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Abstract. We present an efficient deinterlacing method via mathematical
modeling of the neighbor pixels in the local region. The local surface model
is designed using the quadratic equation having two-dimensional coordi-
nate variables. Unlike conventional deinterlacing methods, the proposed
method avoids using directional difference measures, resulting in reduced
limitation on the number of considering edge directions. By modeling the
local surface, it is easier to derive the true characteristic of the local region
in a natural image than utilizing the directional difference measure. In or-
der to decide the optimal coefficients of the surface model, the neighbor
pixels around the current pixel to be interpolated are utilized. Once the
coefficients are determined, the surface model estimates the pixel inten-
sity of the current pixel to be interpolated. Simulation results show that
the proposed surface model-based deinterlacing method minimizes the
interpolation error. Compared to the traditional deinterlacing methods and
Wiener filter-based interpolation method, the proposed method improves
the subjective quality of the interpolated edges while maintaining a higher
peak signal-to-noise–ratio level. C© 2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3533027]

Subject terms: surface model; deinterlacing; intrafield.

Paper 100713R received Sep. 1, 2009; revised manuscript received Nov. 10, 2009;
accepted for publication Nov. 23, 2009; published online Jan. 27, 2011.

1 Introduction
In video broadcasting, general TV systems, such as PAL,
SECAM, and NTSC, currently adopt an interlaced format to
halve the video transfer bandwidth. This standard frame rate
is sufficient for distributing slow motion; however, it tends to
introduce flickering for objects that have high horizontal fre-
quencies, interline flicker, jaggedness, and line crawling.1, 2

In addition, the growth of modern display systems such
as high-definition television (HDTV), PC monitors, liquid-
crystal displays, and plasma display panels requires that the
whole image be displayed at once.

For the aforementioned reasons, deinterlacing algorithms
are required in order to enhance spatial resolution in the verti-
cal direction. Research in the past couple of years has focused
on deinterlacing video signals, with studies ranging from
single-field spatial algorithms3–16 to the more sophisticated
interfield temporal algorithms, including motion-adaptive al-
gorithms and motion-compensation algorithms.17–19 Inter-
field temporal algorithms perform better than single-field
spatial algorithms; however, they usually require sizable
computational complexity for computing motion, which is
not feasible for real applications. Moreover, poor perfor-
mance can be seen when the motion information is unreliable.

Conversely, single-field spatial algorithms, such as the
line-averaging (LA) algorithm,3 edge-based line-average
(ELA) algorithm,4 efficient ELA (EELA) algorithm,5 mod-
ified ELA (MELA),7 fuzzy detection of edge direction for
video line doubling (FDED),12 new edge-dependent dein-
terlacing (NEDD) algorithm,9 direction-oriented interpola-
tion (DOI) algorithm,8 fine directional deinterlacing (FDD)
algorithm,13 low-complexity interpolation method for dein-
terlacing (LCID),10 deinterlacing using locally adaptive-
thresholded binary image (LABI),11 edge map-based dein-
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terlacing (EMD) method,14 deinterlaced algorithm based on
sparse wide-vector correlations (DSWVC),6 and fine edge-
preserving deinterlacing algorithm for progressive display
(EPD),15 are suitable for most real-time applications due to
their clarity, low cost, and easy implementation in hardware.
Among them, LA,3 a simple method that interpolates the
pixel using an average value of the upper and lower pixels,
has been generally used due to its clarity with small complex-
ity while it exhibits no motion artifacts. However, the vertical
resolution of the input image is halved before the image is
interpolated. Therefore, the details in the progressive image
are reduced. To alleviate this issue, the ELA (Ref. 4) method
has been proposed. ELA provides good performance and can
eliminate the blurring effect of LA. Moreover, it gives both
sharp and straight edges. However, because the ELA only
considers three directions (135, 90, and 45 deg), interpola-
tion errors often become larger in the high-frequency areas.
Instead of utilizing the difference between two pixels as a
directional correlation, DSWVC uses the difference of vec-
tors (neighbor pixel set). The DSWVC (Ref. 6) uses three
different methods, which are the LA mode, narrow-vector
correlation mode, and sparse wide-vector correlation mode,
for different regions. However, the DSWVC yields higher
mean-squared error (MSE) than the LA. DOI (Ref. 8) intro-
duced a spatial direction vector to obtain finer resolution and
higher accuracy of the edge direction. However, DOI requires
a large amount of computations due to its large search range.
FDED (Ref. 12) utilized the fuzzy set theory to detect the
prevailing edge direction among the five directions (0, ± 45,
and ± 60 deg). FDD (Ref. 13) introduced the modified So-
bel masks to detect the edge tendency of the pixel being
interpolated and performs the interpolation along the seven
directions. EMD (Ref. 14) also predicts the edge direction
of the current pixel to be interpolated with the original So-
bel mask and performs the interpolation along the detected
direction with the candidate deinterlaced pixels, which are the
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average values between any two pixels in the corresponding
edge direction. EPD (Ref. 15) first selects the dominant edge
by calculating the gradient of pixel block subsets, and then
different interpolation methods are applied to four different
regions. However, FDD, EMD, and EPD sometimes yield in-
correct edge direction because they only consider horizontal
and vertical gradients to obtain the local edge direction. The
LABI (Ref. 11) uses a binary image to extract the possible
edge patterns, and the interpolation is operated according to
the edge pattern. However, the LABI provides noticeable im-
provements on the specific regions where a horizontal edge
exists. LCID (Ref. 10) is a simple deinterlacing method con-
sidering only four directional differences, but yields blurring
due to excessive averaging along the incorrect edge direction.
Although these conventional methods perform interpolation
along the edge direction and are widely used for their sim-
plicity and ease of implementation, they tend to yield noise
due to the limitation of the candidate edge directions, as ver-
ified in Ref. 13, and incorrect edge direction detection using
edge detectors based on horizontal and vertical gradients.

To alleviate this issue, Park et al. presented a covariance-
based adaptive deinterlacing (CAD) algorithm for intrafield
interpolation.16 They first employed the geometric duality20

concept and Wiener filtering theory21 to estimate the model
parameters. The geometric duality concept was used to esti-
mate the high-resolution covariance from its low-resolution
counterpart with a qualitative model characterizing the re-
lationship between the covariance and the resolution. As
long as the correspondence between the high- and low-
resolution covariances are established, the optimal minimum
MSE (MMSE) linear interpolation coefficients can be derived
by the classical Wiener filter. However, the major drawback
of CAD is its costly computational complexity.

In order to alleviate the computational complexity, we
present a mathematical model for the local region in a nat-
ural image. Because the proposed method utilizes fewer
neighbor pixels than CAD, the true characteristics of the
local region can be easily derived with lower complexity
than CAD. Moreover, the operation for calculating the in-
verse matrix is not required for the proposed method due
to its coordinate-based surface model. The proposed method
is specific for a sequence having high resolution because
the proposed method deals with more neighbor pixels than
the conventional deinterlacing methods, which use a direc-
tional pixel difference measure within the small (restricted)
region. Also, it is worth noting that identifying a deinterlac-
ing method based on spatial domain is still an active area
of research. This paper is structured as follows. In Sec. 2,
the existing intrafield deinterlacing methods, including the
edge-based line interpolation approach and Wiener filtering
approach, are described. In Sec. 3, the proposed mathemat-
ical model and its implementation are explained. In Sec. 4,
experimental results and performance analyses are provided
to show the feasibility of the proposed approach. Finally,
conclusions are made in Sec. 5.

2 Previous Deinterlacing Algorithms

2.1 Edge-Based Deinterlacing Methods

2.1.1 Modified edge-based line averaging
MELA (Ref. 7) is a modified version of the ELA.4 The ELA
interpolates the pixel in the direction whose pixel difference
is the smallest among the three pixel differences. The pixel

Fig. 1 Six neighbor pixels used for determining the local edge
direction.

differences in the three different directions are obtained as
follows:

C−1 = |u1 − d3| ,
C0 = |u2 − d2| ,
C1 = |u3 − d1| .

(1)

where u1, u2, u3, d1, d2, and d3 denote the intensities of six
neighbor pixels shown in Fig. 1. In Fig. 1, i and j denote the
indices for the lines and the columns, respectively. MELA ad-
ditionally considers three directional spatial correlations that
cover vertical (90-deg), diagonal (117-deg), and antidiagonal
(63-deg) directions, and these correlations are calculated as
follows:{

V = (|u1 − d1| + |u2 − d2| + |u3 − d3|)/3,
P = (|u1 − d2| + |u2 − d3|)/2,
Q = (|u2 − d1| + |u3 − d2|)/2.

(2)

Then, according to the local edge direction, an appropriate
interpolation is performed as follows:

x (i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 + u2 + d2 + d3

4
,

if { min(P, Q, V )= P}∧{C−1 < C0}
u2 + u3 + d1 + d2

4
,

if { min(P, Q, V )= Q}∧{C1 < C0}
u2 + d2

2
, otherwise.

(3)

The operator ∧ denotes the AND operation. By interpolating
the lost pixels along theses directional spatial correlations,
MELA becomes more robust and efficient than other meth-
ods, including LA (Ref. 3), ELA, and EELA (Ref. 5). Addi-
tionally, MELA yields an even better peak signal-to-noise–
ratio (PSNR) result with almost the same computational time
as that of ELA.

2.1.2 Low-complexity interpolation
LCID (Ref. 10) uses four simpler directional differences (in
the direction of diagonal, antidiagonal, vertical, and horizon-
tal) than MELA, and they are denoted as Dd1, Dd2, Dv, and
Dh. The four directional differences are calculated as follows:

⎧⎪⎨
⎪⎩

Dd1 = |u1 − d2| + |u2 − d3| ,
Dd2 = |u2 − d1| + |u3 − d2| ,
Dv = 2× |u2 − d2| ,
Dh = |u1 − u2| + |d1 − d2| .

(4)
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Fig. 2 Geometric duality for the CAD.

Then, similar to MELA, the pixel is interpolated in the di-
rection having minimum directional difference as follows:

x(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(i, j − 1), if Dh = 0

u1 + u2 + d2 + d3

4
,

if min(Dd1, Dd2, Dv) = Dd1

u2 + u3 + d1 + d2

4
,

if min(Dd1, Dd2, Dv) = Dd2

u2 + d2

2
, otherwise.

(5)

On average, LCID provides lower image quality than MELA
because LCID replaces the current pixel to be interpolated
to the previously interpolated pixel [x(i,j – 1)] when Dh = 0.
Because it is not certain that the pixel is interpolated correctly,
we should avoid using the estimated pixel value.

2.2 Covariance-Based Adaptive Deinterlacing
Method

Geometric duality refers to the correspondence between the
high- and low-resolution covariances, which couples the
pair of pixels at different resolutions but along the same
orientation.20 Hence, geometric duality facilitates the esti-
mation of local covariance for images without the necessity
of explicitly estimating the edge direction.

A main goal of CAD (Ref. 16) is using low-resolution
image samples to estimate the parameter α in Eq. (6). Re-
ferring to the spatial relation between the samples in Fig. 2,
we can obtain a linear least-squares estimator of the model
parameter vector α as follows:

α̂ = arg min
α

∑
m∈S

(
Nm −

∑
1≤t≤8

αt N (8)
m♦t

)2

, (6)

Fig. 3 Indices (iL, jL) of 20 neighbor pixels and the current pixel to be
interpolated within the local region.

where N (8)
m♦t are the eight connected neighbors of the loca-

tion m within the local window S in the low-resolution image.
Note that the estimates of α in Eq. (6) are made using the low-
resolution pixels Nm. Hence, the resulting estimates α̂ are the
optimal in the least-squares sense under the assumption that
the sample covariances are not altered in the local window,
which is generally true for natural images. As shown in Fig. 2,

Fig. 4 Various window sizes.
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(a) (b)

Fig. 5 Simulation results with varying WS. (a) Average PSNR. (b) Average processing time.

CAD assumes that the pixel intensity of N1 is a weighted
sum of the eight neighbor pixels (from D1 to D8). The sim-
ilar assumption for N1 is extended to the other pixels (data
vector) within S. The various sizes of S are shown in Ref. 16
and determined by the parameter of window size, WS. In
Ref. 16, the optimal value for the WS is determined as 7.
Hence, the optimal weight vector (α = [α1, α2, α3, . . . , α8]T)
for the data vector (y = [y0, y1, . . . , y2WS×(2WS + 1)]T) can be
obtained by solving the following:

y = Cα, (7)

where C is a [2WS × (2WS + 1)] × 8 data matrix whose
k’th row vector is the eight neighbors of yk. Because the data
matrix C is not square, the weight vector α is derived using
the least-squares approximation as follows:

α = (
CT C

)−1 (
CT y

)
. (8)

Note that the terms CTC and CTy are the autocorrelation and
cross-correlation of the low-resolution samples, respectively.
Finally, the pixel can be interpolated using the eighth-order

linear interpolation as follows:

x(i, j) =
8∑

k=1

αk Nk . (9)

Note that α is used as an interpolation weight instead of
β because we assume that there is geometric duality be-
tween the high- and low-resolution covariances so that β
is almost the same as α. N4 and N5 are the missing pix-
els in the interlaced (low-resolution) image. It is possible to
use previously reconstructed value for N4, and N5 can be
predicted using conventional deinterlacing methods, such as
MELA or the average value of the upper (N3) and lower (N8)
pixels.

3 Local Surface Model-Based Deinterlacing
Method

A mathematical model of the local region in the natural im-
age is proposed. We can estimate the intensity of the current
pixel to be interpolated by evaluating the value of the model
function at the position of the current pixel. The size of lo-
cal region to be modeled is fixed as shown in Fig. 3. Let
the origin (iC,jC) denotes the position of the current pixel
to be interpolated. It is well known that there exist spatial

Fig. 6 Comparison of local surfaces. (a) original local surface at (i,j) = (220,100) of Finger test image. (b) local surface modeled by R(i,j).
(c) local surface modeled by I(i,j).
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Fig. 7 Comparison of local surfaces. (a) original local surface at (i,j) = (330,300) of Finger test image. (b) local surface modeled by R(i,j).
(c) local surface modeled by I(i,j).

correlations within a local region of the natural images.16, 22

Therefore, we can assume that the intensity of the cur-
rent pixel is dependent on the existing 20 neighbor pixels
(N1, N2, N3,. . . , N20). Hence, we model the local region as
follows:

I (i, j) = c1i2
L j2

L + c2i2
L jL + c3iL j2

L + c4iL jL + c5i2
L

+c6iL + c7 j2
L + c8 jL + c9 (10)

where iL = i − iC, jL = j − jC.

Here, I(i,j) denotes the pixel intensity at i-th line and j-th
column in the image. iL and jL are position indices within the
given local region. The possible coordinate values for the iL
are –3, –1, 1, and 3 and the possible coordinate values for the
jL are –2, –1, 0, 1, and 2. The nine coefficients can be deter-
mined using the intensities of the neighbor pixels at 4 × 5
positions around (iC,jC). Hence, the intensities of 20 neighbor
pixels determine nine coefficients in Eq. (10). We used 20
neighbor pixels after observing the relationship between the
number of neighboring pixels and the interpolation results.
Figure 4 shows the various window sizes. WS denotes the pa-
rameter of window size. We simulated our method with vary-
ing window sizes from WS = 2 to WS = 5 (i.e., from 20 to 110
neighbor pixels). Note that we cannot consider the case of WS
= 1, because the number of neighbor pixels (which is 6) is less
than the number of coefficients (which is 9) of surface model.
Simulation results in terms of average PSNR and average pro-
cessing time are shown in Fig. 5; 38 different images were
used for the simulation. In Fig. 5, it is obvious that the highest
average PSNR with the shortest average processing time is
obtained when WS = 2. Note that just using many neighbor
pixels does not guarantee performance. We used the near-
est 20 neighbor pixels that are optimal for modeling a local
surface.

Let us define 20 neighbor pixels and 9 coefficients as a
column vector N and c, respectively. Then, substituting the
intensities of 20 neighbor pixels sequentially from the upper
left position [i.e., (–3,–2)] to the lower right position [i.e.,
(3,2)], the following equation is obtained:

N = Mc (11)

where the neighbor pixel vector N, coordinate polynomial
term matrix M, and coefficient vector c are given as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18
N19
N20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36 −18 −12 6 9 −3 4 −2 1
9 −9 −3 3 9 −3 1 −1 1
0 0 0 0 9 −3 0 0 1
9 9 −3 −3 9 −3 1 1 1

36 18 −12 −6 9 −3 4 2 1
4 −2 −4 2 1 −1 4 −2 1
1 −1 −1 1 1 −1 1 −1 1
0 0 0 0 1 −1 0 0 1
1 1 −1 −1 1 −1 1 1 1
4 2 −4 −2 1 −1 4 2 1
4 −2 4 −2 1 1 4 −2 1
1 −1 1 −1 1 1 1 −1 1
0 0 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1
4 2 4 2 1 1 4 2 1

36 −18 12 −6 9 3 4 −2 1
9 −9 3 −3 9 3 1 −1 1
0 0 0 0 9 3 0 0 1
9 9 3 3 9 3 1 1 1

36 18 12 6 9 3 4 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8
c9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

Obviously, the matrix M is always fixed and common for
every pixel to be interpolated. Every component within the
matrix M is always fixed because it is the polynomial term
of coordinate within the fixed window, shown in Fig. 3. For
example, in the first row of M, (–3,–2) is inserted to variables
iL and jL of Eq. (10). In the last row of M, (3,2) is inserted
to variables iL and jL of Eq. (10). That is why M has 20 rows
and 9 columns. Because the matrix M is tall and thin, there

Fig. 8 Objective performance measurement method.
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Fig. 9 Comparison of average PSNR results for different intrafield deinterlacing methods.

should be a unique solution if the matrix M has full column
rank. This overdetermined equation is a typical least-squares
problem and can be solved via following equation:

c = (
MT M

)−1
MT N. (13)

Figure 6 depicts the examples of the local surface at pixel
position (220, 100) in Finger image. Figures 6(a)–6(c) show
original local surface, local surface modeled by reduced form
[R(i,j)] of Eq. (10), and local surface modeled by I(i,j) in
Eq. (10), respectively. [Note that R(i,j) = c1i2

L + c2iLjL +
c3 j2

L + c4iL + c5jL + c6. R(i,j) is a simplified model
obtained by eliminating higher-order terms of I(i,j), such as
i2
L j2

L, i2
LjL, and iL j2

L.] It can be confirmed that a local surface
modeled by I(i,j) is more similar to the original local surface

than that of R(i,j). Note that the pixel to be interpolated is
located at (0, 0). Hence, we can obtain the pixel intensity by
substituting the 0 and 0 for iL and jL in Eq. (10). In addition,
another local surface comparison at different pixel position
(330, 300) is shown in Fig. 7.

To further reduce the computational time, the partial term
(MTM)− 1MT of Eq. (13) can be precalculated because M is
a fixed matrix. Finally, the estimation of the current pixel can
be obtained by substituting the 0 and 0 for iL and jL. In other
words, the ninth coefficient, c9, can be the optimal intensity
for the current pixel. Hence, the c9 can be directly obtained
as follows:

c9 = row9
[(

MT M
)−1

MT
]

N (14)

Fig. 10 Comparison of average processing time results for different intra-field deinterlacing methods.
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Fig. 11 Enlarged views of the reconstructed images for subjective image quality comparison. First row in left column: Original Tractor image
(zoomed region is marked by rectangle) and original partial image. Images with method label are reconstructed images using various algorithms.
Images right next to the reconstructed images are absolute difference images between the regions of original and corresponding reconstructed
images using various algorithms. The values (absolute pixel difference) less than 20 are displayed as black, and the values greater than 20 are
displayed as white. Since the white pixels represent the large interpolation error, a good deinterlacing method should have less number of white
pixels within a certain region. It is noticeable that the proposed method yields the least number of white pixels.

where row9[(MTM)− 1MT] denotes the ninth row vector of
the partial term (MTM)− 1MT.

4 Performance Evaluation
In this section, a comparison is made of objective and sub-
jective qualities, and computational processing time for the

different intrafield deinterlacing methods including the pro-
posed methods. We compare the subjective and objective
qualities of LA,3 ELA,4 EELA,5 DSWVC,6 DOI,8 NEDD,9

LCID,10 MELA,7 FDD,13 LABI,11 EMD,14 EPD,15 FDED,12

CAD,16 and the proposed method. In addition, two 512 × 512
still images (Finger and Peppers), two 1280 × 720 sequences
(Jets and Raven), and five 1920 × 1080 sequences (Bluesky,

Optical Engineering January 2011/Vol. 50(1)017004-7
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Table 1 Comparison of PSNR (measured in decibels) and average processing time (measured in seconds) for eight test images with different
intrafield deinterlacing methods.

Bluesky Finger Jets Kimono Peppers Raven Riverbed Sunflower Tractor Avg.

LA dB 37.88 31.97 39.11 44.09 33.80 42.13 39.83 47.57 38.60 39.44

s 0.19 0.03 0.09 0.20 0.03 0.08 0.19 0.20 0.20 0.14

ELA dB 37.23 28.91 38.93 43.60 34.11 39.93 39.53 47.37 38.28 38.66

s 2.13 0.28 0.97 2.19 0.28 0.97 2.16 2.17 2.17 1.48

EELA dB 37.00 29.67 39.00 43.75 33.64 40.57 39.62 47.36 38.21 38.76

s 2.13 0.27 0.97 2.28 0.27 0.98 2.17 2.13 2.08 1.47

DSWVC dB 37.11 29.52 39.06 43.98 33.67 41.34 39.77 47.41 38.49 38.93

s 4.72 2.20 0.73 0.72 0.34 0.55 2.36 0.69 2.78 1.68

DOI dB 37.32 29.26 39.40 43.93 33.83 41.57 39.68 47.48 38.49 39.00

s 16.48 4.73 5.30 11.94 2.13 5.52 19.34 10.30 20.69 10.71

NEDD dB 38.03 30.75 39.18 43.93 34.26 41.84 39.81 47.51 38.57 39.32

s 40.64 4.88 17.84 40.13 4.98 17.70 40.11 39.89 39.97 27.35

LCID dB 37.98 31.27 39.34 44.24 34.22 41.85 39.94 47.79 38.65 39.47

s 2.72 0.36 1.27 2.83 0.38 1.23 2.78 2.80 2.73 1.90

MELA dB 37.98 31.38 39.31 44.19 34.14 41.99 39.93 47.73 38.66 39.48

s 0.69 0.08 0.31 0.69 0.09 0.31 0.69 0.70 0.69 0.47

FDD dB 37.89 31.73 39.30 44.11 33.93 42.24 39.93 47.56 38.58 39.47

s 20.95 10.61 6.61 7.17 2.58 6.83 22.86 5.27 32.81 12.85

LABI dB 37.71 31.93 39.10 44.04 33.77 42.09 39.80 47.53 38.55 39.39

s 49.55 6.86 21.81 50.17 6.28 22.00 49.55 49.14 51.77 34.13

EMD dB 37.73 31.12 39.09 44.14 33.99 41.31 39.82 47.68 38.52 39.27

s 6.78 0.95 3.05 7.11 0.92 3.11 7.34 6.95 7.03 4.81

EPD dB 36.71 29.29 38.87 43.83 33.76 40.48 39.58 47.42 38.25 38.69

s 84.70 11.11 38.16 86.75 11.06 38.81 84.88 85.78 83.77 58.34

FDED dB 37.92 31.37 39.18 44.11 33.93 42.09 39.84 47.57 38.61 39.40

s 532.20 68.17 236.09 532.50 67.64 236.78 534.13 531.44 535.25 363.80

CAD dB 38.43 31.85 39.40 44.47 34.54 42.32 40.03 47.99 38.67 39.74

s 103.25 13.06 45.66 102.67 12.97 46.00 103.39 102.56 103.00 70.28

Proposed dB 39.43 32.63 39.55 44.57 34.29 42.57 40.74 48.09 39.48 40.15

s 3.17 0.41 1.41 3.16 0.41 1.41 3.17 3.14 3.14 2.16

Kimono, Riverbed, Sunflower, and Tractor) were used for
the extensive simulation. We chose to use the PSNR as an
objective performance measurement, and it can be obtained
as follows:

MSE(xorg, xrec) =

width∑
i=1

height∑
j=1

[xorg (i, j) − xrec (i, j)]2

width × height
, (15)

PSNR(xorg, xrec) = 10 log10
2552

MSE(xorg, xrec)
, (16)

where xorg and xrec represent the original and reconstructed
images of the width × height, respectively. All the test im-
ages were converted from the original size into the vertically
interlaced size according to the system3 shown in Fig. 8, and
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then the interpolated image by various deinterlacing methods
was compared to the original image.

Table 1 depicts the average PSNR and processing time
results for the different intrafield deinterlacing methods in-
cluding our proposed methods. The proposed method pro-
vided the best average PSNR performance (average PSNR
improvement up to 0.83, 0.76, 1.46, and 0.75 dB when com-
pared to the NEDD, LABI, EPD, and FDED, respectively),
while reducing the average processing time up to 92.12,
93.68, 96.30, and 99.41% when compared to the NEDD,
LABI, EPD, and FDED, respectively. Moreover, the pro-
posed method obtained 0.41 dB higher PSNR than the CAD
method with 96.93% less processing time. It is also notice-
able that the DOI gave a relatively lower average PSNR than
did MELA due to its large search range. We observed that our
proposed method outperformed the conventional intrafield
deinterlacing methods in terms of PSNR. Figures 9 and 10
show the average PSNR results and average processing time
results, respectively.

For the subjective performance evaluation of the result
images processed by different methods, the Tractor image
was used as shown in Fig. 11. Magnified images are pre-
sented in Fig. 11 to enable the subjective consideration of
the edge details. The full-size original Tractor image and its
partial image within the red rectangle are shown in the first
row of Fig. 11. The images, in Fig. 11, with the white la-
bel are the enlarged reconstructed images using LA, ELA,
EELA, DSWVC, DOI, NEDD, LCID, MELA, FDD, LABI,
EMD, EPD, FDED, CAD, and the proposed method. The
corresponding absolute difference images between the orig-
inal partial image and the reconstructed images are located
right next to the reconstructed images. Here, the absolute
difference image simply means the absolute pixel difference
between the original image and the reconstructed images by
various methods. Although the LA method yielded a higher
average PSNR value than did the other methods except for
LCID, MELA, FDD, CAD, and the proposed method, it pro-
vided poor result images from the subjective point of view
as shown in Fig. 11. Because the LA method always interpo-
lates the missing pixel by averaging the upper and lower pix-
els, direction of texture is hard to be preserved. Because the
ELA and EELA methods consider only three directions, they
are very sensitive to noise; thus inaccurate edge detections
lead to image degradation. The MELA, LCID, FDD, and
EMD methods showed similar results. Some noiselike com-
ponents can be seen in the result images by DOI, DSWVC,
EPD, and LABI methods. Although the CAD method pre-
serves the fundamental edge of the original image, blurring
effects are observed in the background region. In contrast,
the proposed method provides the most similar image to the
original image. In addition to the visual comparison of the
result images to the original image, a comparison of the ab-
solute difference images between the partial original image
and the partial reconstructed images are presented. We can
confirm that the resulting image is well reconstructed with
the small error by comparing the absolute difference images.
The absolute difference image is a binary image. The val-
ues (absolute pixel difference between the original and the
reconstructed images) of <20 are displayed as black, and
the values of >20 are displayed as white. Because the white
pixels represent the large interpolation error, a good deinter-
lacing method should have less white pixels within a certain
region. Note that the absolute difference images are obtained

with the same magnified regions of corresponding recon-
structed images and original image. It is obvious that the
proposed method reconstructed the image with the smallest
interpolation error because the proposed method yields the
least number of white pixels. These extensive experimental
results show that the proposed methods are superior to other
intrafield deinterlacing methods in terms of subjective image
quality.

5 Conclusion
In this paper, an efficient intrafield deinterlacing method
based on the local region modeling is proposed. Instead of
using a directional difference measure, the interlaced im-
age is restored using the local surface model designed by
the quadratic equation. The optimal coefficients of the sur-
face model are determined with the given neighbor pixels
around the current pixel to be interpolated. Using this model,
the last coefficient can be treated as the estimated current
pixel. To further reduce the computational time, the precal-
culated ninth row of the inverse matrix, fixed and common
for every pixel to be interpolated, is utilized. Hence, it is
possible to lower the computational complexity of the pro-
posed method. We have shown from the experiments that the
proposed method has lowered the overall processing time
while improving its performance compared to the conven-
tional methods. The extensive experimental results demon-
strated that the proposed method outperformed conventional
intrafield deinterlacing methods in terms of both the objec-
tive and subjective image qualities. The proposed method
reduced the average CPU time up to 99.4 and 96.9% when
compared to FDED and CAD, respectively, while providing
higher PSNR values. Therefore, the proposed method is able
to reduce the complexity of the deinterlacing process, which
is regarded as an essential part in postprocessing at an HDTV.
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