TY - JOUR AU - 배성우 DA - 2016/11 PY - 2016 UR - http://koreascience.or.kr/article/JAKO201606776010729.page UR - https://repository.hanyang.ac.kr/handle/20.500.11754/101213 AB - The surface inspection of a steel billet is a common practice in the steel manufacturing process prior to hot rolling to produce steel wire for tire cord. This billet surface inspection is an important process because flaws on the surface may cause major failures during the product manufacturing phase. This paper presents a computer simulation based on a finite element method for a magnetic flaw detector with a function of the current intensity, the number of coil turns, and the billet proceeding speed during the production phase based on the typical condition of conventional apparatus. Based on the simulation result, the magnitude of the electromagnetic field on the surface diminished with distance from the electromagnet. In addition, the increased current intensity and the increased number of coil turns actually induced a stronger electromagnetic field on the billet surface. On the other hand, the proceeding speed of a billet in its production line had no significant effects. The result in this study may assist to reduce trial and error and to minimize the opportunity costs during the optimization process by applying the findings of this study into the operation condition in the steel billet production line. PB - KOREAN INST ELECTR ENG KW - Electromagnet KW - Surface flaw detection KW - Steel billet KW - Magnetic field TI - Quantitative Analysis of a Steel Billet Surface Flaw Detection System by Means of a Finite Element Method IS - 6 VL - 11 DO - 10.5370/JEET.2016.11.6.1729 T2 - JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY ER -