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Abstract. Let A be an algebra and X be an A-module. A quadratic mapping D : A → X is called a quadratic

derivation if

D(ab) = D(a)b2 + a2D(b)

for all a1, a2 ∈ A. We investigate the Hyers-Ulam stability of quadratic derivations from a non-Archimedean

Banach algebra A into a non-Archimedean Banach A-module.

1. Introduction

A definition of stability in the case of homomorphisms between metric groups was proposed by a problem by Ulam

[32] in 1940. In 1941, Hyers [17] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers’

Theorem was generalized by Rassias [27] for linear mappings by considering an unbounded Cauchy difference (see

[3, 4, 8, 10, 18, 19, 22, 25, 29]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic functional

equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. It is

well known that a mapping f between real vector spaces is quadratic if and only if there exits a unique symmetric

bi-additive mapping B such that f(x) = B(x, x) for all x (see [1, 20]). The bi-additive mapping B is given by

B(x, y) =
1

4
(f(x+ y)− f(x− y)).

The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings

f : A→ B, where A is a normed space and B is a Banach space (see [31]). Cholewa [6], Czerwik [7] and Grabiec

[16] have generalized the results of stability of quadratic mappings. Borelli and Forti [5] generalized the stability

result as follows (cf. [23, 24]): Let G be an Abelian group, and X a Banach space. Assume that a mapping

f : G→ X satisfies the functional inequality

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ φ(x, y)

for all x, y ∈ G, where φ : G×G→ [0,∞) is a function such that

Φ(x, y) :=

∞∑
i=0

1

4i+1
φ(2ix, 2iy) <∞

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G→ X with the property

∥f(x)−Q(x)∥ ≤ Φ(x, x)
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for all x ∈ G.

Let K be a field.

A non-Archimedean absolute value on K is a function | · | : K → R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a+ b| ≤ max{|a|, |b|}.

The condition (iii) is called the strict triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus, by induction, it

follows from (iii) that |n| ≤ 1 for each integer n. We always assume, in addition, that | · | is nontrivial, i.e., that

there is an a0 ∈ K such that |a0| ̸∈ {0, 1}.
Let X be a linear space over a scalar field K with a non-Archimedean nontrivial valuation | · |. A function

∥ · ∥ : X → R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) ∥x∥ = 0 if and only if x = 0;

(NA2) ∥rx∥ = |r|∥x∥ for all r ∈ K and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,

∥x+ y∥ ≤ max{∥x∥, ∥y∥} (x, y ∈ X).

Then (X, ∥ · ∥) is called a non-Archimedean space. It follows from (NA3) that

∥xm − xℓ∥ ≤ max{∥xȷ+1 − xȷ∥ : ℓ ≤ ȷ ≤ m− 1} (m > ℓ).

Therefore, a sequence {xm} is Cauchy in X if and only if {xm+1 − xm} converges to zero in a non-Archimedean

space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent. A

non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies ∥ab∥ ≤ ∥a∥∥b∥ for all

a, b ∈ A. A non-Archimedean Banach space X is a non-Archimedean Banach A-bimodule if X is an A-bimodule

which satisfies max{∥xa∥, ∥ax∥} ≤ ∥a∥∥x∥ for all a ∈ A, x ∈ X. For more detailed definitions of non-Archimedean

Banach algebras, we can refer to [30].

Let A be a normed algebra and let X be a Banach A-module. We say that a mapping D : A→ X is a quadratic

derivation if D is a quadratic mapping satisfying

D(x1x2) = D(x1)x
2
2 + x21D(x2) (1.2)

for all x1, x2 ∈ A.

Recently, the stability of derivations has been investigated by a number of mathematicians including [2, 11, 12,

13, 14, 15, 21, 26, 28] and references therein. More recently, Eshaghi Gordji [9] established the stability of ring

derivations on non-Archimedean Banach algebras.

In this paper, we investigate the approximately quadratic derivations on non-Archimedean Banach algebras.

2. Main results

In the following we suppose that A is a non-Archimedean Banach algebra and X is a non-Archimedean Banach

A-bimodule. Assume that |2| ̸= 1.

Theorem 2.1. Let f : A→ X be a given mapping with f(0) = 0 and let φ1 : A×A→ R+ and φ2 : A×A→ R+

be functions such that

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ φ1(x1, x2), (2.1)

||f(x+ y) + f(x− y)− 2f(x)− 2f(y)|| ≤ φ2(x, y) (2.2)

for all x1, x2, x, y ∈ A. Assume that for each x ∈ A

lim
n→∞

max

{
1

|2|2k
φ2(2

kx, 2kx)

|2|2 : 0 ≤ k ≤ n− 1

}
denoted by Ψ(x, x), exists. Suppose

lim
n→∞

φ1(2
nx1, 2

nx2)

|2|4n = lim
n→∞

φ2(2
nx, 2ny)

|2|2n = 0

for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ Ψ(x, x) (2.3)
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for all x ∈ A.

Proof. Setting y = x in (2.2), we get

∥f(2x)− 4f(x)∥ ≤ φ2(x, x) (2.4)

for all x ∈ A, and then dividing by |2|2 in (2.4), we obtain∥∥∥∥f(2x)22
− f(x)

∥∥∥∥ ≤ φ2(x, x)

|2|2 (2.5)

for all x ∈ A. Replacing x by 2x and then dividing by |2|2 in (2.5), we obtain∥∥∥∥f(22x)24
− f(2x)

22

∥∥∥∥ ≤ φ2(2x, 2x)

|2|4 . (2.6)

Combining (2.5), (2.6) and the strong triangle inequality (NA3) yields∥∥∥∥f(22x)24
− f(x)

∥∥∥∥ ≤ max

{
φ2(2x, 2x)

|2|4 ,
φ2(x, x)

|2|2

}
. (2.7)

Following the same argument, one can prove by induction that∥∥∥∥f(2nx)22n
− f(x)

∥∥∥∥ ≤ max

{
1

|2|2
φ2(2

kx, 2kx)

|2|2k : 0 ≤ k ≤ n− 1

}
. (2.8)

Replacing x by 2n−1x and dividing by |2|2(n−1) in (2.5), we find that∥∥∥∥f(2nx)22n
− f(2n−1x)

22(n−1)

∥∥∥∥ ≤ φ2(2
n−1x, 2n−1x)

|2|2n

for all positive integers n and all x ∈ A. Hence { f(2nx)

22n
} is a Cauchy sequence. Since X is complete, it follows

that { f(2nx)

22n
} is convergent. Set D(x) = limn→∞

f(2nx)

22n
. By taking the limit as n → ∞ in (2.8), we see that

∥D(x)− f(x)∥ ≤ Ψ(x, x) and (2.3) holds for all x ∈ A.

In order to show that D satisfies (1.2), replacing x1, x2 by 2nx1, 2
nx2 in (2.1), and dividing both sides of (2.1)

by |2|4n, we get ∥∥∥∥f(2nx1 · 2nx2)24n
− f(2nx1)

24n
· (2nx2)2 − (2nx1)

2.
f(2nx2)

24n

∥∥∥∥ ≤ φ1(2
nx1, 2

nxn)

|2|4n .

Taking the limit as n→ ∞, we find that D satisfies (1.2).

Replacing x by 2nx and y by 2ny in (2.2) and dividing by |2|2n, we get∥∥∥∥f(2nx+ 2ny)

22n
+
f(2nx− 2ny)

22n
− 2

f(2nx)

22n
− 2

f(2ny)

22n

∥∥∥∥ ≤ φ2(2
nx, 2ny)

|2|2n .

Taking the limit as n→ ∞, we find that D satisfies (1.1).

Now, suppose that there is another such mappingD′ : A→ X satisfyingD′(x+y)+D′(x−y) = 2D′(x)+2D′(y)

and ∥D′(x)− f(x)∥ ≤ Ψ(x, x). Then for all x ∈ A, we have

∥D(x)−D′(x)∥ = lim
n→∞

1

|2|2n ∥D(2nx)−D′(2nx)∥

≤ lim
n→∞

1

|2|2n max{∥D(2nx)− f(2nx)∥, ∥D′(2nx)− f(2nx)∥}

≤ lim
n→∞

lim
k→∞

1

|2|2 max{φ2(2
jx, 2jx)

|2|2j : n ≤ j ≤ k + n− 1} = 0.

It follows that D(x) = D′(x). �

Corollary 2.2. Let θ1 and θ2 be nonnegative real numbers, and let p be a real number such that p > 4. Suppose

that a mapping f : A→ X satisfies

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ θ1(∥x1∥p + ∥x2∥p),

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ θ2(∥x∥p + ∥y∥p)
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for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ lim
n→∞

max

{
θ2∥x∥p

|2|.|2|k(2−p)
0 ≤ k ≤ n− 1

}
for all x ∈ A.

