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This paper proposes a noise-biased compensation of minimum statistics (MS) method using a nonlinear function and a priori
speech absence probability (SAP) for speech enhancement in highly nonstationary noisy environments. The MS method is a well-
known technique for noise power estimation in nonstationary noisy environments; however, it tends to bias noise estimation below
that of the true noise level. The proposed method is combined with an adaptive parameter based on a sigmoid function and a
priori SAP for residual noise reduction. Additionally, our method uses an autoparameter to control the trade-off between speech
distortion and residual noise. We evaluate the estimation of noise power in highly nonstationary and varying noise environments.
The improvement can be confirmed in terms of signal-to-noise ratio (SNR) and the Itakura-Saito Distortion Measure (ISDM).

1. Introduction

Noise estimation algorithms are essential components of
many modern mobile communication, speech recogni-
tion, and human computer interaction systems for speech
enhancement [1, 2]. It is generally included as a part of the
speech enhancement to improve the speech intelligibility
or quality of a signal corrupted by noise. However, it is
difficult to reduce noise without distorting speech because
the performance of any noise estimation algorithm usually
depends on a trade-off between speech distortion and noise
reduction.

Current single microphone speech enhancement meth-
ods belong to two groups, namely, time domain methods
such as the subspacemethod and frequency domainmethods
such as the spectral subtraction (SS) [3] and minimummean
square error (MMSE) estimator [4]. Both methods have
their own advantages and drawbacks. Subspace methods
provide a mechanism to control the trade-off between speech
distortion and residual noise, but with the cost of a heavy
computational load [5]. Frequency domain methods, on the
other hand, usually consume less computational resources

but do not have a theoretically establishedmechanism to con-
trol trade-off between speech distortion and residual noise.
Among them, spectral subtraction (SS) is computationally
efficient and has a simple mechanism to control trade-off
between speech distortion and residual noise but suffers
from a notorious artifact known as musical noise [6]. These
spectral noise reduction algorithms require an estimate of
the noise spectrum, which can be obtained from speech
absence frames indicated by a voice activity detector (VAD)
or, alternatively, with the minimum statistic (MS) methods
[7], that is, by tracking spectral minima in each frequency
band.

Several recent studies have proposed noise estimation
schemes for unknown noise signals [1–14]. The minimum
statistics (MS) noise estimation scheme [7] is one that works
well in nonstationary noisy environments. Martin proposed
an algorithm for noise estimation based on minimum statis-
tics [7].The ability to track varying noise levels is a prominent
feature of the minimum statistics (MS) algorithm [7]. The
noise estimate is obtained as theminima values of a smoothed
power estimate of the noisy signal, multiplied by a factor that
compensates the bias. However, the MS algorithm still has

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 5352437, 7 pages
http://dx.doi.org/10.1155/2016/5352437



2 Journal of Sensors

a tendency to bias the noise estimate below that of the true
noise level, regardless of the number of frames [8].Therefore,
it leaves residual noise in the frames of speech absence and
in the frames of variation of noise characteristic in highly
nonstationary noisy environments.

To solve this problem, we propose a combined adaptive
factor based on a sigmoid function and a priori speech
absence probability (SAP) estimation [9] for biased com-
pensation. Specifically, we apply the adaptive factor 𝛿 as
a posteriori SNR. When the a posteriori SNR decreases, 𝛿

increases but is constrained to take a value between 𝛿min
and 𝛿max. Thus, the proposed adaptive biased compensation
factor 𝛿 approaches 𝛿max at times when the SNR is low. In
addition, when the a priori SAP equals unity, the adaptive
biased compensation factor 𝛿 also approaches 𝛿max in each
frequency bin and vice versa. Furthermore, our method uses
another adaptive parameter to control the trade-off between
speech distortion and residual noise for suppressing the
estimated noise in highly nonstationary and various noisy
environments. The autocontrol parameter is controlled by a
posteriori signal-to-noise ratio (SNR) as the variation of the
noise level.

We evaluate the performance of the proposed algorithm
for nonstationary noise and various noise environments.The
improvement can be confirmed in the segmental SNR and
the Itakura-SaitoDistortionMeasure (ISDM) [15].The results
show that our proposed method is superior to the conven-
tional MS approach. The structure of the paper is as follows.
Section 2 reviews theminimum statistics and the a priori SAP
estimation algorithms. Section 3 addresses noise estimation
and suppression using a linear and a nonlinear function.
In Section 4, we express the combined sigmoid function
using the a posteriori SNR and a priori SAP estimation for
robust biased compensation. In Section 5, we discuss the
experimental results.

2. Minimum Statistics (MS) and Speech
Absence Probability (SAP)

2.1. Review of MS. The noisy speech signal 𝑦(𝑛) can be
represented as 𝑦(𝑛) = 𝑥(𝑛) + 𝑑(𝑛), where 𝑥(𝑛) is the clean
speech signal and 𝑑(𝑛) is the noise signal. Dividing the
signal into overlapping frames using a window function and
applying the short-time Fourier transform (STFT) [16] to
each frame yield the time-frequency representation 𝑌(𝑘, 𝑙) =

𝑋(𝑘, 𝑙) + 𝐷(𝑘, 𝑙), where 𝑘 = 1, 2, . . . , 𝐾 is the frequency bin
index and 𝑙 = 1, 2, . . . , 𝐿 is the time frame index. It can be
shown that
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where |𝑌𝑘(𝑙)|
2
, |𝑋𝑘(𝑙)|

2, and |𝐷𝑘(𝑙)|
2 are the power spectrum

of the noisy speech signal, clean speech, and noise, respec-
tively.

The MS algorithm relies on the fact that the noisy power
spectrum often becomes equal to the noise power spectrum
during periods of speech pauses [7, 13, 17]. Therefore, an esti-
mate of the noise power spectrum is obtained by separately
tracking the minimum of the noisy speech in each frequency

bin. In addition, because the minimum is biased towards
lower values, an unbiased estimate may be obtained through
multiplication by a bias factor, which is derived from the
statistics of the local minimum. To search for the minimum,
we take the first-order recursive of the noisy power spectrum:

𝑆𝑘 (𝑙) = 𝛼𝑆𝑘 (𝑙 − 1) + (1 − 𝛼)
󵄨󵄨󵄨󵄨𝑌𝑘 (𝑙)
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where 𝑆𝑘(𝑙) is the smoothed periodogram and 𝛼 is the
smoothing factor. The smoothing factor used in (2) must be
close to 1 to keep the variance of the minimum tracking as
small as possible. Hence, time and frequency dependence
are required to determine if speech is present or absent.
The smoothing factor is therefore derived by minimizing the
mean square error between 𝑆𝑘(𝑙) and 𝜎

2

𝑑,𝑘
(𝑙):
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where 𝜎
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𝑑,𝑘
(𝑙) is the noise variance:

𝑆𝑘 (𝑙) = 𝛼𝑘 (𝑙) 𝑆𝑘 (𝑙 − 1) + (1 − 𝛼𝑘 (𝑙))
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In (4), the time-frequency dependent smoothing factor 𝛼𝑘(𝑙)
is used instead of the fixed 𝛼 defined in (2). Substituting
(4) into (3) and setting the first derivative to 0, we find the
optimum value for 𝛼𝑘(𝑙)

𝛼opt,𝑘 (𝑙) =
1

1 + (𝑆𝑘 (𝑙 − 1) /𝜎
2

𝑑,𝑘
(𝑙) − 1)

. (5)

According to (5), the smoothing factor can vary between
0 and 1, but such a smoothing factor is not practical [15].
The value of 𝛼opt becomes progressively smaller for a large
a posteriori SNR 𝛾 ≈ (𝑆𝑘, (𝑙 − 1)/𝜎

2

𝑑,𝑘
(𝑙)) (speech present).

However, smoothing is required even during periods of
speech because the speech power spectrum also contains
a percentage of noise. Hence, the smoothing factor has a
floor of (0.3), which results in a maximum of only (70%)
of the original spectrum remaining within any one frame.
Conversely, when the a posteriori SNR 𝛾 is low (speech is
absent) 𝛼 tends towards 1, which causes the smoothed output
to lock onto the previous value. To eliminate this, (5) is
multiplied by 𝛼max = 0.96. From (5), we note that 𝛼opt,𝑘(𝑙)

depends on the true noise variance𝜎2
𝑑,𝑘

(𝑙), which is unknown.
In practice, we can replace 𝜎

2

𝑑,𝑘
(𝑙) with the latest estimated

value 𝜎̂
2

𝑑,𝑘
(𝑙 − 1). In general, however, this lags the true noise

variance, and hence the estimated smoothing factor may be
too small or large. Problems may arise when 𝛼opt,𝑘(𝑙) is close
to 1 because 𝑆𝑘(𝑙) will not respond fast enough to changes
in the noise. Thus, tracking errors were monitored in [7] by
comparing the average short-term smoothed periodogram to
the estimated noise variance. After including the correction
factor [7]
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the final factor

𝛼opt,𝑘 (𝑙) =
𝛼max ⋅ 𝛼𝑐 (𝑙)

1 + (𝑆𝑘 (𝑙 − 1) /𝜎̂
2

𝑑,𝑘
(𝑙 − 1) − 1)

2 (7)

is also smoothed over time [7].
The estimated noise power based the MS algorithm [7] is

obtained by searching for a minimumwithin a finite window
length 𝐶 of the smoothed power estimates 𝑃(𝑘, 𝑙):

𝑆min,𝑘 (𝑙) = min {𝑆𝑘 (𝑙) , 𝑆𝑘 (𝑙 − 1) , . . . , 𝑆𝑘 (𝑙 − 𝐶)} . (8)

Because the minimum power estimate obtained through the
time-varying smoothing factor is smaller than the mean
value, the MS algorithm requires a bias compensation for the
unbiasednoise power estimate as detailed in the following [7]:

𝜎̂
2

𝑑,𝑘
(𝑙) = 𝛽min,𝑘 (𝑙) ⋅ 𝑆min,𝑘 (𝑙) , (9)

where 𝜎̂
2

𝑑,𝑘
(𝑙) is the unbiased noise power estimate.The quan-

tity 𝛽min,𝑘(𝑙) is the bias compensation factor.

2.2. Review of Speech Absence Probability. The two-state
model of speech events can be represented as a binary
hypothesis model [9, 15, 17]:

𝐻0 (𝑘, 𝑙) : 𝑌 (𝑘, 𝑙) = 𝐷 (𝑘, 𝑙) ,

𝐻1 (𝑘, 𝑙) : 𝑌 (𝑘, 𝑙) = 𝑋 (𝑘, 𝑙) + 𝐷 (𝑘, 𝑙) ,

(10)

where 𝐻0(𝑘, 𝑙) and 𝐻1(𝑘, 𝑙) represent the absence and pres-
ence of speech, in the 𝑘th frequency bin of the 𝑙th frame,
respectively, and where

𝑃 (𝐻0 (𝑘, 𝑙) ≡ 𝑞 (𝑘, 𝑙)) (11)

is the a priori probability that speech will be absent. An
efficient estimator is derived for the a priori SAP using a soft-
decision approach based on the estimated a priori SNR [9]. A
recursive average of this can be defined as

𝜁 (𝑘, 𝑙) = 𝛽𝜁 (𝑘, 𝑙 − 1) + (1 − 𝛽) 𝜉̂ (𝑘, 𝑙 − 1) , (12)

where 𝛽 is a time constant. The decision-directed method
proposed by Ephraim and Malah [4] provides a useful
estimation scheme for the a priori SNR:

𝜉̂ (𝑘, 𝑙) = 𝑎
𝑋̂
2

(𝑘, 𝑙 − 1)
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𝑑
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+ (1 − 𝑎)max [𝛾 (𝑘, 𝑙) − 1, 0] , (13)

where 𝑎 (0 < 𝑎 < 1) is a smoothing factor, max is a function
that prevents negative values, and 𝛾(𝑘, 𝑙) ≈ |𝑌(𝑘, 𝑙)|

2
/𝜎̂
2

𝑑
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represents the a posteriori SNR [9]. The local and global
averaging window are then applied to (13) [9], resulting in

𝜁𝜆 (𝑘, 𝑙) =

𝑤𝜆

∑

𝑖=−𝑤𝜆

ℎ𝜆 (𝑖) 𝜁 (𝑘 − 𝑖, 𝑙) , (14)

where the subscript 𝜆 may denote either “local” or “global”
window and ℎ𝜆 is a normalized window of size 2𝑤𝜆 + 1. We

define two parameters 𝑃local and 𝑃global, which represent the
relationship between the above averages and the likelihood
of speech in the 𝑘th frequency bin of the 𝑙th frame. These
parameters are given as [9]

𝑃𝜆 (𝑘, 𝑙) =

{{{{{{

{{{{{{

{

0, if 𝜁𝜆 (𝑘, 𝑙) ≤ 𝜁min,

1, if 𝜁𝜆 (𝑘, 𝑙) ≥ 𝜁max,

log (𝜁𝜆 (𝑘, 𝑙) /𝜁min)

log (𝜁max/𝜁min)
, otherwise,

(15)

where 𝜁min and 𝜁max are empirical constants, maximized
to attenuate noise while leaving weak speech components
unaffected. The third parameter 𝑃frame(𝑙), which is required
to attenuate more noise in speech-absent frames, is based on
the speech energy in neighboring frames [9]:

If 𝜁frame(𝑙) > 𝜁min then

if 𝜁frame(𝑙) > 𝜁frame(𝑙 − 1) then
𝑃frame(𝑙) = 1

𝜁peak(𝑙) = min{max[𝜁frame, 𝜁𝑝min], 𝜁𝑝max}

else
𝑃frame(𝑙) = 𝜇(𝑙)

Else

𝑃frame(𝑙) = 0,

where 𝜁frame(𝑙) = (1/(𝐾/2 + 1))∑
𝐾/2+1

𝑘=1
𝜁(𝑘, 𝑙) is an average in

the frequency domain, 𝜇(𝑙) represents a soft transition from
speech to noise, 𝜁peak is a confined peak value of 𝜁frame, and
𝜁𝑝min and 𝜁𝑝max are empirical constants that determine the
delay of the transition, as defined in [9]. Finally, the a priori
SAP can be defined as [9]

𝑞̂ (𝑘, 𝑙) = 1 − 𝑃local (𝑘, 𝑙) ⋅ 𝑃global (𝑘, 𝑙) ⋅ 𝑃frame (𝑙) . (16)

Accordingly, 𝑞̂(𝑘, 𝑙) is larger if either previous frames or recent
neighboring frequency bins do not contain speech.Therefore,
when SAP goes to 1, the speech presence probability goes to
0.

3. Noise Estimation and Suppression Using
Linear and Nonlinear Function

3.1. Combining Adaptive Factor Based on Sigmoid Function
and A Priori SAP. In this section, we propose a method
that combines the adaptive factor based on the sigmoid
function and the a priori SAP estimation [9] to achieve biased
compensation.

First, we can detect the adaptive factor by requiring the
smoothed power spectrum 𝑃(𝑘, 𝑙) be equal to the updated
noise power estimator 𝜎

2

𝑑
during speech absence region. In

particular, we can determine the adaptive factor by minimiz-
ing the mean squared error (MSE) between 𝑃(𝑘, 𝑙) and 𝜎

2

𝑑
as

follows:

𝐸 {(𝑃 (𝑘, 𝑙) − 𝜎
2

𝑑
(𝑘, 𝑙))

2

| 𝑃 (𝑘, 𝑙 − 1)} , (17)
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Figure 1: (a) Plot of the adaptive factor 𝛿 in the frame index. (b) Adaptive factor 𝛿 using a sigmoid function based on the a posteriori SNR.

where we assume that the updated noise power estimator 𝜎
2

𝑑

during the speech absence region is

𝜎
2

𝑑
(𝑘, 𝑙)
2
≈ 𝜎̂
2

𝑑
(𝑘, 𝑙)
2
+ 𝛿 (𝑘, 𝑙) . (18)

Substituting (18) into (17) then after taking the first derivative
of theMSE with respect to 𝛿(𝑙) and setting it equal to zero, we
get the adaptive factor for 𝛿(𝑙):

𝛿 (𝑙) = 𝑃 (𝑘, 𝑙) − 𝜎̂
2

𝑑
(𝑘, 𝑙) , (19)

where 𝜎̂
2

𝑑
is the unbiased noise power estimate in (9). We

apply the adaptive factor based on the sigmoid function to the
biased compensation factor of theMS algorithm according to
the a posteriori SNR:

𝛿 (𝑙) ≈ 𝜂 ⋅
1

(1 + exp (− (−𝜌 ⋅ SNR (𝑙))))
, (20)

where 𝛿(𝑙) is derived from the slope factor 𝜌 = 0.5 and the
empirical constant 𝜂 = 0.1 for 𝛿max. The a posteriori SNR is

SNR (𝑙) = 10 ⋅ log(

󵄩󵄩󵄩󵄩󵄩
|𝑌 (𝑘, 𝑙)|

2󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝜎̂
2

𝑑
(𝑘, 𝑙)

󵄩󵄩󵄩󵄩󵄩

) , (21)

where ‖ ⋅ ‖ is the Euclidean length of a vector. The adaptive
factor 𝛿(𝑙) is controlled by the a posteriori SNR. When the
a posteriori SNR decreases, 𝛿(𝑙) increases but is constrained
to take a value between 𝛿min and 𝛿max. Thus, the proposed
adaptive biased compensation factor 𝛿(𝑙) approaches 𝛿max at
times when the SNR is low. In addition, when the a priori
SAP equals unity, the adaptive biased compensation factor
𝛿(𝑙) is also equal to 𝛿max in each frequency bin and vice versa.
The adaptive factor is shown to be a biased compensation in
Figure 1. It shows, as suggested by (20) and (21), that as the a
posteriori SNR increases, 𝛿(𝑙) decreases but 𝛿(𝑙) maintains a
value between 𝛿max (𝛿max ≪ 0.1) and 𝛿min.Thus, the adaptive
factor 𝛿(𝑙) approaches 𝛿min when the SNR is close to 20 dB.
Simulation results show that an increase in the 𝛿(𝑙) is good
for noisy signals with a low SNR of less than 5 dB and that
a decrease in 𝛿(𝑙) is good for noisy signals with a relatively
high SNR greater than 10 dB. We can thus control the trade-
off between speech distortion and residual noise in the frame
index using 𝛿(𝑙). In (22), let 𝜎

2

𝑑
(𝑘, 𝑙) be the updated noise

power estimate according to the combined a priori SAP and
the adaptive factor:

𝜎
2

𝑑
(𝑘, 𝑙) = 𝜎̂

2

𝑑
(𝑘, 𝑙) + 𝛿 (𝑙) ⋅ 𝑞̂ (𝑘, 𝑙) . (22)

The term 𝑞̂(𝑘, 𝑙) is the a priori SAP in (16). When 𝑞̂(𝑘, 𝑙)

becomes 1, the adaptive biased compensation factor 𝛿(𝑙)

is equal to 𝛿max. Therefore, the speech absence region is
efficiently compensated by combining the a priori SAP and
the adaptive factor in the 𝑘th frequency bin of the 𝑙th frame.
As a result, the updated noise power estimator for the optimal
smoothing factor 𝛼̂opt(𝑘, 𝑙) of 𝛼opt(𝑘, 𝑙) is deduced from (7) as

𝛼̂opt (𝑘, 𝑙) =
𝛼max ⋅ 𝛼𝑐 (𝑙)

1 + (𝑃 (𝑘, 𝑙 − 1) /𝜎
2

𝑑
(𝑘, 𝑙 − 1) − 1)

2
. (23)

3.2. Estimated Noise Suppression Using Linear Function. In
this subsection, our method uses another adaptive param-
eter to control the trade-off between speech distortion and
residual noise for suppressing the estimated noise in a
highly nonstationary and varying noisy environment. The
autocontrol parameter is controlled by a posteriori signal-to-
noise ratio (SNR) as the variation of the noise level.

The estimated clean speech power spectrum can be
represented as shown in (28). One has

SNR (𝑘) = log(
𝑃 (𝑘, 𝑙)

𝜎
2

𝑑
(𝑘, 𝑙)

) , (24)

𝜁𝑠 =
𝜁min − 𝜁max

SNRmax − SNRmin
, (25)

𝜁𝑜 = 𝜁max − 𝜁𝑠 ⋅ SNRmax, (26)

𝜁 (𝑘) = 𝜁𝑠 ⋅ SNR (𝑘) + 𝜁𝑜, (27)

󵄨󵄨󵄨󵄨󵄨
𝑋̂ (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

≈ |𝑌 (𝑘, 𝑙)|
2
− 𝜁 (𝑘) ⋅ 𝜎

2

𝑑
(𝑘, 𝑙) , (28)

where 𝜁(𝑘) is the oversubtraction factor, 𝜁𝑠 is the slope, and
𝜁𝑜 is the offset. The constants 𝜁min = 1, 𝜁max = 3, SNRmax =

20 dB, and SNRmin = −5 dB, respectively [3]. The adaptive
linear factor 𝜁(𝑘) affects the amount of speech distortion
caused by the spectral subtraction in (28). The factor 𝜁(𝑘)

offers a large amount of flexibility to the modified spectral
subtraction (MSS) scheme. The SNR(𝑘) in (24) is the a
posteriori SNR in frequency bin. The estimated clean speech
signal can then be transformed back to the time domain by
taking the inverse STFT and synthesizing using the overlap-
add method.
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Figure 2: Comparison between the noisy signal, noise estimated by
MS, and noise estimated by the proposed method in restaurant 5 dB
noisy environment.

4. Experimental Results and Discussion

The noisy signals used in our evaluation were taken from
the NOIZEUS database [15]. We used 30 test utterances,
of which three each were from male and female speech
signals. The analyzed signal was sampled at 8 kHz and short-
time Fourier-transformed using 50% overlapping Hamming
windows of 256 samples. Both the MS [7] and proposed
methods track the minimum of the noisy speech to update
the noise estimate in Figure 2. The MS method is obtained
by tracking the minimum of the noisy power spectrum
over a specified number of frames. Thus, the MS algorithm
noise estimate tends to be biased below the true noise
level, regardless of the number of frames. Our proposed
method efficiently compensates the speech absence region by
combining the adaptive bias compensation factor and a priori
SAP.This implies that the proposed method is more accurate
than the conventional one and could improve residual noise
reduction.

Figure 3 shows the clear superiority of the proposed
method in highly nonstationary noisy environments. The
conventional method [7] does not work well from initial
frame to 20 frames of car noise (15 dB) and from 110 frames
to 130 frames of car (15 dB) and also suffered from residual
noise. A different outcome is observed in the red circle
of Figure 3. Particularly, the robust characteristics of the
proposed method in spite of the variation of the noisy
environments are well demonstrated. Thus, we can estimate
more exactly the noise level to reduce a residual noise when
compared with conventional method in highly nonstationary
noisy environments.

The spectrum of the clean signal is given in Figure 4(a),
and the spectrum of the noisy speech signal for speech
enhancement using the MS plus spectral subtraction (SS)
(MS + SS) [3, 7] method is given in Figure 4(b). We can
also observe the minimum controlled recursive averaging
(MCRA) with SS in Figure 4(c). There is residual noise in
Figure 4(c) from 0 s < 𝑡 < 0.15 s and at 𝑡 > 1.8 s, partly
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Figure 3: Comparison between the noisy signal, noise estimated
by minimum statistics (MS), and noise estimated by the proposed
method in highly nonstationary noisy environments.

Table 1: Objective evaluation and comparison of the proposed
method segmental SNR values.

Noise Method SNR
0 (dB) 5 (dB) 10 (dB) 15 (dB)

White
MS 4.27 8.77 12.83 16.57

MCRA 5.08 9.99 13.56 17.15
Proposed 5.69 10.64 14.09 17.40

Car
MS 3.44 7.48 12.01 16.10

MCRA 4.92 7.93 11.85 16.42
Proposed 5.39 8.84 12.45 17.06

Babble
MS 1.83 6.00 11.17 15.03

MCRA 3.73 6.79 10.52 16.22
Proposed 3.83 7.05 11.60 16.23

Airport
MS 1.75 7.04 9.85 14.73

MCRA 1.64 7.54 9.66 15.15
Proposed 2.17 8.16 10.10 15.73

Street
MS 2.77 6.75 10.88 15.31

MCRA 2.34 7.40 9.88 14.36
Proposed 3.18 8.24 10.62 15.03

Restaurant
MS 0.31 4.48 9.40 14.74

MCRA 0.27 5.47 9.20 15.24
Proposed 0.28 5.57 9.43 15.58

because of the inability of the noise estimation algorithm to
bias below the true noise level. The spectrogram of the pro-
posed methods for noise reduction is shown in Figure 4(d).
In contrast, panel Figure 4(d) shows that the residual noise is
more clearly reduced than the conventional methods.

Tables 1 and 2 summarize the averaged results of the
segmental SNR and the Itakura-Saito Distortion Measure
(ISDM) [15]. The segmental SNR can be evaluated in either
the time or frequency domain. The time domain measure
is perhaps one of the simplest objective measures used to
evaluate speech enhancement method. For this measure to
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Figure 4: Frequency domain results of speech enhancement for exhibition noise 5 dB SNRs in noisy environments. (a) Original spectrogram,
(b) spectrogram using MS with SS method, (c) spectrogram using the MCRA with SS method, and (d) spectrogram using the proposed
method.

Table 2: Objective evaluation and comparison of the Itakura-Saito
Distortion Measure (ISDM).

Noise Method ISDM
0 (dB) 5 (dB) 10 (dB) 15 (dB)

White
MS 1.20 0.87 0.60 0.42

MCRA 0.92 0.44 0.55 0.37
Proposed 0.84 0.43 0.38 0.34

Car
MS 0.15 0.16 0.02 0.01

MCRA 0.21 0.05 0.02 0.01
Proposed 0.09 0.02 0.02 0.02

Babble
MS 0.15 0.06 0.02 0.01

MCRA 0.12 0.02 0.01 0.01
Proposed 0.08 0.02 0.01 0.01

Airport
MS 0.19 0.06 0.02 0.02

MCRA 0.14 0.04 0.02 0.01
Proposed 0.10 0.04 0.01 0.01

Street
MS 0.16 0.18 0.06 0.03

MCRA 0.55 0.13 0.09 0.05
Proposed 0.17 0.09 0.08 0.04

Restaurant
MS 0.10 0.05 0.01 0.01

MCRA 0.10 0.03 0.01 0.01
Proposed 0.10 0.01 0.01 0.01

be meaningful it is important that the original and processed
signals be aligned in time and that any phase error present
be corrected [15]. For various noise types with an input SNR
ranging from 0 to 15 dB, the segmental SNR after processing
was clearly better for the proposed method compared to
conventional ones [7], except for the case of (highlighted
in bold). We can also confirm that our methods work
well to control the trade-off between speech distortion and
residual noise for suppressing the estimated noise in highly
nonstationary and various noisy environments.

The ISDM was shown to give a good correlation with
subjective intelligibility measures specifically the diagnostic
acceptability measure (DAM). This results in an objective
test that can be used to produce a good meaningful result.
This also results in a test that shows the distortion and noise
reduction [15]. Here, we can confirm that the results of the
ISDM with the proposed method produce good results of
ISDMwhen comparedwith the conventionalmethods except
for the case of the theMSmethodwith SS in street 10 dB noisy
signal.

5. Conclusion

We presented a modified noise estimation and suppression
algorithm that combined the nonlinear function and a priori
SAP estimation for biased compensation. Moreover, our
method uses another adaptive parameter to control the
trade-off between speech distortion and residual noise for
suppressing the estimated noise in highly nonstationary and
various noisy environments. The performance of the new
algorithm was evaluated by measuring the segment SNR
and the ISDM. We showed that the proposed algorithm was
generally superior to conventional methods, reducing both
residual noise and speech distortion in nonstationary and
noisy environments. In the future, we plan to evaluate its
possible application in preprocessing for signal processing
area.
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