Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이수재 | - |
dc.date.accessioned | 2019-10-22T05:15:00Z | - |
dc.date.available | 2019-10-22T05:15:00Z | - |
dc.date.issued | 2019-07 | - |
dc.identifier.citation | CANCER SCIENCE, v. 110, NO 7, Page. 2226-2236 | en_US |
dc.identifier.issn | 1347-9032 | - |
dc.identifier.issn | 1349-7006 | - |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/full/10.1111/cas.14070 | - |
dc.identifier.uri | https://repository.hanyang.ac.kr/handle/20.500.11754/111344 | - |
dc.description.abstract | Hyaluronic acid synthase 2 (HAS2) is suggested to play a critical role in malignancy and is abnormally expressed in many carcinomas. However, its role in colorectal cancer (CRC) malignancy and specific signaling mechanisms remain obscure. Here, we report that HAS2 was markedly increased in both CRC tissue and malignant CRC cell lines. Depletion of HAS2 in HCT116 and DLD1 cells, which express high levels of HAS2, critically increased sensitivity of radiation/oxaliplatin-mediated apoptotic cell death. Moreover, downregulation of HAS2 suppressed migration, invasion and metastasis in nude mice. Conversely, ectopic overexpression of HAS2 in SW480 cells, which express low levels of HAS2, showed the opposite effect. Notably, HAS2 loss-and gain-of-function experiments revealed that it regulates CRC malignancy through TGF-beta expression and SMAD2/Snail downstream components. Collectively, our findings suggest that HAS2 contributes to malignant phenotypes of CRC, at least partly, through activation of the TGF-beta signaling pathway, and shed light on the novel mechanisms behind the constitutive activation of HAS2 signaling in CRC, thereby highlighting its potential as a therapeutic target. | en_US |
dc.description.sponsorship | The Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea, Grant/Award Number: 50476-2018 and 50535-2019 | en_US |
dc.language.iso | en | en_US |
dc.publisher | WILEY | en_US |
dc.subject | colorectal cancer therapy | en_US |
dc.subject | epithelial-mesenchymal transition | en_US |
dc.subject | HAS2 | en_US |
dc.subject | malignant tumor | en_US |
dc.subject | TGF-beta | en_US |
dc.title | Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1111/cas.14070 | - |
dc.relation.page | 1-11 | - |
dc.relation.journal | CANCER SCIENCE | - |
dc.contributor.googleauthor | Kim, Young-Heon | - |
dc.contributor.googleauthor | Lee, Seung Bum | - |
dc.contributor.googleauthor | Shim, Sehwan | - |
dc.contributor.googleauthor | Kim, Areumnuri | - |
dc.contributor.googleauthor | Park, Ji-Hye | - |
dc.contributor.googleauthor | Jang, Won-Suk | - |
dc.contributor.googleauthor | Lee, Sun-Joo | - |
dc.contributor.googleauthor | Myung, Jae Kyung | - |
dc.contributor.googleauthor | Park, Sunhoo | - |
dc.contributor.googleauthor | Lee, Su-Jae | - |
dc.relation.code | 2019001941 | - |
dc.sector.campus | S | - |
dc.sector.daehak | COLLEGE OF NATURAL SCIENCES[S] | - |
dc.sector.department | DEPARTMENT OF LIFE SCIENCE | - |
dc.identifier.pid | sj0420 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.