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1. Introduction

Suppose that A is a complex Banach *-algebra. A C-linear mapping 6 : D(0) — A
is said to be a derivation on A if §(ab) = §(a)b + ad(b) for all a,b € A, where
D(9) is a domain of § and D(9) is dense in A. If § satisfies the additional condition
0(a*) = d(a)* for all a € A, then ¢ is called a *-derivation on A. It is well-known
that if A is a C*-algebra and D(J) is A, then the derivation ¢ is bounded.

A C*-dynamical system is a triple (A, G, a) consisting of a C*-algebra A, a
locally compact group G, and a pointwise norm continuous homomorphism « of
G into the group Aut(A) of x-automorphisms of A. Note that every bounded
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x-derivation § arises as an infinitesimal generator of a dynamical system for R.
In fact, if § is a bounded x-derivation of A on a Hilbert space H, then there
exists an element A in the enveloping von Neumann algebra A", the second dual
of A, such that 0(z) = ad(z) for all x € A. If, for each ¢t € R, oy is defined
by ai(z) = e*hze~*" for all x € A, then oy is a *-automorphism of A induced
by unitaries U; = e’" for each t € R. The action o : R — Aut(A), t — oy, is a
strongly continuous one-parameter group of s-automorphisms of 4. For several rea-
sons the theory of bounded derivations of C*-algebras is important in the quantum
mechanics (see [5, 6, 19]).

Recall that a functional equation is called stable if any function satisfying the
functional equation “approximately” is near to a true solution of the functional
equation. We say that a functional equation is superstable if every approximate
solution is an exact solution of it (see [2]).

In 1940, Ulam [28] proposed the following question concerning stability of group
homomorphisms: under what condition does there exists an additive mapping near
an approzimately additive mapping? Hyers [16] answered the problem of Ulam for
the case that groups are Banach spaces. A generalized version of the theorem of
Hyers for an approximately linear mapping was given by Rassias [24]. Since then, the
stability problems of various functional equations have been extensively investigated
by a number of authors (see [10, 12, 15, 17, 23]).

In 2003, Cadariu and Radu applied a fixed point method to the investigation
of the Jensen functional equation. They presented a short and a simple proof for
the Cauchy functional equation and the quadratic functional equation in [9] and
[8], respectively. After that, this method has been employed by many authors to
establish various functional equations. For instance, in [22], the authors established
the stability and the superstability of x-derivations associated with the Cauchy
functional equation and the Jensen functional equation by using this method (see
also [3, 13, 20]).

The Hyers—Ulam stability of quadratic derivations on Banach algebras was
studied in [14]. Then this is generalized to the stability and the superstability of
quadratic *-derivations on Banach C*-algebras in [18].

Jordan s-derivations were introduced in [25, 26] for the first time and then the
structure of such derivations is investigated in [7]. The importance of the study
of these mappings was that the fact that the problem of representing quadratic
forms by sesquilinear ones is closely connected with the structure of Jordan -
derivations. In [1], An, Cui and Park studied Jordan *-derivations on C*-algebras
and Jordan x-derivations on JC*-algebras associated with a special functional
inequality.

In this paper, we investigate the Hyers—Ulam stability of Jordan x-derivations
and quadratic Jordan x-derivations on real C*-algebras and real JC*-algebras. We
also show that Jordan *-derivations and quadratic Jordan *-derivations on real
C*-algebras and real JC*-algebras under which conditions are superstable.
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2. Stability of Jordan x-Derivations

In this section, we prove the Hyers—Ulam stability of Jordan x-derivations on real
C*-algebras and real JC*-algebras.

Definition 2.1. Let A be a real C*-algebra. An R-linear mapping D : 4 — A is
called a Jordan -derivation if D(a?) = a*D(a) + D(a)a* for all a € A.

The mapping D, : A — A;a — a*xr — xa*, where x is a fixed element in A, is a

Jordan x-derivation. Also, a real C*-algebra A, endowed with the Jordan product
aob:= 2 on A is called a real JCO*-algebra (see [1, 21]).

Definition 2.2. Let A be a real JC*-algebra. An R-linear mapping § : A — A is
called a Jordan *-derivation if §(a?) = a* o 6(a) + §(a) o a* for all a € A.
n-times

—~
Throughout this paper, we denote A x A x --- x A by A™.

Theorem 2.3. Let A be a real C*-algebra. Suppose that f : A — A is a mapping
with f(0) = 0 for which there exists a function o : A> — [0, 00) such that

o0

1
o(a,b,c) = Z ST ©(2"a,2"b,2"c) < oo, (2.1)
n=0

[f(Aa+b+c®) = Af(a) = f(b) = fe)e* —c* f()|| < w(a,b,c) (22)
for all X € R and all a,b,c € A. Then there exists a unique Jordan x-derivation &
on A satisfying

1f(a) = d(a)[| < &(a,a,0) (2.3)
for all a € A.
Proof. Setting a =b,c=0 and A =1 in (2.2), we have
1 (2a) = 2f(a)|| < ¥(a,a,0)
for all a € A. One can use induction to show that

f2%a)  f(2™a)
2n om

n—1

1
<> 2k+1<p(2ka72ka,0) (2.4)

k=m

for all n > m > 0 and all a € A. It follows from (2.1) and (2.4) that the sequence
{f 2" a)} is Cauchy. Due to the completeness of A, this sequence is convergent.
Deﬁne

0(a) := lim f(2"a)

n—oo on

(2.5)

for all @ € A. Then we have

1350051-3



Int. J. Geom. Methods Mod. Phys. 2013.10. Downloaded from www.worldscientific.com

by Dr Abasalt Bodaghi on 10/22/13. For personal use only.

A. Bodaghi € C. Park

for each k € N. Putting ¢ = 0 and replacing a and b by 2"a and 2"b, respectively,
n (2.2), we get

@04 0) = A1) - 1

1
‘ < 2—n<p(2"a, 2", 0).

Taking the limit as n — oo, we obtain
0(Aa+b) = Ad(a) + 0(b)
for all a,b € A and all A € R. So § is R-linear. Putting a = b = 0 and substituting
¢ by 2"c in (2.2), we get

s F(220) = S fRRO)(27e) — g (27 F(27)

1 1
S ﬁgo((l Oa 2”6) S 2_,”()0(07 Oa 2”6)
Taking the limit as n — oo, we have

5(c?) = 6(c)c* +c*d(e)

for all ¢ € A. Moreover, it follows from (2.4) with m = 0 and (2.5) that [|6(a) —
f(a)] € ¢(a,a,0) for all a € A. For the uniqueness of ¢, let 6 : A — A be another
Jordan *-derivation satisfying (2.3). Then we have

16() ~ 5(@)l = 55 16(2"a) ~ 5(2a)]
%(Ha(%) — F@ )|+ 1/(2"a) = §(2"a))

I A

(o]

Z S P20, 2" a,0) = 22 ¢(2a,2’a,0),

which tends to zero as n — oo for all a € A. So § is unique. Therefore, § is a Jordan
x-derivation on A, as required. O

We have the following theorem which is analogous to Theorem 2.3. Since the
proof is similar, it is omitted.

Theorem 2.4. Let A be a real C*-algebra. Suppose that f: A — A is a mapping
with f(0) = 0 for which there ezists a function ¢ : A> — [0, 00) satisfying (2.2) and

. = a b ¢
ot = 322 (G g g ) <

n=1

for all a,b,c € A. Then there exists a unique Jordan x-derivation 6 on A satisfying

1f(a) = 6(a)]| < &(a,a,0)
for all a € A.
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Corollary 2.5. Let A be a real C*-algebra and £,p be positive real numbers with
p # 1. Suppose that f : A — A is a mapping satisfying

1fAa+b+c?) = Af(a) = F(b) = cf(c) = fe)c|| < e(llall” + [[BII” + ) (2.6)

for all X € R and all a,b,c € A. Then there exists a unique Jordan *-derivation 0
on A satisfying

I£(0) =6 < =gorlall” (27)

for all a € A.

Proof. Letting a = b = ¢ = 0and A = 1 in (2.6), we get f(0) = 0. Now, by
considering ¢(a, b, c) = (||al|P + ||b||” + ||c||P) in Theorems 2.3 and 2.4, we get the
desired result. O

We now investigate the Hyers—Ulam stability of Jordan x-derivations on a real
JC*-algebra A. Since the proofs are similar to the above results, we omit them.

Theorem 2.6. Let A be a real JC*-algebra. Suppose that f : A — A is a mapping
with f(0) = 0 for which there exists a function ¢ : A3 — [0,00) such that

o0

1
p(a,b,¢) == Z 2nﬁgp@"a,2"(),2”0) < 00,

n=0
If(Aa+b+c?) = Af(a) — f(b) — f(c) oc* —c* o f(o)l| < pla,b,c)  (2.8)

for all X € R and all a,b,c € A. Then there exists a unique Jordan x-derivation &
on A satisfying || f(a) — 6(a)|| < ¢(a,a,0) for all a € A.

Proof. See the proof of Theorem 2.3. O

The next theorem is in analogy with Theorem 2.4 for real JC*-algebras.

Theorem 2.7. Let A be a real JC*-algebra. Suppose that f : A — A is a mapping
with f(0) = 0 for which there exists a function ¢ : A> — [0,00) satisfying (2.8) and

- > e a b ¢
@(aab,C) = 22 190 <2_n’2_n’2_n> < 00

n=1

for all a,b,c € A. Then there exists a unique Jordan *-derivation § on A satisfying
1f(a) = é(a)]l < &(a,a,0)
for all a € A.
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Corollary 2.8. Let A be a real JC*-algebra and €,p be positive real numbers with
p # 1. Suppose that f: A — A is a mapping satisfying

If(ha+b+¢*) = Af(a) = f(b) = "o f(c) = fe) o || < e(llall” + [IBI” + [|c[|”)

for all X € R and all a,b,c € A. Then there exists a unique Jordan *-derivation 0
on A satisfying

2¢e

p
gyl

1f(a) = d(a)|| <
for all a € A.

Proof. The result follows from Theorems 2.6 and 2.7 by putting ¢(a,b,¢) =
e(llall”+ [1b]I” + lle)I?). O

3. Stability of Quadratic Jordan *-Derivations

In this section, we prove the Hyers—Ulam stability of quadratic Jordan x-derivations
on real C*-algebras and real JC*-algebras. Recall that the functional equation

fla+b)+ fla=1b)=2f(a) +2f(b)

is called quadratic functional equation. In addition, every solution of the above
equation is said to be a quadratic mapping. First, we introduce quadratic Jordan
x-derivations on real C*-algebras and real JC*-algebras as follows.

Definition 3.1. Let A be a real C*-algebra. A mapping D : A — A is called a
quadratic Jordan *-derivation if D is a quadratic R-homogeneous mapping, that is,
D is quadratic and D(\a) = A2>D(a) for all a € A and A € R and

D(a?) = (a*)2D(a) + D(a)(a")?
for all a € A.

The mapping D, : A — A;a — (a*)?x — z(a*)?, where z is a fixed element in
A, is a quadratic Jordan x-derivation.

Definition 3.2. Let A be a real JC*-algebra. A mapping § : A — A is called a
quadratic Jordan x-derivation if § is a quadratic R-homogeneous mapping and

§(a®) = (a*)* 0 é(a) + é(a) o (a™)?

for all a € A.
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Theorem 3.3. Let A be a real C*-algebra. Suppose that f : A — A is a mapping
with f(0) = 0 for which there exists a function ¢ : A?> — [0,00) such that

iik a oF D)
[f(Aa+Ab) + f(Aa — Ab) — 2A* f(a) — 222 f(b)|| < ¢(a,b), (3.1)

1£(a%) = f(a)(a*)? = (a*)*f(a)]| < ¥(a,a) (3-2)

for all a,b € A and all N € R. Then there exists a unique quadratic Jordan
x-derivation 0 on A satisfying

I7(a) ~ (@) < 3(a,0) (33)
for all a € A.

Proof. Putting ¢« =b and A =1 in (3.1), we have

1 (2a) = 4f(a)]| < ¥(a,a)

for all a € A. We can deduce by induction that

ak
\4Z¢ ’ (3.4

for all n > m > 0 and all @ € A. Since the right-hand 51de of the inequality (3.4)

tends to 0 as m and n tend to infinity, the sequence {f i T )} is Cauchy. Now, since

A is complete, this sequence can be convergent to a mapping, say J. Indeed,

0(a) ;== lim f(2"a).

n—oo 4n

Hf(2:a) e

m

Since f(0) = 0, we have §(0) = 0. Replacing a and b by 2™a and 2"b, respectively,
n (3.1), we get

[A20a ) SO0 ) g @) _y0 I  oe2)

4n 4n 4n 4n 4n
Taking the limit as n — oo, we obtain
S(Aa + Ab) + 5(Aa — Ab) = 2X25(a) + 22%5(D) (3.5)

for all a,b € A and all A € R. Putting A = 1 in (3.5), we obtain that 0 is a quadratic
mapping. It is easy to check that the quadratic mapping ¢ satisfying (3.3) is unique
(see the proof of Theorem 2.3). Setting b = a in (3.5), we get §(2\a) = 4)\25(a)
for all @ € A and all A € R. Hence §(\a) = A\?6(a) for all @ € A and all X\ € R.
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Replacing a by 2"a, in (3.2), we get

H f(2"a-2"a)  2"(a*)?f(2"a) _ f(2"a)2%"(a*)®
42n o 42n o 42n

f(22na2) 22n(a*)2 f(2na) f(2na) 22n(a*)2
H 42n o 922n qn o qn 922n

o p(2"a,2%) _ p(2"a,2"a)
- 42n — 4n
for all a € A. Thus we have
16(a%) — (@*)23(a) — 8(a) a2 < tim £Z 427

n—oo 4n

=0.

The above statement shows that ¢ is a quadratic Jordan x-derivation on 4 which
is unique. O

The following parallel result can be proved in a similar way, and so we omit its
proof.

Theorem 3.4. Let A be a real C*-algebra. Suppose that f : A — A is a mapping
with f(0) = 0 for which there exists a function ¢ : A?> — [0,00) satisfying (3.1),
(3.2) and

- > a b
o(a,b) = Z4kg0 <2—k, 2—k> < o0
k=1

for all a,b € A. Then there exists a unique quadratic Jordan *-derivation § on A
satisfying

¢la,a)

NG

1f(a) = d(a)]| <
for all a € A.

Corollary 3.5. Let A be a real C*-algebra and ,p be positive real numbers with
p # 2. Suppose that f: A — A is a mapping such that

1f(Aa+ Ab) + f(Aa — Ab) — 202 f(a) — 2X°F(b) || < e(lla]|” + [[b]]7),
I1f(a®) = a?f(a) — f(a)(a*)?|| < 2¢l|al|”

for all a,b € A and all X € R. Then there exists a unique quadratic Jordan -
derivation § : A — A satisfying

2

€ P
1f(a) = d(a)ll < mllall (3.6)

for all a € A.

Proof. Defining ¢(a,b) = ¢(]|al|? + ||b||?) and applying Theorems 3.3 and 3.4, we
obtain the result. O
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From here to the end of this section, we assume that A is a real JC*-algebra. In
the upcoming theorems, we indicate the Hyers—Ulam stability of quadratic Jordan
x-derivations on A. Since the proofs are similar to the case that A is a real C*-
algebra, we skip them.

Theorem 3.6. Suppose that [ : A — A is a mapping with f(0) = 0 for which
there exists a function ¢ : A? — [0,00) such that

oo

P(a,b) == Z %@(2’“@,2%) < 00,
k=0
1 (Aa + Ab) + f(Aa — Ab) — 2X%f(a) — 2X°f (D) ]| < (a. b), (3.7)
1£(a®) = (a*)? © f(a) = f(a) o (a*)?|| < ¥(a,a) (3.8)

for all a,b € A and all X € R. Then there exists a unique quadratic Jordan -
derivation § on A satisfying

1f(a) = d(a)l| <
for all a € A.

