See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265590452

Quadratic derivations on non-Archimedean Banach algebras

Article in Journal of Computational Analysis and Applications · April 2014

CITATIONS 0	3	READS	
5 authoi	rs, including:		
	Choonkil Park Hanyang University 480 PUBLICATIONS 3,900 CITATIONS SEE PROFILE		Saeid Shagholi Semnan University 3 PUBLICATIONS 58 CITATIONS SEE PROFILE
6	Madjid Eshaghi Gordji Semnan University 353 PUBLICATIONS 3,027 CITATIONS SEE PROFILE		
Some of	the authors of this publication are also worki	ng on these	related projects:
Project	Fixed point theory, partial metric spaces View	w project	
Project	Stability of ternary m-derivations on ternary	Banach alg	ebras View project

All content following this page was uploaded by Choonkil Park on 15 June 2015.

Quadratic derivations on non-Archimedean Banach algebras

¹Choonkil Park, ²S. Shagholi, ³A. Javadian, ⁴M.B. Savadkouhi and ⁵Madjid Eshaghi Gordji

¹Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

^{2,5}Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran

³Department of Physics, Semnan University, P. O. Box 35195-363, Semnan, Iran

⁴Department of Mathematics, Islamic Azad University, Someh Sara Branch, Someh Sara, Iran

Abstract. Let A be an algebra and X be an A-module. A quadratic mapping $D: A \to X$ is called a quadratic derivation if

$$D(ab) = D(a)b^2 + a^2D(b)$$

for all $a_1, a_2 \in A$. We investigate the Hyers-Ulam stability of quadratic derivations from a non-Archimedean Banach algebra A into a non-Archimedean Banach A-module.

1. Introduction

A definition of stability in the case of homomorphisms between metric groups was proposed by a problem by Ulam [32] in 1940. In 1941, Hyers [17] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Rassias [27] for linear mappings by considering an unbounded Cauchy difference (see [3, 4, 8, 10, 18, 19, 22, 25, 29]).

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y).$$
(1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f between real vector spaces is quadratic if and only if there exits a unique symmetric bi-additive mapping B such that f(x) = B(x, x) for all x (see [1, 20]). The bi-additive mapping B is given by

$$B(x,y) = \frac{1}{4}(f(x+y) - f(x-y)).$$

The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings $f: A \to B$, where A is a normed space and B is a Banach space (see [31]). Cholewa [6], Czerwik [7] and Grabiec [16] have generalized the results of stability of quadratic mappings. Borelli and Forti [5] generalized the stability result as follows (cf. [23, 24]): Let G be an Abelian group, and X a Banach space. Assume that a mapping $f: G \to X$ satisfies the functional inequality

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \varphi(x,y)$$

for all $x, y \in G$, where $\varphi: G \times G \to [0, \infty)$ is a function such that

$$\Phi(x,y):=\sum_{i=0}^\infty \frac{1}{4^{i+1}}\varphi(2^ix,2^iy)<\infty$$

for all $x, y \in G$. Then there exists a unique quadratic mapping $Q: G \to X$ with the property

$$||f(x) - Q(x)|| \le \Phi(x, x)$$

⁰ 2010 Mathematics Subject Classification: 39B82, 39B52, 46H25.

⁰ **Keywords**: non-Archimedean Banach algebra; non-Archimedean Banach module; quadratic functional equation; Hyers-Ulam stability.

⁰E-mail: baak@hanyang.ac.kr, s_shagholi@yahoo.com, ajavadian@semnan.ac.ir, bavand.m@gmail.com, madjid.eshaghi@gmail.com Corresponding author: M. Eshaghi Gordji; madjid.eshaghi@gmail.com

for all $x \in G$.

Let \mathbbm{K} be a field.

A non-Archimedean absolute value on \mathbb{K} is a function $|\cdot| : \mathbb{K} \to \mathbb{R}$ such that for any $a, b \in \mathbb{K}$ we have (i) |a| > 0 and equality holds if and only if a = 0,

- (*ii*) |ab| = |a||b|,
- (*iii*) $|a+b| \le \max\{|a|, |b|\}.$

The condition (*iii*) is called the strict triangle inequality. By (*ii*), we have |1| = |-1| = 1. Thus, by induction, it follows from (*iii*) that $|n| \leq 1$ for each integer n. We always assume, in addition, that $|\cdot|$ is nontrivial, i.e., that there is an $a_0 \in \mathbb{K}$ such that $|a_0| \notin \{0, 1\}$.

Let X be a linear space over a scalar field \mathbb{K} with a non-Archimedean nontrivial valuation $|\cdot|$. A function $\|\cdot\| : X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

- (NA1) ||x|| = 0 if and only if x = 0;
- (NA2) ||rx|| = |r|||x|| for all $r \in \mathbb{K}$ and $x \in X$;
- (NA3) the strong triangle inequality (ultrametric); namely,

$$||x + y|| \le \max\{||x||, ||y||\} \quad (x, y \in X).$$

Then $(X, \|\cdot\|)$ is called a non-Archimedean space. It follows from (NA3) that

$$|x_m - x_\ell|| \le \max\{||x_{j+1} - x_j|| : \ell \le j \le m - 1\}$$
 $(m > \ell).$

Therefore, a sequence $\{x_m\}$ is Cauchy in X if and only if $\{x_{m+1} - x_m\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent. A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies $||ab|| \leq ||a|| ||b||$ for all $a, b \in A$. A non-Archimedean Banach space X is a non-Archimedean Banach A-bimodule if X is an A-bimodule which satisfies $\max\{||xa||, ||ax||\} \leq ||a|| ||x||$ for all $a \in A, x \in X$. For more detailed definitions of non-Archimedean Banach algebras, we can refer to [30].

Let A be a normed algebra and let X be a Banach A-module. We say that a mapping $D: A \to X$ is a quadratic derivation if D is a quadratic mapping satisfying

$$D(x_1x_2) = D(x_1)x_2^2 + x_1^2 D(x_2)$$
(1.2)

for all $x_1, x_2 \in A$.

Recently, the stability of derivations has been investigated by a number of mathematicians including [2, 11, 12, 13, 14, 15, 21, 26, 28] and references therein. More recently, Eshaghi Gordji [9] established the stability of ring derivations on non-Archimedean Banach algebras.

In this paper, we investigate the approximately quadratic derivations on non-Archimedean Banach algebras.

2. Main results

In the following we suppose that A is a non-Archimedean Banach algebra and X is a non-Archimedean Banach A-bimodule. Assume that $|2| \neq 1$.

Theorem 2.1. Let $f : A \to X$ be a given mapping with f(0) = 0 and let $\varphi_1 : A \times A \to \mathbb{R}^+$ and $\varphi_2 : A \times A \to \mathbb{R}^+$ be functions such that

$$\|f(x_1x_2) - f(x_1)x_2^2 - x_1^2 f(x_2)\| \le \varphi_1(x_1, x_2),$$
(2.1)

$$|f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \varphi_2(x,y)$$
(2.2)

for all $x_1, x_2, x, y \in A$. Assume that for each $x \in A$

$$\lim_{n \to \infty} \max\left\{ \frac{1}{|2|^{2k}} \frac{\varphi_2(2^k x, 2^k x)}{|2|^2} : 0 \le k \le n - 1 \right\}$$

denoted by $\Psi(x, x)$, exists. Suppose

$$\lim_{n \to \infty} \frac{\varphi_1(2^n x_1, 2^n x_2)}{|2|^{4n}} = \lim_{n \to \infty} \frac{\varphi_2(2^n x, 2^n y)}{|2|^{2n}} = 0$$

for all $x_1, x_2, x, y \in A$. Then there exists a unique quadratic derivation $D: A \to X$ such that

$$||D(x) - f(x)|| \le \Psi(x, x)$$
(2.3)

Quadratic derivations on non-Archimedean Banach algebras

for all $x \in A$.

Proof. Setting y = x in (2.2), we get

$$||f(2x) - 4f(x)|| \le \varphi_2(x, x) \tag{2.4}$$

for all $x \in A$, and then dividing by $|2|^2$ in (2.4), we obtain

$$\left\|\frac{f(2x)}{2^2} - f(x)\right\| \le \frac{\varphi_2(x,x)}{|2|^2}$$
(2.5)

for all $x \in A$. Replacing x by 2x and then dividing by $|2|^2$ in (2.5), we obtain

$$\left\|\frac{f(2^2x)}{2^4} - \frac{f(2x)}{2^2}\right\| \le \frac{\varphi_2(2x, 2x)}{|2|^4}.$$
(2.6)

Combining (2.5), (2.6) and the strong triangle inequality (NA3) yields

$$\left\|\frac{f(2^2x)}{2^4} - f(x)\right\| \le \max\left\{\frac{\varphi_2(2x, 2x)}{|2|^4}, \frac{\varphi_2(x, x)}{|2|^2}\right\}.$$
(2.7)

Following the same argument, one can prove by induction that

$$\left\|\frac{f(2^n x)}{2^{2n}} - f(x)\right\| \le \max\left\{\frac{1}{|2|^2} \frac{\varphi_2(2^k x, 2^k x)}{|2|^{2k}} : 0 \le k \le n - 1\right\}.$$
(2.8)

Replacing x by $2^{n-1}x$ and dividing by $|2|^{2(n-1)}$ in (2.5), we find that

$$\left\|\frac{f(2^n x)}{2^{2n}} - \frac{f(2^{n-1} x)}{2^{2(n-1)}}\right\| \le \frac{\varphi_2(2^{n-1} x, 2^{n-1} x)}{|2|^{2n}}$$

for all positive integers n and all $x \in A$. Hence $\{\frac{f(2^n x)}{2^{2n}}\}$ is a Cauchy sequence. Since X is complete, it follows that $\{\frac{f(2^n x)}{2^{2n}}\}$ is convergent. Set $D(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^{2n}}$. By taking the limit as $n \to \infty$ in (2.8), we see that $\|D(x) - f(x)\| \le \Psi(x, x)$ and (2.3) holds for all $x \in A$.

In order to show that D satisfies (1.2), replacing x_1, x_2 by $2^n x_1, 2^n x_2$ in (2.1), and dividing both sides of (2.1) by $|2|^{4n}$, we get

$$\left\|\frac{f(2^n x_1 \cdot 2^n x_2)}{2^{4n}} - \frac{f(2^n x_1)}{2^{4n}} \cdot (2^n x_2)^2 - (2^n x_1)^2 \cdot \frac{f(2^n x_2)}{2^{4n}}\right\| \le \frac{\varphi_1(2^n x_1, 2^n x_n)}{|2|^{4n}}.$$

Taking the limit as $n \to \infty$, we find that D satisfies (1.2).

Replacing x by $2^n x$ and y by $2^n y$ in (2.2) and dividing by $|2|^{2n}$, we get

$$\left\|\frac{f(2^nx+2^ny)}{2^{2n}}+\frac{f(2^nx-2^ny)}{2^{2n}}-2\frac{f(2^nx)}{2^{2n}}-2\frac{f(2^ny)}{2^{2n}}\right\| \leq \frac{\varphi_2(2^nx,2^ny)}{|2|^{2n}}$$

Taking the limit as $n \to \infty$, we find that D satisfies (1.1).

Now, suppose that there is another such mapping $D': A \to X$ satisfying D'(x+y) + D'(x-y) = 2D'(x) + 2D'(y)and $||D'(x) - f(x)|| \le \Psi(x, x)$. Then for all $x \in A$, we have

$$\begin{split} \|D(x) - D'(x)\| &= \lim_{n \to \infty} \frac{1}{|2|^{2n}} \|D(2^n x) - D'(2^n x)\| \\ &\leq \lim_{n \to \infty} \frac{1}{|2|^{2n}} \max\{\|D(2^n x) - f(2^n x)\|, \|D'(2^n x) - f(2^n x)\|\} \\ &\leq \lim_{n \to \infty} \lim_{k \to \infty} \frac{1}{|2|^2} \max\{\frac{\varphi_2(2^j x, 2^j x)}{|2|^{2j}} : n \leq j \leq k + n - 1\} = 0. \end{split}$$

It follows that D(x) = D'(x).

Corollary 2.2. Let θ_1 and θ_2 be nonnegative real numbers, and let p be a real number such that p > 4. Suppose that a mapping $f : A \to X$ satisfies

$$\|f(x_1x_2) - f(x_1)x_2^2 - x_1^2 f(x_2)\| \le \theta_1(\|x_1\|^p + \|x_2\|^p),$$

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \le \theta_2(\|x\|^p + \|y\|^p)$$

C. Park, S. Shagholi, A. Javadian, M.B. Savadkouhi, M. Eshaghi Gordji

for all $x_1, x_2, x, y \in A$. Then there exists a unique quadratic derivation $D: A \to X$ such that

$$||D(x) - f(x)|| \le \lim_{n \to \infty} \max\left\{\frac{\theta_2 ||x||^p}{|2| \cdot |2|^{k(2-p)}} \ 0 \le k \le n-1\right\}$$

for all $x \in A$.

Proof. Let $\varphi_1 : A \times A \to \mathbb{R}^+$ and $\varphi_2 : A \times A \to \mathbb{R}^+$ be functions such that $\varphi_1(x_1, x_2) = \theta_1(||x_1||^p + ||x_2||^p)$ and $\varphi_2(x, y) = \theta_2(||x||^p + ||y||^p)$ for all $x_1, x_2, x, y \in A$. Then we have

$$\lim_{n \to \infty} \frac{\varphi_2(2^n x, 2^n y)}{|2|^{2n}} = \lim_{n \to \infty} \theta_2 \cdot |2|^{n(p-2)} \cdot (\|x\|^p + \|y\|^p) = 0 \quad (x, y \in A),$$
$$\lim_{n \to \infty} \frac{\varphi_1(2^n x_1, 2^n x_2)}{|2|^{4n}} = \lim_{n \to \infty} \frac{\theta_1 |2|^{pn}}{|2|^{4n}} (\|x_1\|^p + \|x_2\|^p) = 0 \quad (x_1, x_2 \in A).$$

Applying Theorem 2.1, we conclude the required result.

Theorem 2.3. Let $f : A \to X$ be a mapping and let $\varphi_1 : A \times A \to \mathbb{R}^+$, $\varphi_2 : A \times A \to \mathbb{R}^+$ be functions such that

$$\|f(x_1x_2) - f(x_1)x_2^2 - x_1^2 f(x_2)\| \le \varphi_1(x_1, x_2),$$
(2.9)

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \varphi_2(x,y)$$
(2.10)

for all $x_1, x_2, x, y \in A$. Assume that for each $x \in A$

$$\lim_{n \to \infty} \max\left\{ |2|^{2k} \varphi_2\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right) : 0 \le k \le n-1 \right\}$$

denoted by $\Psi(x, x)$, exists. Suppose

$$\lim_{n \to \infty} |2|^{4n} \varphi_1\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}\right) = \lim_{n \to \infty} |2|^{2n} \varphi_2\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0$$

for all $x_1, x_2, x, y \in A$. Then there exists a unique quadratic derivation $D: A \to X$ such that

$$||D(x) - f(x)|| \le \Psi(x, x)$$
(2.11)

for all $x \in A$.

Proof. Setting y = x in (2.10), we obtain

$$||f(2x) - 4f(x)|| \le \varphi_2(x, x).$$
(2.12)

Replacing x by $\frac{x}{2}$ in (2.12), one obtains

$$\left\| f(x) - 4f\left(\frac{x}{2}\right) \right\| \le \varphi_2\left(\frac{x}{2}, \frac{x}{2}\right).$$
(2.13)

Again replacing x by $\frac{x}{2}$ in (2.13) and multiplying by $|2|^2$, we obtain that

$$\left|2^{2}f\left(\frac{x}{2}\right) - 2^{4}f\left(\frac{x}{2^{2}}\right)\right\| \leq |2|^{2}\varphi_{2}\left(\frac{x}{2^{2}}, \frac{x}{2^{2}}\right).$$
(2.14)

By using (2.13), (2.14) and strong triangle inequality (NA3), we get

$$\left| f(x) - 2^4 f\left(\frac{x}{2^2}\right) \right\| \le \max\left\{ \varphi_2\left(\frac{x}{2}, \frac{x}{2}\right), |2|^2 \varphi_2\left(\frac{x}{2^2}, \frac{x}{2^2}\right) \right\}$$
(2.15)

for $x \in A$.