Proof. Let φ1 : A× A → R+ and φ2 : A× A → R+ be functions such that φ1(x1, , x2) = θ1(∥x1∥p + ∥x2∥p) and

φ2(x, y) = θ2(∥x∥p + ∥y∥p) for all x1, x2, x, y ∈ A. Then we have

lim
n→∞

φ2(2
nx, 2ny)

|2|2n = lim
n→∞

θ2 · |2|n(p−2) · (∥x∥p + ∥y∥p) = 0 (x, y ∈ A),

lim
n→∞

φ1(2
nx1, 2

nx2)

|2|4n = lim
n→∞

θ1|2|pn

|2|4n (∥x1∥p + ∥x2∥p) = 0 (x1, x2 ∈ A).

Applying Theorem 2.1, we conclude the required result. �

Theorem 2.3. Let f : A→ X be a mapping and let φ1 : A×A→ R+, φ2 : A×A→ R+ be functions such that

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ φ1(x1, x2), (2.9)

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ φ2(x, y) (2.10)

for all x1, x2, x, y ∈ A. Assume that for each x ∈ A

lim
n→∞

max
{
|2|2kφ2

( x

2k+1
,
x

2k+1

)
: 0 ≤ k ≤ n− 1

}
denoted by Ψ(x, x), exists. Suppose

lim
n→∞

|2|4nφ1

(x1
2n
,
x2
2n

)
= lim

n→∞
|2|2nφ2

( x

2n
,
y

2n

)
= 0

for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ Ψ(x, x) (2.11)

for all x ∈ A.

Proof. Setting y = x in (2.10), we obtain

∥f(2x)− 4f(x)∥ ≤ φ2(x, x). (2.12)

Replacing x by x
2
in (2.12), one obtains ∥∥∥f(x)− 4f

(x
2

)∥∥∥ ≤ φ2

(x
2
,
x

2

)
. (2.13)

Again replacing x by x
2
in (2.13) and multiplying by |2|2, we obtain that∥∥∥22f (x

2

)
− 24f

( x
22

)∥∥∥ ≤ |2|2φ2

( x
22
,
x

22

)
. (2.14)

By using (2.13), (2.14) and strong triangle inequality (NA3), we get∥∥∥f(x)− 24f
( x
22

)∥∥∥ ≤ max
{
φ2

(x
2
,
x

2

)
, |2|2φ2

( x
22
,
x

22

)}
(2.15)

for x ∈ A.

Next we prove by induction that∥∥∥f(x)− 22nf
( x

2n

)∥∥∥ ≤ max
{
|2|2kφ2

( x

2k+1
,
x

2k+1

)
: 0 ≤ k ≤ n− 1

}
. (2.16)

Replacing x by x
2n−1 and multiplying by |2|2(n−1) in (2.13), we obtain∥∥∥22(n−1)f

( x

2n−1

)
− 22nf

( x

2n

)∥∥∥ ≤ |2|2(n−1)φ2

( x

2n
,
x

2n

)
(2.17)

for all x ∈ A. Hence {22nf( x
2n

)} is a Cauchy sequence. Since X is complete, it follows that {22nf( x
2n

)}
is convergent. Set D(x) = limn−→∞{22nf( x

2n
)}. By taking the limit as n → ∞ in (2.16), we see that

∥f(x)−D(x)∥ ≤ Ψ(x, x) and (2.11) holds for all x ∈ A.
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Replacing x1, x2 by x1
2n
, x2
2n

in (2.9) and multiplying by |2|4n, we get∥∥∥∥24nf (x12n · x2
2n

)
− 24nf

(x1
2n

)(x2
2n

)2

− 24n
(x1
2n

)2

f
(x2
2n

)∥∥∥∥ ≤ 24nφ1

(x1
2n
,
x2
2n

)
.

Taking the limit as n→ ∞, we find that D satisfies (1.2).

Replacing x by x
2n

and y by y
2n

in (2.10) and multiplying by |2|2n, we have∥∥∥22nf ( x

2n
+

y

2n

)
+ 22nf

( x

2n
− y

2n

)
− 22n · 2f

( x

2n

)
− 22n · 2f

( y

2n

)∥∥∥ ≤ |2|2nφ2

( x

2n
,
y

2n

)
.

Taking the limit as n→ ∞, we find that D satisfies (1.1).

Now, suppose that there is another such mapping D′ : A→ X satisfying D′(x+y)+D′(x−y) = 2D′(x)+2D′(y)

and ∥D′(x)− f(x)∥ ≤ Ψ(x, x). Then for all x ∈ A, we have

∥D(x)−D′(x)∥ = lim
n→∞

|2|2n
∥∥∥D ( x

2n

)
−D′

( y

2n

)∥∥∥
≤ lim

n→∞
|2|2n max

{∥∥∥D ( x

2n

)
− f

( x

2n

)∥∥∥ ,∥∥∥D′
( x

2n

)
− f

( x

2n

)∥∥∥}
≤ lim

n→∞
lim
k→∞

max
{
φ2

( x

2j+1
,
x

2j+1

)
: n ≤ j ≤ k + n− 1

}
= 0

and so D(x) = D′(x) for all x ∈ A. �

Corollary 2.4. Let θ1 and θ2 be nonnegative real numbers, and let p be a positive real number such that p < 2.

Suppose that a mapping f : A→ X satisfies

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ θ1(∥x1∥p + ∥x2∥p),

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ θ2(∥x∥p + ∥y∥p)
for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ lim
n→∞

max{θ2∥x∥p.|2|(k+1)(1−p) 0 ≤ k ≤ n− 1}

for all x ∈ A.

Proof. Let φ1 : A× A → R+ and φ2 : A× A → R+ be functions such that φ1(x1, , x2) = θ1(∥x1∥p + ∥x2∥p) and

φ2(x, y) = θ2(∥x∥p + ∥y∥p) for all x1, x2, x, y ∈ A. We have

lim
n→∞

|2|2nφ2

( x

2n
,
y

2n

)
= lim

n→∞
(|2|n(2−p))θ2(∥x∥p + ∥y∥p) = 0 (x, y ∈ A),

lim
n→∞

|2|4nφ1

(x1
2n
,
x2
2n

)
= lim

n→∞
|2|n(4−p)θ1(∥x1∥p + ∥x2∥p) = 0 (x1, x2 ∈ A).

Applying Theorem 2.4, we conclude the required result. �

Acknowledgments

C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea

funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).

References

[1] J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, 1989.

[2] M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan

derivations on Banach ternary algebras, J. Math. Phys. 50 (2009), Article ID 042303.

[3] C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), 74–86.

[4] D.G. Bourgin, Class of transformations and bordering transformations, Bull. Amer. Math. Soc. 27 (1951),

223–237.

[5] C. Borelli and G.L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995),

229–236.

[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.

[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg

62 (1992), 59–64.



C. Park, S. Shagholi, A. Javadian, M.B. Savadkouhi, M. Eshaghi Gordji

[8] A. Ebadian, N. Ghobadipour and M. Eshaghi Gordji, A fixed point method for perturbation of bimultipliers

and Jordan bimultipliers in C∗-ternary algebras, J. Math. Phys. 51 (2010), Article ID 103508.

[9] M. Eshaghi Gordji, Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach

algebras, Abs. Appl. Anal. 2010, Article ID 393247 (2010).

[10] M. Eshaghi Gordji and A. Bodaghi, On the stability of quadratic double centralizers on Banach algebras, J.

Comput. Anal. Appl. 13 (2011), 724–729.

[11] M. Eshaghi Gordji, R. Farokhzad Rostami and S.A.R. Hosseinioun, Nearly higher derivations in unital C∗-

algebras, J. Comput. Anal. Appl. 13 (2011), 734–742.

[12] M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, E. Rashidi and M. Aghaei, Ternary Jordan derivations

on C∗-ternary algebras, J. Comput. Anal. Appl. 12 (2010), 463–470.

[13] M. Eshaghi Gordji, J.M. Rassias and N. Ghobadipour, Generalized Hyers-Ulam stability of the generalized

(n, k)–derivations, Abs. Appl. Anal. 2009, Article ID 437931 (2009).

[14] R. Farokhzad and S.A.R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary alge-

bras: An alternative fixed point approach, Int. J. Nonlinear Anal. Appl. 1 (2010), No. 1, 42–53.

[15] N. Ghobadipour, A. Ebadian, Th.M. Rassias and M. Eshaghi Gordji, A perturbation of double derivations

on Banach algebras, Commun. Math. Anal. 11 (2011), 51–60.

[16] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen

48 (1996) 217–235.

[17] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.

[18] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser,
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