Theorem 3.7. Suppose that f : A — A is a mapping with f(0) = 0 for which
there exists a function ¢ : A% — [0, 00) satisfying (3.7), (3.8) and

_ > a b
o(a,b) == Z4k<p (2—k7 2—k) < 00
k=1

for all a,b € A. Then there exists a unique quadratic Jordan *-derivation § on A
satisfying

¢(a,a)

PNy

1f(a) = d(a)l| <
for all a € A.

Corollary 3.8. Let €,p be positive real numbers with p # 2. Suppose that f : A —
A is a mapping such that

1F(Xa +Ab) + f(Aa = Ab) = 2X%f(a) — 2X* f (D) ]| < e([lal” + [[B]7),

1f(a®) = (a*)? o f(a) = f(a) o (a*)?| < 2¢l|al|”
for all a,b € A and all X € R. Then there exists a unique quadratic Jordan -
derivation § : A — A satisfying
2e
_ < 2 qalp
I£a) = 6] < = grlal
for all a € A.

Proof. We can obtain the result by letting ¢(a,b) = £(]|a]|?+||b||?) in Theorems 3.6
and 3.7. |
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4. A Fixed Point Approach

In this section, we establish the Hyers—Ulam stability and the superstability of
Jordan x-derivations and of quadratic Jordan x-derivations on real C*-algebras and
real JC*-algebras by using the fixed point method (Theorem 4.1). To prove the
main results, we bring this theorem which has been proved by Diaz and Margolis
n [11]. Later, an extension of this result has been given by Turinici in [27].

Theorem 4.1 (The fixed point alternative). Let (2,d) be a complete gener-
alized metric space and T : Q0 — Q be a mapping with Lipschitz constant L < 1.
Then, for each element o € €, either d(T™a, T" o) = oo for all n > 0, or there
exists a natural number ngy such that:

(i) d(T"a, T" o) < oo for all n > ng;

(ii) the sequence {T™a} is convergent to a fized point 3* of T}

(iii) B* is the umque fized point of T in the set A= {3 € Q:d(T™a, ) < 00};
)

(iv) d(B,B*) < 25 d(B,TB) for all B € A.

Here and subsequently, we suppose that A is a real C*-algebra.

Theorem 4.2. Let f : A — A be a mapping with f(0) =0 and let ¢ : A3 — [0, 00)
be a function such that

[f(Aa+b+c?) = Af(a) = f(b) = f(e)e* — " f(e)|| < pla,b,c) (4.1)
for all X € R and a,b,c € A. If there exists a constant k € (0,1) such that

©(2a,2b,2¢) < 2kp(a,b,c) (4.2)
for all a,b,c € A, then there exists a unique Jordan *-deriwation § : A — A
satisfying
1
_ < - .
1£(0) = 80)]| < 5—ye(a.a.0) (13)
for all a € A.

Proof. It follows from (4.2) that
©(27a,27b,27¢c)

hm —_— =
j—oo 2]

for all a,b,c € A. Putting A =1,a =15, and ¢ =0 in (4.1), we have
1/ (2a) = 2f(a)|| < ¢(a,a,0)

for all a € A, and so

(a,a,0) (4.4)

1@ - jrea)] < 4o

1350051-10
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for all @ € A. We consider the set  := {h: A — A|h(0) = 0} and introduce the
generalized metric on () as follows:

d(hi,h) :=1inf{C € (0,00) : ||h1(a) — h2(a)|| < Cp(a,a,0), Va € A},

if there exists such constant C, and d(hq, ha) = 0o, otherwise. Similar to the proof
of [4, Theorem 2.2], one can show that d is a generalized metric on  and the metric
space (€2, d) is complete. We now define the linear mapping 7' : Q@ — Q by

Th@ﬁzz%h@a) (4.5)

for all @ € A. Given hy,hy € Q. Let C € RT be an arbitrary constant with
d(hl, h2) < C, that iS,

[h1(a) = ha(a)]| < Cp(a;a,0) (4.6)

for all a € A. Substituting a by 2a in the inequality (4.6) and using the equalities
(4.2) and (4.5), we have

1 1
ITh1(a) = Tha(a)ll = 5[h1(2a) = h2(2a)|| < 5Cp(2a,2a,0) < Ckp(2a, 2a,0)

for all @ € A, and thus d(T'hy, The) < Ck. Therefore, we conclude that d(T'hq, Tha) <
kd(h1, he) for all hq, ho € Q. The inequality (4.4) implies that

ATy f) < 5 (17)

It also follows from Theorem 4.1 that d(T"h,T"*'h) < oo for all n > 0, and
thus in this theorem we have ng = 0. Therefore, Parts (iii) and (iv) of Theorem 4.1
hold on the whole Q. Thus, the sequence {T"f} converges to a unique fixed point
§: A— Ain the set Q9 ={h € Q; d(f,h) < oo}, that is,

lim (2%a)

n— oo on

= 6(a)
for all @ € A. By Theorem 4.1 and (4.7), we have

d(Tf, f) 1
A0 < T < sa—w

The above inequalities show that (4.3) holds for all @ € A. Similar to the proof
of Theorem 2.3, we can deduce that § is R-linear by letting ¢ = 0 and replacing
a and b by 2"a and 2"b, respectively, in (4.1). By a similar way we have §(c?) =
d(c)c* + c*d(c) for all ¢ € A. O

The following corollary shows that we can obtain a more accurate approximation
of (2.7) in the case p < 1.
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Corollary 4.3. Let p, 6 be non-negative real numbers withp < 1 and let f : A — A
be a mapping such that

IfAa+b+c?) = Af(a) = £(b) = f(c)e” =" f(e)]
< O(llall” +[16]” + ll<l?) (4.8)

for all X\ € R and all a,b,c € A. Then there exists a unique Jordan *-derivation
0: A— A satisfying

17(@) = 8(a)]| < 5 llall

for all a € A.

Proof. First, note that the inequality (4.8) implies that f(0) = 0. Now, the result
follows from Theorem 4.2 by taking ¢(a, b, c) = 0(||a||? + ||b]|P + ||c||?). O

In the following corollary, under some conditions, the superstability for Jordan
x-derivations on real C*-algebras is shown.

Corollary 4.4. Let p,q,r,0 be non-negative real numbers such that p+q+r €
(0,1). Suppose that a mapping f : A — A satisfies

1fAa+b+c?) = Af(a) = F(b) = fle)e” = " f)ll < O(lalPl[p]lle])  (4.9)

for all a,b,c € A. Then f is a Jordan *-derivation on A.

Proof. Letting a = b = ¢ = 0 in (4.9), we have f(0) = 0. Once more, if we put
A=1,c=0and a =bin (4.9), then we get f(2a) = 2f(a) for all a € A. It is easy
to see that by induction, we have f(2"a) = 2" f(a), and so f(a) = f(g—:a) for all
a € Aand n € N. Now, it follows from Theorem 4.2 that f is a Jordan x-derivation.

O

Note that in Corollary 4.4, if p+q+r € (0,1) and p > 0 such that the inequality
(4.9) holds, then by applying ¢(a, b, ¢) = 0(||a||?||b||?||c||") in Theorem 4.2, f is again
a Jordan *-derivation.

The following parallel theorem for the stability of quadratic Jordan *-derivations
on real C*-algebras can be proved in a similar method to Theorem 4.2. But, we
include the proof.

Theorem 4.5. Let f : A — A be a mapping with f(0) = 0 and let ¢ : A% — [0, c0)
be a function such that

1f(Aa + Ab) + f(Aa — Ab) — 2X f(a) — 20° f(b)[| < (a, b),

(4.10)
1f(a?) = f(a)(a*)? = (a*)*f(a)l| < ¢(a,a)
for all a,b € A and all A € R. If there exists a constant k € (0,1) such that
©(2a,2b) < 4ky(a,b) (4.11)
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for all a,b € A, then there exists a unique quadratic Jordan x-derivation § : A — A
satisfying
1
- < — 4.12
(@) = 8@)]| < gr—ela.) (112)
for all a € A.

Proof. Similar to the proof of Theorem 4.2, we consider the set & = {g : A —
A g(0) =0} and define the following mapping d on Q x Q:

d(g,h) :=inf{c € (0,00) : ||g(a) — h(a)| < c¢(a,a), for alla € A},

if there exists such constant ¢, and d(g, h) = oo, otherwise. One can easily show that
(Q,d) is complete (see the proof of Theorem 4.2). Now, we consider the mapping
T :Q — Q defined by
1
Ty(a) = 19(20), (0 € A).
Given g, h € Q with d(g, h) < ¢. By definition of d and T', we get

1 1
Hzg(2a) — Zh(?a)
for all a € A. Using (4.11), we have
1 1
Zg(2a) — ~h(2
|Jot20) - ghtza)

for all a € A. The above inequality shows that d(T'g,Th) < kd(g,h) for all g,h €
Q. Hence, T is a strictly contractive mapping on 2 with a Lipschitz constant k.
Now, we prove that d(Tf, f) < co. Putting ¢ = b and A = 1 in (4.10), we obtain
|/ (2a) —4f(a)|| < p(a,a) for all a € A. Hence

1
< ch@(?a, 2a)

< ckyla, a)

1 1
Zf@a) - fla)| < ZSD(C% a) (4.13)
for all a € A. We deduce from (4.13) that d(T'f, f) < 1. It follows from Theorem 4.1

that d(T"g,T""g) < oo for all n > 0, and thus the parts (iii) and (iv) of this
theorem hold on the whole §2. Hence there exists a unique mapping ¢ : A — A such
that § is a fixed point of T and that T"f — § as n — oo. Thus
2’ﬂ
im 227 _ 50

n— oo 4n

for all a € A, and so
1 1
< ——d(T] < —
1.0) € T5d(TF. ) € 775
The above equalities show that (4.12) is true for all « € A. Now, it follows from
(4.11) that

i £Z"®270) _
n—oo 47l
The rest of the proof is similar to the proof of Theorem 3.3. O
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In the following corollary, we find a more accurate approximation relative to
Corollary 3.5 with the same conditions on the mapping f when p < 2. In fact, we
obtain a refinement of the inequality (3.6).

Corollary 4.6. Let 0,p be positive real numbers with p < 2. Suppose that f : A —
A is a mapping such that

1 (Aa + Ab) + f(Aa — Ab) — 2X2 f(a) — 202 (D) || < O(/|al” + [[b]P),
1£(a?) = (a*)?f(a) = f(a)(a*)?]| < 20]a]/?

for all a,b € A and all X € R. Then there exists a unique quadratic Jordan -
derivation § : A — A satisfying

1f(a) = d(a)l] <

14)

—lal?

for all a € A.

Proof. If we put « = b = 0 and A = 1 in (4.14), we get f(0) = 0. Letting
©(a,b) = 0(||la||” + ||b]|P) in Theorem 4.5, we obtain the result. |

The next result shows that under what conditions a quadratic Jordan -
derivation on a real C*-algebra is superstable.

Corollary 4.7. Let 0,p,q be positive real numbers with p + q # 2. Suppose that
f: A— Ais a mapping such that
1f(Aa+Ab) + f(Aa — Ab) — 2X%f(a) — 222 f (D) || < O([[al/P[[b]|7), ~ (4.15)

1f(a®) = (a*)*f(a) — f(a)(a*)?| < Ola]P* (4.16)
for all a,b € A and all X € R. Then f is a quadratic Jordan x-derivation on A.

Proof. Putting a = b = 0 in (4.15), we get f(0) = 0. Now, if we put a = b,
A = 11in (4.15), then we have f(2a) = 4f(a) for all a € A. Tt is easy to see by
induction that f(2"a) = 4" f(a), and so f(a) = % for all a € A and n € N.
It follows from Theorem 4.5 that f is a quadratic homogeneous mapping. Letting
w(a,b) = 0(||a]|P[|b||?) in Theorem 4.5, we can obtain the desired result. O

One should remember that all of the results in this section hold when we replace
a real C'*-algebra by a real JC*-algebra with its corresponding product.
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