328 0

Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins

Title
Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins
Author
김용희
Keywords
exosomes; human mesenchymal stem cells; tat-metallothionein fusion proteins; hypoxia; myocardial infarction
Issue Date
2018-08
Publisher
SPRINGER
Citation
MACROMOLECULAR RESEARCH, v. 26, no. 8, page. 709-716
Abstract
Stem cells secrete many extracellular vesicles such as micro vesicles, exosomes and membrane particles. Exosomes represent characteristics similar to their native cells and exosomes secreted from human mesenchymal stem cells (hMSCs) have demonstrated cardio protective effects. In this study, we examined the synergistic effects of exosomes derived from hMSCs expressing metallothionein (MT), a well-known therapeutic protein to treat myocardial infarction, for recovery of cell viability in vitro in hypoxic conditions. Tat-metallothionein (Tat-MT) recombinant fusion proteins were prepared by a recombinant method to increase the transduction of metallothionein into exosomes via Tat's transduction characteristic. Exosomes from hMSCs were transduced with Tat-MT, and characterized by transmission electron microscopy and immunoblotting. Cellular uptake of exosomes and protein was analyzed by confocal microscopy. The cytoprotective effects of exosomes transfected with Tat-MT (Exo/Tat-MT) on cardiomyocytes were evaluated by accessing cell viability. Exo/Tat-MT significantly upregulated cell viability and downregulated apoptosis in cardiomyocytes. The therapeutic potential of exosome-mediated therapeutic protein delivery was demonstrated by strong cell viability (70-80%) under in vitro hypoxic conditions. This study reveals the dual benefits of exosomes derived from hMSCs and highlights a new method of intercellular stem cells mediation for the stem cell-derived treatment of myocardial infarction.
URI
https://link.springer.com/article/10.1007%2Fs13233-018-6101-5https://repository.hanyang.ac.kr/handle/20.500.11754/119811
ISSN
1598-5032; 2092-7673
DOI
10.1007/s13233-018-6101-5
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > BIOENGINEERING(생명공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE