487 0

Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery

Title
Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery
Author
황장연
Keywords
silicon; graphite; electrode loading; areal capacity; lithium ion battery
Issue Date
2019-02
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, V.13, No.2, Page. 2624-2633
Abstract
With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g(-1)). However, totally replacing the commercially utilized graphite with silicon is still insurmountable owing to bottlenecks such as low electrode loading and insufficient areal capacity. Thus, in this study, we turn back to enhanced graphite electrode through the cooperation of modified silicon via a facile and scalable blending process. The modified nano/microstructured silicon with boron doping and carbon nanotube wedging (B-Si/CNT) can provide improved stability (88.2% retention after 200 cycles at 2000 mA g(-1)) and high reversible capacity (similar to 2426 mAh g(-1)), whereas the graphite can act as a tough framework for high loading. Owing to the synergistic effect, the resultant B-Si/CNT-graphite composite (B-Si/CNT@G) shows a high areal capacity of 5.2 mAh cm(-2) and excellent cycle retention of 83.4% over 100 cycles, even with ultrahigh active mass loading of 11.2 mg cm(-2),which could significantly surpass the commercially used graphite electrode. Notably, the composite also exhibits impressive application in Li-ion full battery using 2 mol % Al-doped full-concentration-gradient Li[Ni0.76Co0.09Mn0.15]O-2 (Al2-FCG76) as the cathode with excellent capacity retention of 82.5% even after 300 cycles and an outstanding energy density (8.0 mWh cm(-2)) based on the large mass loading of the cathode (12.0 mg cm(-2)).
URI
https://pubs.acs.org/doi/10.1021/acsnano.9b00169https://repository.hanyang.ac.kr/handle/20.500.11754/107513
ISSN
1936-0851; 1936-086X
DOI
10.1021/acsnano.9b00169
Appears in Collections:
CENTER FOR CREATIVE CONVERGENCE EDUCATION[S](창의융합교육원) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE