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Abstract

We have examined holographic renormalization group(RG) flows of the shear vis-
cosities in anisotropic holographic superfluids via their gravity duals, Einstein-SU(2)
Yang-Mills system. In anisotropic phase, below the critical temperature Tc, the SO(3)
isometry(spatial rotation) in the dual gravity system is broken down to the residual
SO(2). The shear viscosities in the symmetry broken directions of the conformal fluids
defined on AdS boundary present non-universal values which depend on the chemical
potential µ and temperature T of the system and also satisfy non-trivial holographic
RG-flow equations. The shear viscosities flow down to the specific values in IR region,
in fact which are given by the ratios of the metric components in the symmetry unbroken
direction to those in the broken directions, evaluated at the black brane horizon in the
dual gravity system.
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1 Introduction

The Gauge/gravity duality has shed light on strongly coupled field theories. Especially,
Fluid/gravity duality is widely studied and it provides much useful information about con-
formal fluid dynamics in the effectively long wavelength limit. Many crucial quantities in real
time formalism in conformal fluids can have been obtained via retarded(advanced) Green’s
function(s) from their gravity duals [1, 2].

The most celebrated example from holographic fluid dynamics is known as the ratio of the
shear viscosity η to entropy density s. The ratio seems to be universal for many conformal
fluids, η

s
= 1

4π
[3, 4, 5, 6], of which holographic duals are Einstein gravities in asymptotically

AdS space. So far, the only violation of this universality appears when string effects or quantum
effects are taken into account in the dual gravity system[7, 8, 9].

One interesting direction to investigate the shear viscosities in boundary conformal fluids
is studying their holographic renormalization group(RG) flow equations. It has been argued
that Wilsonian RG flow is consistent with holographic RG in [10, 11]. In the dual gravity
system, the radial direction, r of AdS space is identified with Wilsonian RG-direction and
that radial direction is related to the energy scale of the dual fluids. AdS boundary is treated
as UV -region whereas the black brane horizon is as IR-region. In between, one can define a
fluid dynamics at intermediate energy scale and such conformal fluids are defined on a hyper
surface located at r = r̃, where rh < r̃ < ∞, rh is the black brane horizon and AdS boundary
is located at r = ∞.

In principle, holographic RG flow and the radial evolution of bulk Einstein equations of
motion are different. In [10, 11, 12], however, the authors have provided a general proof that
two flows are indeed equivalent in the limit of classical gravities. Therefore, once one solves
the bulk equations of motion, the corresponding flows are completely known.

For the cases so far[6, 13], the shear viscosity does not run along the radial direction. From
explicit calculation, it is obtained that ∂r̃η = 0 for these cases. In [14], the shear viscosity
runs, but the entropy density also runs in such a way that the shear viscosity to the entropy
density ratio does not change. In [6], the authors argue that the physical reason why the shear
viscosity shows trivial flow may be found in membrane paradigm. The membrane paradigm

may provide an argument that the linear response of the boundary fluid dynamics is completely
captured by that of the horizon fluid dynamics in the small frequency limit. The transport
coefficients on the boundary fluids can be expressed in terms of those on the horizon fluids
only. The shear viscosity is expected to be an apparent example of this.

However, we will provide an example of non-trivial RG flows of the shear viscosities from
anisotropic conformal fluid dynamics which has been suggested recently [15, 16]. This fluid
system displays an order parameter which depends on a certain spatial direction below its
critical temperature Tc and becomes p wave superfluid, in which the ratio in that direction
does not show the universal value [17, 18] 2. The gravity dual of this conformal fluids is Einstein-
SU(2) Yang-Mills system 3. It is an exact solution of the bulk action with an AdS black brane

2The universality of the shear viscosity and the entropy density ratio is violated for some other cases too,
as higher derivative gravity theories [24, 25, 26, 27, 28, 29, 30], Einstein-Axion-dilaton system[31] and a study
on non-trivial temperature dependence of the ratio[32]

3See [20, 21, 22, 23] for pioneering works on connection between Einstein-SU(2)-Yang-Mills and p-wave
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in 5-dimension with non-zero chemical potential turned on for the temporal component of
the gauge potential proportional to σ3 of SU(2) gauge group. The boundary metric enjoys
SO(3) global symmetry (as the spatial rotation in x, y and z directions in our coordinate
system). At high temperature (equivalently small chemical potential µ), the system stays in
the isometric phase. However at a certain chemical potential µ = µc(equivalently, a certain
temperature T = Tc), SO(3) symmetry is spontaneously broken into residual SO(2)(rotations
in y and z directions) because one of the spatial components(x directional component) of the
Yang-Mills fields develops a non-trivial zero mode (as a solution of the linearized Yang-Mills
field equations) and that mode is thermodynamically more favorable than the trivial zero
mode(isotropic phase). It turns out that in the region of µ > µc, this mode condenses and
there is a new anisotropic superfluid phase.

In this note, we have obtained flow equations of the shear viscosities in symmetry broken
direction in the anisotropic phase using the radial flows of the bulk equations of motion. It turns
out that the flow equations are not trivial, since they contain contributions from interactions
with perturbative Yang-Mills fields.

The shear viscosities will non-trivially flow into some specific values deeply in IR region,
which would correspond to the black brane horizon in the dual gravity system. It turns out
that the shear viscosities at the black brane horizon are expressed in terms of the ratios of the
metric components in the symmetry unbroken directions to the those in the broken directions.
For our case, the metric of the bulk spacetime is still diagonal in anisotropic phase. Therefore,
for example, the shear viscosity ηxy will be given by

ηxy =
1

2κ2
5

Gyy

Gxx

∣

∣

∣

∣

at the horizon

, (1)

where κ5 is the 5-dimensional gravity constant, Gxx and Gyy are diagonal metric components
of the bulk spacetime and 1

2κ2

5

is the universal value of the shear viscosity.

The reason for this behaviors in IR region is due to the causal boundary condition at the
black brane horizon. Near horizon, the fast oscillating factor, (r − rh)

−iνβ of the gravitational
perturbations which contribute to the shear viscosity calculations has dominant contribution
and the other regular factors are relatively suppressed, where β is a positive real number and
ν is frequency of the fields. In the equation of motion of the gravitational perturbations,
the interaction terms from Yang-Mills fields are relatively suppressed near horizon and the
equation becomes the same form of the near horizon limit of that in isotropic phase. Since β

depends only on the background metric evaluated at the horizon 4, the shear viscosities will
do as such. In some literatures (e.g see[31]), the form of the shear viscosity as Eq(1) at the
horizon is expected but they are the cases for trivial RG flows. We have shown that this is
true for the case of the non-trivial flows too.

In the last section in this note, we will provide a specific example for this argument. Us-
ing the analytic solutions in Einstein-SU(2) Yang-Mills obtained in [19], we explicitly show
that Eq(1) is valid near critical point. This analytic solution can be obtained only when the

holographic superfluids.
4In fact, β is proportional to the inverse of the Hawking temperature T .
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anisotropic order parameter is small and Yang-Mills coupling is very large. However, the ar-
gument is quite general. Therefore, for any temperature, we expect that the shear viscosity
behaves as Eq(1) in IR region.

This note is organized as follows. In Sec.2, we briefly review Einstein-SU(2) Yang-Mills
system and its analytic solutions. This analytic solutions will be used to provide an example
for our claim in Sec.3.1. In Sec.3, we will derive RG equation for the shear viscosities in the
symmetry broken direction and explore their properties.

2 Analytic Solutions in Einstein-SU(2) Yang-Mills Sys-

tem and Non-universal Values of the Shear Viscosity

In this section, we briefly review the analytic solutions in Einstein-SU(2)-Yang-Mills, the
dual gravity system of anisotropic superfluids. We mostly follow [19] for the discussion and
this solution will be used to provide a concrete example of non-trivial RG flows of the shear
viscosities in this system.

2.1 Holographic Setup and Analytic Solutions in Large Coupling

Expansion

The authors in [19] consider Einstein-SU(2) Yang-Mills system of which space-time is asymp-
totically AdS5. The action is

S =

∫

d5x
√
−G

(

1

κ2
5

(R +
12

L2
)− 1

4g2
F a
MNF

aMN

)

, (2)

where M , N ... are 5-dimensional space-time indices, a.. are SU(2) indices and g is Yang-Mills
coupling. For further discussion, we choose L = 1. Yang-Mills field strength F a

MN is given by

F a
MN = ∂MAa

N − ∂NA
a
M − ǫabcAb

MAc
N , (3)

where ǫabc is anti-symmetric tensor with ǫ123 = 1. The equations of motion from the action are
obtained as

WMN ≡ RMN + 4GMN − κ2
5

(

TMN − 1

3
T P
P GMN

)

= 0, (4)

Y aN ≡ ∇MF aMN − ǫabcAb
MF cMN = 0, (5)

where TMN is the energy-momentum tensor, of which form is

TMN =
1

g2

(

F a
MPF

Pa
N − 1

4
FPQaF

PQaGMN

)

. (6)

The ansatz for the metric and Yang-Mills field are given by

A = φ(r)τ 3dt+ ω(r)τ 1dx, (7)

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2f−4(r)dx2 + r2f 2(r)

(

dy2 + dz2
)

,
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where τa = sa

2
and sa are Pauli-matrices. We never discuss the detailed forms of equations of

motion here but just provide their solutions 5.
A known exact solution of the equations of motion is asymptotically AdS5, charged-black-

brane solution, of which forms are

φ(r) = µ̃(1− r2h
r2
), ω(r) = 0, (8)

σ(r) = f(r) = 1 and N(r) = N0(r) ≡ r2 − m

r2
+

2µ̃2α2r4h
3r4

,

where µ̃ is chemical potential, rh is the black brane horizon, α2 =
κ2

5

g2
and m = r4h +

2µ2α2r2
h

3
.

In the infinite Yang-Mills coupling limit as g → ∞, the last term in N(r) vanishes and the
solution becomes uncharged.

To explore this system near critical point, µ̃ = µ̃c = 4rh, by analytic method 6 , the authors
in [19] develop double expansion to the metric fields and Yang-Mills field order by order in εD̃1

and α2. ε is dimensionless small parameter and D̃1 is the SO(3) rotational symmetry breaking
order parameter, appearing in the non-trivial zero mode of ω(r),

ω(r) = ε
D̃1r

2

(r2 + 1)2
+O(ε2D̃2

1). (9)

It is convenient to choose a convention that the horizon of the black brane is located at r = 1
by scaling that r → rhr, {t, x, y, z} → 1

rh
{t, x, y, z} and defining a new chemical potential

µ ≡ µ̃

rh
. The equations of motion enjoy certain scaling symmetry[16, 15]. By these, we can

choose the asymptotic values of σ(r = ∞) = 1 and f(r = ∞) = 1 on the large r boundary for
the space-time to become asymptotically AdS5. The value of chemical potential is taken to be
µ = 4 for the dual boundary field theory system to be at the critical point.

To obtain the corrections in this double expansion, any appearing fields, a(r) in the
ansatz(7) can be expanded as

a(r) = a0(r) + εa1(r) + ε2a2(r)... (10)

Each ai in the above expression can also be expanded as

ai(r) = ai,0(r) + α2ai,2 + α4ai,4(r)... (11)

The zeroth order solutions in ε is given in Eq(8), where only N0 contains the subleading
correction of α2 in the sense of the above expansion. N0,2 = 32

3

(

1
r4

− 1
r2

)

and N0,i = 0 for
i = 4, 6.... It turns out that the non-trivial leading order correction is O(ε2α2). The leading
corrections for the metric are given by

σ(r) = 1− ε2α2 2D̃2
1

9(1 + r2)3
, f(r) = 1− ε2α2 D̃

2
1(1− 2r2)

18(1 + r2)4
(12)

5For the precise equations of motion, see Sec.2 in [19]
6For numerical approaches, see [16, 17]
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and N(r) = r2 − 1

r2
+

32α2

3

(

1

r4
− 1

r2

)

− ε2α24D̃
2
1

9r2

(

1 + 2r2

r2(1 + r2)3
− 3r2

2(1 + r2)2

+
281

560

(

1− 1

r2

))

.

The solutions of Yang-Mills fields7

ω(r) = ε
D̃1r

2

(r2 + 1)2
+O(ε2), (13)

φ(r) = 4(1− 1

r2
) +

ε2D̃2
1

4

(

(1 + 2r2)

3r2(1 + r2)3
− 1

8
+

281

1680

(

1− 1

r2

))

+O(ε3). (14)

The black brane temperature is changed by the leading corrections as

T =
1

π

(

1− 16

3
α2 +

17

1260
ε2α2D̃2

1

)

, (15)

where Tc ≡ 1
π

(

1− 16
3
α2
)

is the critical temperature. The black brane entropy is given by

S =
2π

κ2
5

V3, (16)

where V3 is spatial coordinate volume of the boundary space-time, V3 =
∫

dxdydx, in this
rescaled coordinate.

2.2 Non-Universality in Anisotropic Background

In anisotropic background developed in the previous subsection, it is manifest that SO(3)
isometry in the background metric is broken down to SO(2). As long as we are looking at
a solution with SO(3) symmetry, the universality of the ratio of entropy density and shear
viscosity holds. This is because shear viscosities rely on the gravitational perturbations in
tensor modes of SO(3) in the dual gravity. Each tensor mode satisfies a massless scalar field
equation decoupled from one another, which can ensure the universality. The universality of
this ratio is lost in the symmetry broken phase. The reason is that once SO(3) symmetry
is broken into SO(2), the gravitational wave modes in the symmetry broken direction are no
longer tensor modes in residual SO(2). They will not be decoupled from other fields and in
fact interact with Yang-Mills fields. In [19], the authors have computed a deviation from the
universal value of the shear viscosity in the symmetry broken direction as

ηxy = ηxz =
1

2κ2
5

(

1 +
29

896
ε2α2D̃2

1

)

, (17)

7Any subleading corrections of Yang-Mills field in α2 would not contribute to the leading back reactions
to the metric. The aim of the calculation in [19] is to get metric corrections up to non-trivial leading order
corrections, O(α2ε2). Therefore, it is enough that the Yang-Mills field solutions is evaluated up to φi,0 and ωi,0

only.
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using double expansion in εD̃1 and α2 together with small frequency expansion 8. This result
is obtained via Kubo formula using the holographic computation of retarded Green’s function
from the perturbations, hMN and δAa

M defined as

GMN = G
(0)
MN + hMN and Aa

M = A
a(0)
M + δAa

M , (18)

where G
(0)
MN and A

a(0)
M are background metric and Yang-Mills fields respectively. For example,

to compute ηxy, one consider hxy together with δA1
y and δA2

y(This is minimal set of fields
interacting one another classified by residual SO(2) and Z2 symmetry in the symmetry broken
phase). Their equations of motion are given by

0 = Ψ′′

ν(r) +

(

1

r
+

4r

N(r)
+

6f ′(r)

f(r)
− rα2φ′2(r)

3N(r)σ2(r)

)

Ψ′

ν(r) +
ν2Ψν(r)

N2(r)σ2(r)
(19)

+
2α2

r2f 2(r)

(

ω′(r)δA1′
y (r)−

ω(r)φ2(r)δA1
y(r)

N2(r)σ2(r)
+

iνω(r)φ(r)δA2
y(r)

N2(r)σ2(r)

)

,

0 = δA1′′
y (r) +

(

1

r
− 2f ′(r)

f(r)
+

N ′(r)

N(r)
+

σ′(r)

σ(r)

)

δA1′
y (r) +

(

ν2 + φ2(r)

N2(r)σ2(r)

)

δA1
y(r) (20)

− f 6(r)ω′(r)Ψ′

ν(r)−
2iνφ(r)δA2

y(r)

N2(r)σ2(r)
,

0 = δA2′′
y (r) +

(

1

r
− 2f ′(r)

f(r)
+

N ′(r)

N(r)
+

σ′(r)

σ(r)

)

δA2′
y (r) +

(

ν2 + φ2(r)

N2(r)σ2(r)

)

δA2
y (21)

− f 4(r)ω2(r)

r2N(r)
δA2

y +
iνφ(r)

N2(r)σ2(r)
(−f 6(r)ω(r)Ψν(r) + 2δA1

y(r)),

where Ψν(r) =
hxy

r2f2(r)
and ν is frequency of the fields. The equations are evaluated in frequency

space and spatial momenta of the fields are turned off, ~k = 0. The precise forms of the solutions
of the weak fields are given in [19] 9.

3 RG-Flows of the Shear Viscosity in Einstein-SU(2)Yang-

Mills System

3.1 RG Flow of the Shear Viscosity in Symmetry Broken Direction

As discussed in [6, 13], retarded Green’s function for the gravitational perturbation, Ψν(r) =
hy

x on r = r̃ hyper surface is given by the ratio of its canonical momentum ΠΨ(r) to itself,

8The shear viscosity in the direction of residual symmetry is still universal, ηyz = 1
2κ2

5

which depends on

tensor modes in residual SO(2).
9 The solutions are quite complicated, so we would not show all these here. For detailed solutions, see Eq(34)

in Sec3.2 and Appendix.C in [19]. In Sec.3.2 in this note, we need to introduce an O(1) integral constant, Ã
(1)
1,0,

which appears in the solution of δA1
y(r). This will be determined by boundary condition in O(ν2), but it is

difficult to determine that analytically. So we leave this as undetermined in the following discussion. In fact,
it is not relevant for the shear viscosity computation neither at the horizon or on the AdS boundary.
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which is given by

GΨ(r̃, ν) =
ΠΨ(r̃)

Ψν(r̃)
=

r̃3σ(r̃)N(r̃)f 6(r̃)∂r̃Ψν(r̃)

2κ2
5Ψν(r̃)

. (22)

One can define a quantity, η̃xy on the r = r̃ hyper surface as

η̃xy(r̃, ν) ≡ −GΨ(r̃, ν)

iν
, (23)

for the future convenience. Kubo formula for the shear viscosity cares the imaginary part of
the retarded Green’s function only. Therefore, the shear viscosity ηxy is given by

ηxy ≡ Re[η̃xy]. (24)

The holographic RG flow equation of the shear viscosity can be derived from the bulk
equations of motion. Using Eq(22) and Eq(23), we switch Ψν(r) in Eq(19) to η̃xy, then we get

∂r̃η̃xy =
iν

σ(r̃)N(r̃)

[

2κ2
5

r̃3f 6(r̃)
η̃2xy −

r̃3f 6(r̃)

2κ2
5

]

+ α2∆(r̃), (25)

where

∆(r) ≡ rN(r)σ(r)f 4(r)

iκ2
5Ψν(r)ν

(

ω′(r)δA1′
y (r)−

ω(r)φ2(r)δA1
y(r)

N2(r)σ2(r)
+

iνω(r)φ(r)δA2
y(r)

N2(r)σ2(r)

)

. (26)

On the right hand side of Eq(25), two terms in the square bracket will be the only terms re-
maining when the the black brane stays above its critical temperature, T > Tc(The background
geometry becomes isotropic). In zero frequency limit, ν → 0, these terms vanish. Then, Eq(25)
becomes ∂r̃η̃xy = 0 and the RG-flow is trivial. In this case, the shear viscosity becomes the
universal value for any r = r̃ hyper surfaces.

However, below the critical temperature, the background geometry becomes anisotropic
and the ∆(r) term in Eq(25) appears, which comes from interactions with perturbative Yang-
Mills fields. Therefore, it is manifest that in the zero frequency limit, the holographic RG flow
equation of the shear viscosity is not trivial as the usual cases [6, 13], in fact it flows from its
UV boundary value(17) to another one all the way to the IR region.

The shear viscosities deeply in IR region in the dual field theories correspond to those at
the black brane horizon in the bulk gravity system. In general ground, it is expected (e.g. see
[31]) that the shear viscosities at the horizon in SO(3) rotational symmetry broken direction
will be modified from its universal value by the ratios of the metric components in the unbroken
symmetry directions to those of the broken directions. In our case, these might be given by

ηxy(r = 1) =
1

2κ2
5

Gyy(r = 1)

Gxx(r = 1)
and ηxz(r = 1) =

1

2κ2
5

Gzz(r = 1)

Gxx(r = 1)
, (27)

where again r = 1 is the location of the black brane horizon and 1
2κ2

5

is the universal value of

the shear viscosity. In the following, we will argue that this expectation is indeed right even
in the case that the shear viscosity runs non-trivially.
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We firstly investigate the near horizon limit of the equations of motion (19). It turns out
that the contributions from interaction term ∆(r) becomes relatively weak near horizon. Once
we impose ingoing boundary condition at the horizon for the fields appearing in Eq(19), Eq(20)
and Eq(21) as Ψ ∼ δA1

y ∼ δA2
y ∼ (r − 1)−iνβ, where β is a positive real number, the terms

involving δA1
y and δA2

y in Eq(19) become less singular than the terms which are proportional
to Ψν and its derivatives. Then, dominant behavior in Eq(19) presents approximately near
horizon limit of the equation in isotropic phase as

0 h Ψ′′

ν(r) +
Ψ′

ν(r)

r − 1
+

ν2Ψν(r)

N2(r)σ2(r)
. (28)

In fact, the solution of the gravitational field, Ψν(r) has the following near horizon form in
small frequency limit:

Ψν(r) = A0(r, ν)(r − 1)
−

iν
N0σ0

∞
∑

n=0

νnΨn(r), (29)

where N0 ≡ limr→1
N(r)
r−1

, σ0 ≡ σ(r = 1), and A0(r, ν) and Ψn(r) are some regular functions in
r and their derivatives are regular too. Once we plug Eq(29) into the definition of retarded
Green’s function(22), it becomes

GΨ(r, ν) =
r3σ(r)N(r)f 6(r)

2κ2
5

∂r

[

− iν

N0σ0

ln(r − 1) + lnA0(r, ν) + ln

(

∞
∑

n=0

νnΨn(r)

)]

. (30)

The last two terms in the square bracket are regular functions in r and N(r) presents single
zero at the horizon. Therefore, the first term in the square bracket is only surviving at the
horizon, which gives

GΨ(r = 1, ν) = −iνf 6(r = 1)

2κ2
5

and ηxy =
1

2κ2
5

f 6(r = 1). (31)

The factor f 6(r = 1) in the Green’s function and ηxy is precisely the ratio, Gyy(r)

Gxx(r)

∣

∣

∣

r=1
as

expected in (27).
One can derive the same result by using Eddington-Finkelstein coordinate in the gravity

system. Requesting ingoing boundary condition is imposing regularity at the black brane
horizon. Therefore, the any fields at the horizon depends on t and r only through their non-
singular combinations. The ingoing null coordinate v is given by

dv = dt+
dr

N(r)σ(r)
, (32)

and this implies
− iνΨν(r) = N(r)σ(r)∂rΨ(r). (33)

Plugging this relation into (22), one obtains the same Green’s function with (31).
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3.2 RG-Flow Example of the Shear Viscosity from Analytic Solu-

tions

In this subsection, we provide an example of RG flow from the analytic solutions to support the
argument in Sec.3.1. The analytic solution of the bulk equations of motion is already obtained
in [19]10 and we will use its result. Up to leading order corrections in the double expansion of
εD̃1 and α2, we obtained a radial flow of the retarded Green’s function by using Eq(22) as a
function of r:

GΨ(r, ν) = − iν

2κ2
5

+
α2ε2

κ2
5

[

59D̃2
1r

2(r2 − 1)2

56(1 + r2)4
+

νD̃1

5376(1 + r2)4

(

10752r2(r2 − 1)2
Ã

(1)
1,0

Ψ̃
(34)

+ iD̃1(1193− 2380r2 + 726r4 − 348r6 − 87r8 + 336r2(r2 − 1)2ln(1 +
1

r2
))

)]

+ higher order in ν, ε or α2,

where Ψ̃ = limr→∞Ψν(r), Ã
(1)
1,0 is an integration constant, which is hard to be determined

analytically11. So we keep Ã
(1)
1,0 as unknown in this discussion. We note that ε2α2 = 1260π(T−Tc)

17D̃2

1

,

so the temperature dependence of the retarded Green’s function is encoded in this term. Only
imaginary part of the retarded Green’s function contributes to the shear viscosity, so the first
term in the square bracket does not contribute since it is purely real. The shear viscosity on
r = r̃ hyper surface is given by

ηxy =
1

2κ2
5

− α2ε2D̃1

5376κ2
5(1 + r̃2)4

(

10752r̃2(r̃2 − 1)2Im

[

Ã
(1)
1,0

Ψ̃

]

(35)

+ D̃1(1193− 2380r2 + 726r4 − 348r6 − 87r8 + 336r2(r2 − 1)2ln(1 +
1

r2
))

)

+ higher order in ν, ε or α2.

Since the entropy density is constant in radial direction, s = 2π
κ2

5

, the ratio of the shear viscosity

and entropy density runs non-trivially too. As r̃ → ∞, the Green’s function and the shear
viscosity become

GΨ(r = ∞, ν) = − iν

2κ2
5

(

1 +
29

896
ε2α2D̃2

1

)

and ηxy(r = ∞) =
1

2κ2
5

(

1 +
29

896
ε2α2D̃2

1

)

, (36)

up to leading order correction. At the black brane horizon r̃ = 1, the retarded Green’s function
and the shear viscosity flows into the values as

GΨ(r̃ = 1, ν) = − iν

2κ2
5

(

1 +
1

48
ε2α2D̃2

1

)

and ηxy(r̃ = 1) =
1

2κ2
5

(

1 +
1

48
ε2α2D̃2

1

)

. (37)

10See Appendix.C in [19]
11See Eq(72), Appendix.C in [19]
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The factor causing deviations from the universal value of the shear viscosity at the horizon is

1 +
1

48
ε2α2D̃2

1 = f 6(r = 1) =
Gyy(r = 1)

Gxx(r = 1)
, (38)

in this perturbative regime, which is exactly as expected in (27).
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