101 0

Temporal resolution required for accurate evaluation of the interplay effect in spot scanning proton therapy

Title
Temporal resolution required for accurate evaluation of the interplay effect in spot scanning proton therapy
Author
김찬형
Keywords
Proton therapy; Spot scanning; Interplay effect; Temporal resolution
Issue Date
2017-04
Publisher
KOREAN PHYSICAL SOC
Citation
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, v. 70, no. 7, page. 720-725
Abstract
In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom (i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement (i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.
URI
https://link.springer.com/article/10.3938%2Fjkps.70.720https://repository.hanyang.ac.kr/handle/20.500.11754/113726
ISSN
0374-4884; 1976-8524
DOI
10.3938/jkps.70.720
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > NUCLEAR ENGINEERING(원자력공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE