452 0

유한요소법을 통한 커패시턴스 예측 및 설계에 대한 연구

Title
유한요소법을 통한 커패시턴스 예측 및 설계에 대한 연구
Other Titles
Prediction and Design of Capacitance Using the Finite Element Method
Author
안규수
Alternative Author(s)
Ahn, Kyu Su
Advisor(s)
송윤흡
Issue Date
2019-02
Publisher
한양대학교
Degree
Master
Abstract
Recently, the display devices predominantly manufactured in display industry are Liquid Crystal Displays (LCDs) and Organic Light Emitting Diodes (OLEDs). Both devices are controlled by the voltage or current through the Thin Film Transistor (TFT). Therefore, the design of the semiconductor or display depends on the capacitance formed between the electrodes and the insulator. In actual industrial manufacture lines, Critical Dimension (CD), which is a width of the pattern, overlay scattering of the electrode pattern and Optical Proximity Correction (OPC) influence in the Ultra Violet (UV) exposure process exist. Therefore these factors should be considered from the design stage. Also, according to the previous study, the capacitance is maximized like the fractal capacitance, or the characteristics of the device are changed according to the ratio between the capacitances in a plurality of transistors in a circuit. In this study, the electrode design was randomly generated and the capacitance was modeled through FEM-based simulation. We used Gmsh to divide the system into finite number of elements and calculate the electric potential by modeling the Laplace equation in weak form for GetDP, the FEM solver. In this thesis, we analyzed the effect of photolithography distribution on capacitance and suggest the optimal design of electrodes in a simple structure of metal-insulator-metal (MIM). The electrode of larger perimeter length has higher capacitance when the electrode area and the insulator thickness are consistent for different design of electrodes, which is the same principle as using the fringing field in the fractal capacitance. The electrode suggested in this research provides 62.4% higher capacitance compared to the simple polygon design.
URI
https://repository.hanyang.ac.kr/handle/20.500.11754/100023http://hanyang.dcollection.net/common/orgView/200000435208
Appears in Collections:
GRADUATE SCHOOL OF ENGINEERING[S](공학대학원) > ELECTRICAL ENGINEERING AND COMPUTER SCIENCE(전기ㆍ전자ㆍ컴퓨터공학과) > Theses (Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE