349 143

Full metadata record

DC FieldValueLanguage
dc.contributor.author박춘길-
dc.date.accessioned2019-12-07T23:30:11Z-
dc.date.available2019-12-07T23:30:11Z-
dc.date.issued2018-05-
dc.identifier.citation순수 및 응용수학, v. 25, no. 2, page. 161-170en_US
dc.identifier.issn1226-0657-
dc.identifier.issn2287-6081-
dc.identifier.urihttp://koreascience.or.kr/article/JAKO201817241626935.page-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/118523-
dc.description.abstractIn this paper, we introduce and solve the following additive (p1, p2)-functional inequality where p1 and p2 are fixed nonzero complex numbers with|p1 | + |p2|< 2.Using the fixed point method and the direct method, we prove the Hyers- Ulam stability of the additive (p1; p2)-functional inequality (0.1) in complex Banach spaces.en_US
dc.language.isoen_USen_US
dc.publisher한국수학교육학회en_US
dc.subjectHyers-Ulam stabilityen_US
dc.subjectadditive (ρ1en_US
dc.subjectρ2)-functional inequalityen_US
dc.subject¯xed point methoden_US
dc.subjectdirect methoden_US
dc.subjectBanach space.en_US
dc.titleHYERS-ULAM STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACESen_US
dc.typeArticleen_US
dc.relation.no2-
dc.relation.volume25-
dc.identifier.doi10.7468/jksmeb.2018.25.2.161-
dc.relation.page161-170-
dc.relation.journal순수 및 응용수학-
dc.contributor.googleauthorPark, Choonkil-
dc.contributor.googleauthorYun, Sungsik-
dc.relation.code2018019161-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF MATHEMATICS-
dc.identifier.pidbaak-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE