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Critical behavior in ultrastrong-coupled oscillators
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We investigate the strong-coupling regime of a linear x-x coupled harmonic-oscillator system by performing
a direct diagonalization of the Hamiltonian. It is shown that the x-x coupled Hamiltonian can be equivalently
described by a Mach-Zehnder-type interferometer with a quadratic unitary operation in each of its arms. We show
a sharp transition of the unitary operation from an elliptical phase rotator to an elliptical squeezer as the coupling
gets stronger, leading to the continuous generation of entanglement, even for a significantly thermal state in the
ultrastrong-coupled regime. It is also shown that this critical regime cannot be achieved by a classical Hookian
coupling. Finally, the effect of a finite-temperature environment is analyzed, showing that entanglement can still
be generated from a thermal state in the ultrastrong-coupled regime but is destroyed rapidly.
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I. INTRODUCTION

Strong coupling, which is one of the key ingredients for
the manipulation and control of quantum systems, makes
quantum-mechanical predictions distinct from classical ones.
In fact, the definition of strong coupling in quantum mechanics
has evolved over the years. In atomic and optical physics,
strong coupling was defined to show Autler-Townes splitting
[1] in which the atom-field interaction is stronger than the
atomic-decay rate. The next age of strong coupling was defined
in cavity quantum electrodynamics (QED) where an atom-field
interaction strong in comparison to the cavity and atomic-
decay rates can be realized. A series of important experiments
have been performed to show the nonclassical nature of
the atom-field interaction for Rydberg atoms in microwave
cavities [2,3]. This regime was recently also attained with
a cavity optomechanical system [4]. But with a system
consisting of superconducting Josephson junctions coupled
to microwave fields in stripline resonators, the interaction
strength can be made even stronger than the atom-field
coupling realized previously in cavity QED [5,6]. These
so-called circuit-QED systems can reach coupling strengths
comparable to the transition frequency of the relevant qubit
system. In these systems, we find interesting phenomena such
as the breakdown of the rotating-wave approximation and the
emergence of a unique deep strong-coupling regime [7].

A system of coupled oscillators has been of interest in
various contexts as several physical systems are represented
by harmonic oscillators, such as nanomechanical oscillators,
electromagnetic fields, and many two-level systems. Hopfield
studied the quantization of an electromagnetic field in a
dispersive medium using a coupled harmonic oscillator model
[8]. Recently, such a system of coupled oscillators has been
considered as a possible mechanism to generate entanglement
in an array of nanoelectromechanical devices [9–11]. In
this paper, we study ultrastrong coupling between harmonic
oscillators where the coupling rate g is comparable to or larger
than the natural frequencies ωj of the harmonic oscillators.

*Current address: LPQM, École Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne, Switzerland.

Strongly coupled oscillators in which the counter-rotating
terms are not negligible have been studied in the context
of twin-photon generation [12]. The study of such systems
is supported by recent experimental progress wherein such a
regime is becoming accessible, for instance in the interaction of
multiple quantum wells with terahertz electromagnetic fields
[13]. In this paper, we go even further than the strong-coupling
regime and find a critical point in the coupling strength at
which the evolution of the oscillator states radically changes.
An equivalent regime was studied for the interaction between
an atom and a field [7,14] where photon-number wave packets
were found to experience collapse and revivals across parity
chains in Hilbert space. The model that we consider here is
quite different in the sense that we have a bosonic system living
in an infinite dimensional Hilbert space so that there is no
such parity-defined dynamics. However, the model is exactly
solvable, and we find critical effects from the dynamics of
the coupled oscillators, which manifests in the entanglement
behavior.

We consider a system of two bosonic oscillators interacting
via a quadratic interaction, whose Hamiltonian is described by

Ĥ =
2∑

j=1

ωj

2

(
p̂2

j + x̂2
j

) + gx̂1x̂2, (1)

where the dimensionless quadrature operators satisfy the
canonical commutation relation, i.e., [x̂j ,p̂k] = iδjk . For
instance, the Dicke model of superradiance [15] is approx-
imately described by such a Hamiltonian. In the context of
cavity optomechanical systems, such a linearized Hamiltonian
describes the dynamics when the mechanics is being driven by
a strong coherent field [16]. In fact, this linearized model has
been investigated previously in the optomechanics context [17]
in the rotating-wave approximation (RWA), which is possible
when the system is relatively weakly coupled.

In this paper, we will show that in the ultrastrong-coupling
regime, the non-RWA terms turn out to be not only important
but also to critically change the oscillator interaction. After
identifying a unitary transformation exactly diagonalizing the
Hamiltonian of Eq. (1), we show its equivalence to a Mach-
Zehnder-type setup with unitary operations in its arms, thereby
explaining the generation of entanglement in the model. At
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the critical point when the coupling becomes ultrastrong, we
observe the transition of the unitary operation from an elliptic
rotator to a squeezer. This transition is clearly reflected in the
entanglement dynamics of the oscillators. It is interesting to
note that the classical Hookian model for classical harmonic
oscillators is not able to reach this critical point.

II. DIAGONALIZATION OF THE HAMILTONIAN

One can codify the operator Hamiltonian (1) in terms of a
Hamiltonian matrix

H =
[

ω1 g

g ω2

]
⊕

[
ω1 0
0 ω2

]
≡ Hx ⊕ Hp (2)

expressed in the basis defined by the column vector of
quadratures R̂ = (x̂1,x̂2,p̂1,p̂2)T so that Ĥ = 1

2 R̂THR̂, where
we also define the diagonal block matrices corresponding to
positions and momenta.

The usual diagonalization of such a quadratic Hamiltonian
proceeds by defining normal-mode operators �̂q (q = ±) and
their Hermitian conjugates, which are linear combinations of
the bare quadratures satisfying [�̂q,Ĥ ] = Eq�̂q . Specifically,
the normal-mode energies are found to be E2

± = ω2
1 + ω2

2 ±√
(ω2

1 + ω2
2)2 + 4ω1ω2(g2 − ω1ω2) from which we already

observe an interesting regime where E− is imaginary for
g > gc ≡ √

ω1ω2.
The transformation to normal modes is just a symplecto-

morphism [18]. The Hamiltonian matrix can be diagonalized
by a symplectic matrix S ∈ Sp(4,R) such that it is block
diagonal of the form S = Sx ⊕ Sp. The diagonal Hamiltonian
matrix is then H ′ = STHS = (ST

x HxSx) ⊕ (ST
pHpSp). From

the general conditions to be satisfied by symplectic transfor-
mations, we get that for Sx,Sp ∈ SL(2,R), ST

p = S−1
x . The

unitary representation of S in the Hilbert space of the system
is

T̂ = exp[i(Ax̂1p̂2 − Bx̂2p̂1)], (3)

parametrized by real constants A and B. This diagonalizes Ĥ

to Ĥ ′ = T̂ Ĥ T̂ † if and only if

tan 2
√

AB = 2ggc

ω2
1 − ω2

2

,
A

B
= ω2

ω1
. (4)

The diagonal Hamiltonian is then given by

Ĥ ′ = ω1p̂
2
1 +

(
ω1

2
c2 + ω2

2

2ω1
s2 + ggc

ω1
cs

)
x̂2

1 + ω2p̂
2
2

+
(

ω2

2
c2 + ω2

1

2ω2
s2 − ggc

ω2
cs

)
x̂2

2 , (5)

where we denote c = cos
√

AB and s = sin
√

AB. Each
normal mode is described by a quadratic Hamiltonian, which
looks very similar to a standard free Hamiltonian for an
oscillator. But using the condition (4), it is found that the
last term in Eq. (5) is zero (negative) when g = gc (g > gc)
so that these are standard harmonic oscillators only when
g < gc. The first (second) mode in Eq. (5) is associated
with E+ (E−), which we call the “+” (“−”) mode. When
g = gc, the “−” mode does not have a bound spectrum but is
rather a free particle while the “+” mode is still a harmonic
oscillator. Increasing the coupling strength further, for g > gc,

the anomalous “−” mode is dynamically unstable since it is
driven by a force derived from the inverted harmonic potential.
So, the earlier observation of E− becoming imaginary is
reflected by this qualitative change in the dynamical behavior
of the system as the coupling strength crosses its critical value
gc.

III. INEQUIVALENCE TO CLASSICAL COUPLED
OSCILLATORS

An obvious intuition one would have from thinking about
the classical oscillating systems is that the model (1) must be
the quantized version of the classical Hookian Hamiltonian for
coupled oscillators,

ĤC =
2∑

j=1

(
P̂ 2

j

2m
+ 1

2
mω2X̂2

j

)
+ mG2

2
(X̂1 − X̂2)2, (6)

where m is the common mass of the particle, ω the common
natural frequency, and G the Hookian coupling rate. The
oscillators are assumed to be identical for simplicity (a
generalization is straightforward). Introducing dimensionless
quadratures x̂1,2 = (mω0)1/2X̂1,2 and p̂1,2 = (mω0)−1/2P̂1,2

with the renormalized frequency ω0 = √
ω2 + G2, the

Hamiltonian becomes

ĤC = ω0

2

[(
p̂2

1 + x̂2
1

) + (
p̂2

2 + x̂2
2

) − Gx̂1x̂2
]
,

where G = G2

ω2+G2 is the renormalized coupling strength. So,
it is clear that in the quantum version of the classical Hookian
problem, the ultrastrong-coupling regime (here, G > 1) is not
possible to achieve.

The ultrastrong-coupling transition of the form exhibited
by the Hamiltonian (1) seems to be a property of such
quantum-coupling models and not something that is seen
easily in the standard harmonic-oscillator model. In particular
though, for optomechanical problems, the linearization of the
actual radiation-pressure interaction (p̂2

1 + x̂2
1 )x̂2 (which leads

to x̂1x̂2) is valid only for a short interaction time. Otherwise,
the displacement of the mechanics gets too large, and the
approximation leading to the interaction Hamiltonian breaks
down in the strong-coupling regime g > gc [19–21].

IV. ENTANGLEMENT DYNAMICS

In the resonant case, i.e., ω1 = ω2 and so A = B = π
4 ,

the transformation operator T̂ in Eq. (3) becomes exactly the
same as the 50:50 beam-splitter operator. Thus, the evolution
operator Û(t) = e−iĤ t corresponding to the Hamiltonian (1)
can be factorized into Û(t) = T̂ †e−iĤ ′

−t e−iĤ ′
+t T̂ , where Ĥ ′

± =
1
2 [ω1,2p̂

2
1,2 + (gc ± g)x̂2

1,2]. It is now obvious that in the
resonant case, the dynamics is equivalently represented by
a Mach-Zehnder interferometer with 50:50 beam splitters as
shown in Fig. 1 but with some active operations in both
arms [22].

To determine the kind of active operations, consider the in-
dividual evolutions generated by Ĥ± which are of the quadratic
form, Ĥq = 1

2 (α2
q x̂

2
q + β2

q p̂
2
q) (q = ±). The evolution of the
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FIG. 1. (Color online) The evolution due to Hamiltonian (1) is
equivalent to a Mach-Zehnder setup for the resonant case such that
one arm of the interferometer experiences elliptic rotation and the
other arm undergoes elliptic rotation (squeezing) if g < gc (g > gc).
BS: Beam splitter, M: Mirror.

quadrature operators induced by such a Hamiltonian is(
x̂q(t)
p̂q(t)

)
=

(
cos αqβqt − βq

αq
sin αqβqt

αq

βq
sin αqβqt cos αqβqt

)(
x̂q(0)
p̂q(0)

)
.

The transformation shows the behavior of an elliptical rotator
where the product of the quadrature scaling factors is unity. It
preserves the quadrature uncertainties, leading to, at most,
squeezing of the mode. Importantly, if either αq or βq is
negative, the elliptical rotator becomes an elliptical squeezer;
this is precisely the situation for the “−” mode when the
coupling is ultrastrong, i.e., g > gc. It is also worth noting that
in the general nonresonant case, both the beam-splitting and
two-mode squeezing terms appear in T̂ , meaning that instead
of the passive beam splitters at the entry and exit ports, one
will have another active device in the equivalent picture.

From the equivalent Mach-Zehnder picture, the source of
entanglement is obvious: squeezing in the input fields is a
necessary condition for Gaussian-entangled output from a
beam splitter [23]. The interaction leads to significantly more
entanglement when g = gc than the case for which g < gc.
To explicitly study dynamic entanglement, we consider each
harmonic oscillator initially in its thermal equilibrium so that
the total density operator ρ̂(0) = ρ̂Th

1 ⊗ ρ̂Th
2 , where ρ̂Th

j =
1
Zj

exp[− δj

2 (x̂2
j + p̂2

j )] with the canonical partition functionZj

and mean excitation number ηj = (eδj − 1)−1. δj = ωj/kBTj

at temperature Tj with the Boltzmann constant kB .
Figure 2(a) shows the dynamic entanglement, measured

by the logarithmic negativity [24,25], for a thermal state
with a single average excitation (see Appendix A for explicit
formulas of the log negativity). We observe that for g < gc, the
entanglement has an oscillatory behavior with typical periods
related to the frequencies of the normal modes. When g =
gc, the entanglement monotonically increases, disregarding
the small oscillations due to the “+” normal mode. The
same behavior is observed for larger values of the coupling
constant (g > gc) in Fig. 2(b) where we plot the “seralian”

 [26] which, in the unitary case, is a sufficient entanglement
monotone (see Appendix A for details). The entanglement
keeps increasing with time (neglecting the small oscillations),
and in particular at a fixed time, the larger the value of the

2 4 6 8
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(a)

FIG. 2. (Color online) (a) Log negativity and (b) the seralian for
the thermal state with η1 = 0,η2 = 1 for various coupling strengths
at ω1 = 5ω2.

coupling constant g, the larger is the entanglement achieved.
This particular behavior can be explained also by looking at
the eigenvalues of the Hamiltonian matrix H . For g < gc, the
matrix is positive definite, and as proved in Ref. [27], the
corresponding unitary operator will recur to the identity for a
given time. For larger values of g, the matrix H is not positive
definite anymore, the recurrence property of the evolution is
lost, and the entanglement increases with time.

Even when the initial state is significantly thermal, if the
system is critically coupled, entanglement can be generated
as depicted in Fig. 3. In fact, we also observe that the purity
of one oscillator is an important factor in the generation of
entanglement. When one oscillator is pure, the maximum
degree of entanglement achieved remains about the same
regardless of the temperature of the other oscillator. The
importance of single-system purity was also observed in some
other interaction models [28,29].

A. Dissipative dynamics

Let us consider now the case in which the system interacts
with a noisy environment. Because of the environment interac-
tion, we observe that the supercritical regime g > gc can cease
to be dynamically unstable. Assuming that each bare oscillator
interacts with its respective thermal environment with mean
excitation n̄j , under the Born-Markov approximation, the
evolution of the system density matrix is governed by the

5 10 15 20
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(b)
5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0

EN

(a)
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FIG. 3. (Color online) Dynamic entanglement at g = gc for
increasing the degree of thermality when one oscillator is initially (a)
in a pure state (η1 = 0) and (b) in a thermally excited state (η1 = 5).
The two oscillators are resonant.
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FIG. 4. (Color online) Dynamic entanglement for the dissipative
case for each of the three regimes. Here the oscillator 1 (2) is coupled
to an environment of n̄1 = 1 at a rate γ1 = 0.01ω1 (γ2 = 0.25ω2).

Kossakowski-Lindblad master equation

dρ̂

dt
= −i[Ĥ ,ρ̂] +

2∑
j=1

γj

2
{(n̄j + 1)L[âj ] + n̄jL[â†

j ]}ρ̂, (7)

whereL[Ô]ρ̂ = 2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô is the Liouvillian
while γj is the rate at which the j th mode is coupled to the
environment [see Appendix B for the analytical solution of
Eq. (7)].

The logarithmic negativity EN can be evaluated, and the
results are plotted in Fig. 4 for various values of the coupling
strength. We observe that, as expected, also in the supercritical
regime g > gc, the entanglement reaches a maximum value
and then starts to decrease and eventually reaches zero for a
given time t0. Not surprisingly, larger values of the coupling
constant and lower values of the noisy parameters ηj , γj , and
n̄j correspond to larger maximum values of entanglement and
to larger values of the zero-entanglement time t0.

V. CONCLUSION

We have investigated the ultrastrong-coupled regime of
a linear x-x coupled quantum harmonic oscillator system.
Three different regimes of qualitatively different dynamical
behavior can be identified from the normal modes of the
system. In particular, in the supercritical regime g > gc, the
“−” mode has an anomalous accelerating motion, which can be
understood as a consequence of a lack of translation symmetry
in the Hamiltonian (1) so that momentum conservation is not
explicitly guaranteed. In the classical Hookian Hamiltonian
(6), such a symmetry is manifest so that no dynamical anomaly
is allowed in the strong-coupling regime.

We further find that these three regimes, characterized by
their dynamical behaviors, are also uniquely characterized by
the dynamics of entanglement; in particular, the supercritical
regime is one where entanglement can be unboundedly
generated from even a highly thermal state. A similar behavior
was studied in the context of the superradiant phase transition
of the Dicke model, whose effective Hamiltonian is of the form

of Eq. (1) after a Holstein-Primakoff transformation of a set of
SU(2) operators into a bosonic operator.

Finally, we also note that the supercritical regime exhibits
a finite entanglement even though the system may be coupled
to a decohering Markovian environment at a nonzero temper-
ature.
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APPENDIX A: LOG NEGATIVITY FOR GAUSSIAN STATES

Given a two-mode Gaussian state, its entanglement proper-
ties are fully characterized by its covariance matrix σ , which
can be written in terms of 2 × 2 matrices as

σ =
(

σ 1 γ

γ T σ 2

)
. (A1)

The log negativity [24] of the two-mode state can be evaluated
as EN (�) = max[0, − loge(2ν̃−)], where ν̃− is the lowest
symplectic eigenvalue of the corresponding partial transposed
state. In the formula we have

ν̃2
− = 
 −

√

2 − 4Det[σ ]

2
, (A2)

where the seralian 
 is defined as


 = Det[σ 1] + Det[σ 2] − 2Det[γ ] (A3)

and where Det[A] denotes the determinant of the matrix A. It
is known that the logarithmic negativity EN is an entanglement
monotone [25]. One should also note that Det[σ ] is directly
related to the purity of the state since Tr[�2] = 1/(2

√
Det[σ ]).

As a consequence, unitary evolution leaves Det[σ ] invariant
so that the log negativity is monotonous with 
. For this
reason, when we consider the entanglement dynamics due to
nondissipative evolution, we may take the seralian 
 to be an
entanglement monotone.

APPENDIX B: SOLVING THE MASTER EQUATION

The master equation (7) can be cast into a c-number
partial differential equation (PDE) by introducing the
symmetric ordered characteristic function χ (α1,α2; t) =
Tr[D̂1(α1)D̂2(α2)ρ̂(t)], where D̂j (αj ) = exp(αj â

†
j − α∗

j âj ).
We choose to express the PDE in terms of the quadratures
parameters xj ,pj , defined via αj = 1√

2
(xj + ipj ), so that we

get the Fokker-Planck equation

∂χ

∂t
= −1

2
(rT�̄r)χ + 1

2

[
rT

(
ϒH̃ − 1

2
�

) −→
∂r

]
χ

+ 1

2
χ

[←−
∂T

r

(
(ϒH̃ )T − 1

2
�

)
r
]

, (B1)
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where we define the vector r = (x1,p1,x2,p2)T, the associated
gradient operator ∂r = (∂x1 ,∂p1 ,∂x2 ,∂p2 )T, and the matrices

ϒ =
2⊕

j=1

[
0 1

−1 0

]
, � =

2⊕
j=1

[
γj 0
0 γj

]
,

�̄ =
2⊕

j=1

[
γj

(
n̄j + 1

2

)
0

0 γj

(
n̄j + 1

2

) ]
,

and where H̃ here is a permutation on the Hamiltonian matrix
(2) corresponding to the difference in the order chosen for
the quadrature variables. The arrows on the gradient operators
denote the direction in which the differential operators act.

As shown above, the system Hamiltonian only affects
elliptic rotations or elliptic squeezing in the course of the
dynamics so that an initial Gaussian state localized at the
origin in phase space remains so always. And since the bath
is in thermal equilibrium, it too does not affect any finite
displacements in phase space but only scale and rotation

changes. Thus, for our relevant case, without loss of generality,
we choose the ansatz

χ (r; t) = exp

[
−1

2
rTσ (t)r

]
,

where now the time dependence is carried in the covariance
matrix. Substituting this into Eq. (B1) and then identifying
the coefficients of the various bilinear products, we get the
equation of motion for the covariance matrix, viz.,

dσ

dt
+

(
1

2
� − ϒH̃

)
σ + σ

(
1

2
� − ϒH̃

)T

= �̄.

This has the solution

σ (t) = K(t)

{
σ (0) +

∫ t

0
K(−τ )�̄KT(−τ )dτ

}
KT(t),

where K(t) = exp[(ϒH̃ − 1
2�)t].
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