
dc.identifier.pidsjk-
dc.identifier.orcidhttps://orcid.org/0000-0002-2867-6737-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE