91 0

Effect of synthesis temperature on the structural defects of integrated spinel-layered Li1.2Mn0.75Ni0.25O2+δ: a strategy to develop high-capacity cathode materials for Li-ion batteries

Title
Effect of synthesis temperature on the structural defects of integrated spinel-layered Li1.2Mn0.75Ni0.25O2+δ: a strategy to develop high-capacity cathode materials for Li-ion batteries
Author
임원빈
Keywords
LITHIUM RECHARGEABLE BATTERIES; X-RAY-DIFFRACTION; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; CYCLING PERFORMANCE; LATTICE-VIBRATIONS; MANGANESE OXIDES; RATE CAPABILITY; LINI0.5MN1.5O4; LI2MNO3
Issue Date
2017-07
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v. 5, no. 30, page. 15730-15742
Abstract
An integrated layered-spinel with a nominal composition of (1 - x)Li1.2Mn0.6Ni0.2O2 center dot xLiMn(1.5)Ni(0.5)O(4) (0.15 < x < 0.3) was synthesized by a hydrothermal reaction followed by firing at different temperatures. The effects of firing temperature on the phase components, cation disorder, and crystal defects, and their relationship with the electrochemical performance of the cathode material were studied. The sample fired at 650 degrees C showed the highest capacity of up to 320 mA h g(-1) and highest initial coulombic efficiency (98%, 2-4.9 V), but the capacity decreased dramatically to only 55% after 50 cycles. The sample fired at 850 degrees C showed the slowest activation of the layered phase, requiring up to several dozen cycles. The intermediate firing temperature of 750 degrees C showed a balance between the activation rate, capacity, initial coulombic efficiency, and cycling stability, with 270 mA h g(-1) after 10 cycles and a 99% capacity retention after 50 cycles. All samples showed different rates of the layered-to-spinel phase transformation, which depends on the activation rate. This study reports the relationships between synthesis conditions, structure, and electrochemical performance, providing a strategy to develop high-capacity cathode materials based on the (1 - x)Li1.2Mn0.6Ni0.2O2 center dot xLiMn(1.5)Ni(0.5)O(4) system.
URI
https://pubs.rsc.org/en/content/articlelanding/2017/TA/C7TA04002D#!divAbstracthttps://repository.hanyang.ac.kr/handle/20.500.11754/114912
ISSN
2050-7488; 2050-7496
DOI
10.1039/c7ta04002d
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE