Southeast Asian Bulletin of Mathematics © SEAMS. 2008

Automorphism Group of a Non-Associative Algebra I

Ki-Bong Nam

Dept. of Mathematic and Computer science, Univ. of Wisconsin-Whitewater, White-

water, WI 53190, USA E-mail: namk@uww.edu

Moon-Ok Wang

Dept. of Mathematics, Hanyang University, Ansan 560-759, Korea

E-mail: wang@hanyang.ac.kr

Seul Hee Choi

Dept. of Mathematics, Jeonju University, Chon-ju 560-759, Korea

E-mail: chois@www.jj.ac.kr

AMS Mathematics Subject Classification (2000): Primary 17B40, 17B56

Abstract. Automorphisms of a Weyl-type non-associative subalgebra of $\overline{WN_{n,m,s}}$ were studied in [2], [3], [4], [12], [13]. There are various papers on the automorphism groups of an associative algebra, a Lie algebra, and a non-associative algebra [4], [5], [11]. It seems that there is no paper on automorphisms of a semi-Lie algebra in the literature. A degree on an algebra is used to find the derivation group of an algebra in the paper [13]. We find the automorphism groups $Auto_{non}(\overline{WN_{0,0,1}}_2)$ and $Auto_{semi-Lie}(\overline{WN_{0,0,1}}_{2[,]})$ of the non-associative algebra $\overline{WN_{0,0,1}}_2$ and the semi-Lie algebra $\overline{WN_{0,0,1}}_{2[,]}$ respectively in this paper. The results of an algebra in this paper do not depend on its standard basis.

Keywords: Simple; Non-associative algebra; Semi-Lie algebra; Right identity; Annihilator; *m*-abelian; Automorphism.

1. Preliminaries

Let $\mathbb N$ be the set of all non-negative integers and $\mathbb Z$ be the set of all integers. Let $\mathbb F$ be a field of characteristic zero. The non-associative algebra $\overline{WN_{0,1,0}}_n$ is spanned

Received December 6 2005, Accepted March 29 2006.

by the standard basis $\{x^i\partial^n|i\in\mathbb{Z}\}$ with the usual addition and the multiplication is defined as follows: for any basis elements $x^i\partial^n, x^j\partial^n\in\overline{WN_{0,1,0}}_n$,

$$x^{i}\partial^{n} * x^{j}\partial^{n} = x^{i}(\partial^{n}(x^{j}))\partial^{n} \tag{1}$$

by extending linearly on $\overline{WN_{0,1,0}}_n$ [1], [6], [13], [14]. $\overline{WN_{0,0,1}}_n$ is a subalgebra of $\overline{WN_{0,1,0}}_n$ spanned by $\{x^i\partial^n|i\in\mathbb{N}\}$. Similarly, we define the non-associative algebra $\overline{WN_{0,0,1}}_{1,2}$ spanned by $\{x^i\partial, x^j\partial^2|i,j\in\mathbb{N}\}$ with the similar multiplication (1) (please refer to the papers [9], [15] for these kinds of non-associative algebras.) For any element $x \in \overline{WN_{0,0,1}}_n$, $l \in \overline{WN_{0,0,1}}_n$ is a right (multiplicative) identity of x, if x*l = x holds. The semi-Lie algebra $\overline{WN_{0,0,1}}_{n[.]}$ is spanned by the standard basis $\{x^i\partial^n|i\in\mathbb{N}\}$ with the commutator of $\overline{WN_{0,0,1}}_n$ and the semi-Lie algebra $WN_{0,0,1_{1,2_{[]}}}$ can be defined as $WN_{0,0,1_{n_{[]}}}$. We shall define the degree of $x^i\partial^n$ as $deg(x^i\partial^n) = i$ for $x^i\partial^n \in \overline{WN_{0,0,1}}_{n[]}$. Thus for any element l of $\overline{WN_{0,0,1}}_{n[]}$, we can define deg(l) as the highest degree of the non-zero basis term of l [13]. We can define the non-associative algebra $\overline{WN_{0,0,2}}_{n_1,n_2}$ which contains $\overline{WN_{0,0,1}}_n$ with the standard basis $\{x_1^{i_1}x_2^{i_2}\partial^{n_r}|i_1,i_2\in\mathbb{N},r=1,2\}$ with the usual addition and the multiplication as $\overline{WN_{0,0,1}}_n$. So we can define the semi-Lie algebra $\overline{WN_{0,0,2}}_{n_1,n_2[.]}$ as $\overline{WN_{0,0,1}}_{n[.]}$. Throughout this paper, $Aut_{semi-Lie}(\overline{WN_{0,0,1}}_{n[.]})$ denotes the set of all semi-Lie algebra automorphisms of $\overline{WN_{0,0,1}}_{n[.]}$. A Lie (resp. semi-Lie) algebra is m-abelian if the dimension of its maximal finite dimensional abelian subalgebra is m [13]. A Lie algebra is 1-abelian if and only if it is self-centralizing [13], [7], [8]. Note that m-abelian is auto-invariant.

2. Automorphisms of $\overline{WN_{0,0,1}}_n$ and $\overline{WN_{0,0,1}}_{n[.]}$

It is well known that the algebras $\overline{WN_{0,0,1}}_n$ and $\overline{WN_{0,0,1}}_{n[,]}$ are simple [4], [12], [13]. Since every non-zero endomorphism of them is a monomorphism, we can find the following results.

Lemma 2.1. For any $\theta \in Aut_{non}(\overline{WN_{0,0,1}}_2)$ and any basis element $x^q\partial^2$ of $\overline{WN_{0,0,1}}_2$, $\theta(x^q\partial^2) = c_3^{-q+2}(x + \frac{c_4}{c_3})^q\partial^2$ holds, where $c_3 \in \mathbb{F}^{\bullet}$ and $c_4 \in \mathbb{F}$.

Proof. Let θ be an automorphism of $\overline{WN_{0,0,1}}_2$. Since the right annihilator of $\overline{WN_{0,0,1}}_2$ is spanned by ∂^2 and $x\partial^2$, and $\frac{x^2}{2}\partial^2$ is a right identity of $\overline{WN_{0,0,1}}_2$, we have

$$\theta(\partial^2) = c_1 x \partial^2 + c_2 \partial^2 \tag{2}$$

$$\theta(x\partial^2) = c_3 x \partial^2 + c_4 \partial^2 \tag{3}$$

$$\theta(x^2\partial^2) = x^2\partial^2 + c_5x\partial^2 + c_6\partial^2 \tag{4}$$

where $c_1, \dots, c_6 \in \mathbb{F}$. We have the following two cases $c_1 = 0$ and $c_1 \neq 0$.

Case I. We assume that $c_1 \neq 0$ in (1). By $\theta(\partial^2 * x^3 \partial^2) = 6\theta(x\partial^2)$, we have $\theta(x^3\partial^2) = c_7x^2\partial^2 + c_8x\partial^2 + c_9\partial^2$, where $c_7, c_8, c_9 \in \mathbb{F}$. By $\theta(x\partial^2 * x^3\partial^2) = 6\theta(x^2\partial^2)$, we have

$$\theta(x\partial^2) * \theta(x^3\partial^2) = 6\theta(x^2\partial^2) \tag{5}$$

Since $deg(\theta(x\partial^2)) = 1$, $deg(\theta(x^3\partial^2)) = 1$, and $deg(\theta(x^2\partial^2)) = 2$, the equality (5) does not hold. This contradiction shows that $c_1 = 0$.

Case II. Now, we assume that $c_1 = 0$ in (1). We put the equalities (2) and (3) hold. It is easy to prove that $c_3 \neq 0$. By $\theta(x\partial^2 * x^3\partial^2) = 6\theta(x^2\partial^2)$, we have

$$\theta(x^{3}\partial^{2}) = \frac{x^{3}}{c_{3}}\partial^{2} + c_{10}x^{2}\partial^{2} + c_{11}x\partial^{2} + c_{12}\partial^{2},$$

where $c_{10}, c_{11}, c_{12} \in \mathbb{F}$. By $\theta(\partial^2 * x^3 \partial^2) = 6\theta(x\partial^2)$, $c_2 = c_3^2$ and $c_{10} = \frac{3c_4}{c_3^2}$, that is,

$$\theta(x^{3}\partial^{2}) = \frac{x^{3}}{c_{3}}\partial^{2} + \frac{3c_{4}}{c_{3}^{2}}x^{2}\partial^{2} + c_{11}x\partial^{2} + c_{12}\partial^{2}$$

By $\theta(x\partial^2 * x^3\partial^2) = 6\theta(x^2\partial^2)$, we also have $c_5 = \frac{2c_4}{c_3}$ and $c_6 = \frac{c_4^2}{c_3^2}$, i.e.,

$$\theta(x^2\partial^2) = x^2\partial^2 + \frac{2c_4}{c_3}x\partial^2 + \frac{c_4^2}{c_3^2}\partial^2 = (x + \frac{c_4}{c_3})^2\partial^2$$
 (6)

By $\theta(x^2\partial^2 * x^3\partial^2) = 6\theta(x^3\partial^2)$, we have $c_{11} = \frac{3c_4^2}{c_3^3}$ and $c_{12} = \frac{c_4^3}{c_3^3}$, i.e.,

$$\theta(x^3\partial^2) = \frac{x^3}{c_3}\partial^2 + \frac{3c_4}{c_2^2}x^2\partial^2 + \frac{3c_4^2}{c_2^3}x\partial^2 + \frac{c_4^3}{c_2^4}\partial^2 = c_3^{-1}(x + \frac{c_4}{c_3})^3\partial^2$$

By (6) and $\theta(\partial^2 * x^4 \partial^2) = 12\theta(x^2 \partial^2)$, we have

$$\theta(x^4\partial^2) = \frac{x^4}{c_3^2}\partial^2 + \frac{6c_5x^3}{3c_3^2}\partial^2 + \frac{6c_6x^2}{c_3^2}\partial^2 + c_{13}x\partial^2 + c_{14}\partial^2$$

where $c_{13}, c_{14} \in \mathbb{F}$. By $\theta(x^2 \partial^2 * x^4 \partial^2) = 12\theta(x^4 \partial^2)$, we have $c_{13} = \frac{4c_4^3}{c_5^5}$ and $c_{14} = \frac{c_4^4}{c_5^5}$, that is,

$$\theta(x^4\partial^2) = \frac{x^4}{c_3^2}\partial^2 + \frac{6c_5x^3}{3c_3^2}\partial^2 + \frac{6c_6x^2}{c_3^2}\partial^2 + \frac{4c_4^3}{c_5^5}x\partial^2 + \frac{c_4^4}{c_6^6}\partial^2 = c_3^{-2}(x + \frac{c_4}{c_3})^4\partial^2$$

Thus by induction on $p \in \mathbb{N}$ of $x^p \partial^2$, we can assume that $\theta(x^p \partial^2) = c_3^{-p+2}(x + \frac{c_4}{c_3})^p \partial^2$ holds. Since the right annihilator of ∂^2 is spanned by $\{\partial^2, x\partial^2\}$ and

the fact that $deg(\theta(x^2\partial^2 * x^{p+1}\partial^2)) = p+1$, $deg(\partial^2 * l_1) = deg(l_1) - 2$ and $deg(x\partial^2 * l_1) = deg(l_1) - 1$ we can prove that $\theta(x^{p+1}\partial^2) = c_3^{-p+1}(x + \frac{c_4}{c_3})^{p+1}\partial^2$ by appropriate inductions where $l_1, l_2 \in \overline{WN_{0,0,1}}_2$. This completes the proof of the Lemma.

Note 2.2. For any basis element $x^p \partial^2$ of $\overline{WN_{0,0,1}}_2$ (resp. $\overline{WN_{0,0,1}}_{2[,]}$), $c_3 \in \mathbb{F}^{\bullet}$ and $c_4 \in \mathbb{F}$, we can define an \mathbb{F} -linear map θ_{c_3,c_4} of $\overline{WN_{0,0,1}}_2$ (resp. $\overline{WN_{0,0,1}}_{2[,]}$) as follows:

$$\theta_{c_3,c_4}(x^p\partial^2) = c_3^{-p+2}(x + \frac{c_4}{c_3})^p\partial^2$$

Then θ can be linearly extended to a non-associative (resp. semi-Lie) algebra automorphism of $\overline{WN_{0,0,1}}_2$ (resp. $\overline{WN_{0,0,1}}_{2[1]}$).

Proposition 2.3. The non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,0,1}}_2)$ of $\overline{WN_{0,0,1}}_2$ is generated by θ_{c_3,c_4} which is defined in Note 2.2 with the appropriate constants in Note 2.2.

Proof. The proof of this Proposition is straightforward by Lemma 2.1, hence we omit the proof. $\hfill\blacksquare$

Theorem 2.4. The automorphism group $Aut_{non}(\overline{WN_{0,0,1}}_2)$ of $\overline{WN_{0,0,1}}_2$ is generated by θ_{c_3,c_4} which is defined in the above Note with the appropriate scalars in the Note.

Proof. The right annihilator of $\overline{WN_{0,0,1}}_2$ is spanned by $\{\partial^2, x^2\partial^2\}$ which is autoinvariant. For any $l \in \overline{WN_{0,0,1}}_2$, by the facts that $deg(x^i\partial^2*l) = deg(l) + i - 2$, $\frac{x^2}{2!}\partial^2$ is a right identity of $\overline{WN_{0,0,1}}_2$, and $deg(x^2\partial^2*l) = deg(l)$, we can prove the similar results of Lemma 2.1 for $\overline{WN_{0,0,1}}_2$. This completes the proof of the Theorem by Note 2.2.

Theorem 2.5. The non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,1,0}}_2)$ of $\overline{WN_{0,1,0}}_2$ is generated by $\theta_{c_3,0}$ which is defined in Note 2.2 with the constants in Note 2.2. For $n_1, n_2 \in \mathbb{N}$, if $n_1 \neq n_2$, then the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,1,0}}_{n_1})$ is isomorphic to the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{0,1,0}}_{n_2})$.

Proof. Since the right annihilator of $\overline{WN_{0,1,0}}_2$ is spanned by $\{x^j\partial^2|1\leq j\leq 2\}$ and by $\theta(x\partial^2*\frac{x^2}{2!}\partial^2)=\theta(x\partial^2)$, we can prove the similar results in Lemma 1 with $c_4=0$. Thus, $Aut_{non}(\overline{WN_{0,1,0}}_2)$ is generated by $\theta_{c_3,0}$ in Note 2.2. The

remaining results of the Theorem is obvious. This completes the proof of the Theorem. $\quad \blacksquare$

We note that the automorphism group $Aut_{non}(\overline{WN_{0,1,0}}_n)$ is a subgroup of the automorphism group $Aut_{non}(\overline{WN_{0,0,1}}_n)$.

Lemma 2.6. The semi-Lie algebra $(\overline{WN_{0,0,1}}_{2[,]})$ is 2-abelian and its finite dimensional maximal subalgebra $<\partial^2, x\partial^2 > spanned$ by ∂^2 and $x\partial^2$ is auto-invariant.

Proof. The proof of Lemma is straightforward by the fact that the algebra has the well defined order, and hence the proof is omitted.

Lemma 2.7. For any $\theta \in Aut_{non}(\overline{WN_{0,0,1}}_{2[,]})$ and any basis element $x^q\partial^2$ of $\overline{WN_{0,0,1}}_{2[,]}$, $\theta(x^q\partial^2) = c_3^{-q+2}(x + \frac{c_4}{c_3})^q\partial^2$ holds, where $c_3 \in \mathbb{F}^{\bullet}$ and $c_4 \in \mathbb{F}$.

Proof. Since the semi-Lie algebra $\overline{WN_{0,0,1}}_{2[,]}$ is 2-abelian, $\frac{x^2}{2}\partial^2$ is ad-diagonal with respect to its standard basis, and every non-associative algebra automorphism of the non-associative algebra $\overline{WN_{0,0,1}}_2$ is a semi-Lie algebra automorphism of $\overline{WN_{0,0,1}}_{2[,]}$, the similar results of Lemma 2.1 holds for the semi-Lie algebra $\overline{WN_{0,0,1}}_2$. By Note 2.2, this completes the proof of the Lemma.

Theorem 2.8. The automorphism group $Aut_{semi}(\overline{WN_{0,0,1}}_{2[,]})$ of $\overline{WN_{0,0,1}}_{2[,]}$ is generated by θ_{c_3,c_4} which is defined in Notes with the constants in the Notes.

Proof. Since $\overline{WN_{0,0,1}}_{2[,]}$ is 2-abelian, the proof of the Theorem is similar to the proof of Theorem 2.4, and is hence omitted.

Corollary 2.9. The automorphism group $Aut_{semi}(\overline{WN_{0,1,0}}_{2[,]})$ of $\overline{WN_{0,1,0}}_{2[,]}$ is generated by $\theta_{c_3,0}$ which is defined in Notes with the constants in the Notes.

Proof. By Theorem 2.5 and Theorem 2.8, the proof of the Corollary is straightforward, and is hence omitted.

Proposition 2.10. If $n_1 \neq n_2$, then the non-associative algebra $\overline{WN_{0,0,1}}_{n_1}$ is not isomorphic to the non-associative algebra $\overline{WN_{0,0,1}}_{n_2}$ as non-associative algebras.

Proof. Without loss of generality, we can assume that $n_1 > n_2$. If θ is an isomorphism from $\overline{WN_{0,0,1}}_{n_1}$ to $\overline{WN_{0,0,1}}_{n_2}$, then there is no pre-image of ∂^{n_2} in

 $\overline{WN_{0,0,1}}_{n_1}$. This contradiction shows that there is no isomorphism between them.

Actually, if $n_1 \neq n_2$, then there is no non-zero non-associative algebra homomorphism from $\overline{WN_{0,0,1}}_{n_1}$ to the non-associative algebra $\overline{WN_{0,0,1}}_{n_2}$. Similar proof of Proposition 2.10, if $n_1 \neq n_2$, then there is no semi-Lie algebra isomorphism from $\overline{WN_{0,0,1}}_{n_1[,]}$ to $\overline{WN_{0,0,1}}_{n_2[,]}$. The semi-Lie algebras $\overline{WN_{0,0,1}}_{n_1[,]}$ and $\overline{WN_{0,0,1}}_{n_2[,]}$ are simple. Thus if $n_1 \neq n_2$, then it is easy to prove that there is no non-zero homomorphism from $\overline{WN_{0,0,1}}_{n_1[,]}$ to $\overline{WN_{0,0,1}}_{n_2[,]}$.

Theorem 2.11. Let L_1 be a m_1 -abelian Lie (resp. semi-Lie) algebra and L_2 be a m_2 -abelian Lie (resp. semi-Lie) algebra. If $m_1 \neq m_2$, then L_1 is not isomorphic to L_2 as Lie (resp. semi-Lie) algebras.

Proof. The proof of the Theorem is standard, so we omit the proof.

Proposition 2.12. If $n_1 \neq n_2$, then there is no non-zero non-associative (resp. semi-Lie) endomorphism θ of $\overline{WN_{0,0,2}}_{n_1,n_2}$ (resp. $\overline{WN_{0,0,2}}_{n_1,n_2[,]}$) such that $\theta(\partial_1^{n_1}) = c\partial_2^{n_2}$, where c is a non-zero scalar.

Proof. If there is a non-zero endomorphism between them, then we can derive a contradiction easily. We omit the proof of the Proposition.

Proposition 2.13. The non-associative algebra $\overline{WN_{0,0,2}}_{n_1,n_2}$ has a subalgebra spanned by $\frac{x_1^{n_1}}{n_1!}\partial_1^{n_1}$, $\frac{x_1^{n_1}}{n_1!}\partial_2^{n_2}$, $\frac{x_2^{n_2}}{n_2!}\partial_1^{n_1}$, and $\frac{x_2^{n_2}}{n_2!}\partial_2^{n_2}$, which is isomorphic to the matrix ring $M_2(\mathbf{F})$. Thus the semi-Lie algebra $\overline{WN_{0,0,2}}_{n_1,n_2}$ has a Lie subalgebra which is isomorphic to $sl_2(\mathbf{F})$.

Proof. The proof of this Proposition is straightforward, and we hence omit the details. \blacksquare

References

- Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakinathan: Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 113-120 (2005).
- [2] Seul Hee Choi and Ki-Bong Nam: The Derivation of a Restricted Weyl Type Non-Associative Algebra, *Hadronic Journal*, Vol. 28, No. 3, 287-295 (2005).
- [3] Seul Hee Choi and Ki-Bong Nam: Derivation of Symmetric Non-associative Algebra I, Algebras Groups Geom 22, no. 4, 473-487 (2005).

- [4] Seul Hee Choi and Ki-Bong Nam: Weyl Type Non-associative Algebra Using Additive Groups I, *Algebra Colloquium* 14, no. 3, 479-488 (2007).
- [5] T. Ikeda, N. Kawamoto and Ki-Bong Nam: A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202.
- [6] V. G. Kac: Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 38, 832-834 (1974).
- [7] Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang: The automorphisms of generalized Witt type Lie algebras, *Journal of Lie Theory* **13** Vol(2), Heldermann Verlag, 571-576 (2003).
- [8] I. Kaplansky: The Virasoro algebra, Comm. Math. Phys. 86, no 1., 49-54 (1982).
- [9] Ki-Bong Nam: On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics Vol. 27, Springer Verlag, 493-500(2003).
- [10] Ki-Bong Nam and Seul Hee Choi: Degree Stable Lie Algebras I, Algebra Colloquium, 13(2006), no. 3, 487-494.
- [11] Ki-Bong Nam and Moon-Ok Wang: Notes on Some Non-Associative Algebras, *Journal of Applied Algebra and Discrete Structured*, Vol. 1, No. 3, 159-164.
- [12] Ki-Bong Nam, Yanggon Kim and Moon-Ok Wang : Weyl-type Non-Associative Algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155.
- [13] Ki-Bong Nam and Seul Hee Choi: On the Derivations of Non-Associative Weyl-type Algebras, Southeast Asian Bull. Math. 31(2), 341-348 (2007).
- [14] A. N. Rudakov : Groups of automorphisms of infinite-Dimensional simple lie algebras, $Math.\ USSR-Izvestija,\ \bf 3,\ 707-722\ (1969).$
- [15] R. D. Schafer: Introduction to Nonassociative Algebras, Dover, 1995, 128-138.