Next we prove by induction that

$$\left\| f(x) - 2^{2n} f\left(\frac{x}{2^n}\right) \right\| \le \max\left\{ |2|^{2k} \varphi_2\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right) : 0 \le k \le n-1 \right\}.$$
(2.16)

Replacing x by $\frac{x}{2^{n-1}}$ and multiplying by $|2|^{2(n-1)}$ in (2.13), we obtain

$$\left\|2^{2(n-1)}f\left(\frac{x}{2^{n-1}}\right) - 2^{2n}f\left(\frac{x}{2^n}\right)\right\| \le |2|^{2(n-1)}\varphi_2\left(\frac{x}{2^n}, \frac{x}{2^n}\right)$$
(2.17)

for all $x \in A$. Hence $\{2^{2n}f(\frac{x}{2^n})\}$ is a Cauchy sequence. Since X is complete, it follows that $\{2^{2n}f(\frac{x}{2^n})\}$ is convergent. Set $D(x) = \lim_{n \to \infty} \{2^{2n}f(\frac{x}{2^n})\}$. By taking the limit as $n \to \infty$ in (2.16), we see that $\|f(x) - D(x)\| \le \Psi(x, x)$ and (2.11) holds for all $x \in A$.

Quadratic derivations on non-Archimedean Banach algebras

Replacing x_1, x_2 by $\frac{x_1}{2n}, \frac{x_2}{2n}$ in (2.9) and multiplying by $|2|^{4n}$, we get

$$\left\| 2^{4n} f\left(\frac{x_1}{2^n} \cdot \frac{x_2}{2^n}\right) - 2^{4n} f\left(\frac{x_1}{2^n}\right) \left(\frac{x_2}{2^n}\right)^2 - 2^{4n} \left(\frac{x_1}{2^n}\right)^2 f\left(\frac{x_2}{2^n}\right) \right\| \le 2^{4n} \varphi_1\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}\right).$$

Taking the limit as $n \to \infty$, we find that D satisfies (1.2).

Replacing x by $\frac{x}{2^n}$ and y by $\frac{y}{2^n}$ in (2.10) and multiplying by $|2|^{2n}$, we have

$$\left\| 2^{2n} f\left(\frac{x}{2^n} + \frac{y}{2^n}\right) + 2^{2n} f\left(\frac{x}{2^n} - \frac{y}{2^n}\right) - 2^{2n} \cdot 2f\left(\frac{x}{2^n}\right) - 2^{2n} \cdot 2f\left(\frac{y}{2^n}\right) \right\| \le |2|^{2n} \varphi_2\left(\frac{x}{2^n}, \frac{y}{2^n}\right).$$

Taking the limit as $n \to \infty$, we find that D satisfies (1.1).

Now, suppose that there is another such mapping $D': A \to X$ satisfying D'(x+y) + D'(x-y) = 2D'(x) + 2D'(y)and $||D'(x) - f(x)|| \le \Psi(x, x)$. Then for all $x \in A$, we have

$$\begin{aligned} \|D(x) - D'(x)\| &= \lim_{n \to \infty} |2|^{2n} \left\| D\left(\frac{x}{2^n}\right) - D'\left(\frac{y}{2^n}\right) \right\| \\ &\leq \lim_{n \to \infty} |2|^{2n} \max\left\{ \left\| D\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\|, \left\| D'\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\| \right\} \\ &\leq \lim_{n \to \infty} \lim_{k \to \infty} \max\left\{ \varphi_2\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right) : n \le j \le k+n-1 \right\} = 0 \end{aligned}$$

and so D(x) = D'(x) for all $x \in A$.

Corollary 2.4. Let θ_1 and θ_2 be nonnegative real numbers, and let p be a positive real number such that p < 2. Suppose that a mapping $f : A \to X$ satisfies

$$\|f(x_1x_2) - f(x_1)x_2^2 - x_1^2 f(x_2)\| \le \theta_1(\|x_1\|^p + \|x_2\|^p),$$

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \le \theta_2(\|x\|^p + \|y\|^p)$$

for all $x_1, x_2, x, y \in A$. Then there exists a unique quadratic derivation $D: A \to X$ such that

$$||D(x) - f(x)|| \le \lim_{n \to \infty} \max\{\theta_2 ||x||^p \cdot |2|^{(k+1)(1-p)} \ 0 \le k \le n-1\}$$

for all $x \in A$.

Proof. Let $\varphi_1 : A \times A \to \mathbb{R}^+$ and $\varphi_2 : A \times A \to \mathbb{R}^+$ be functions such that $\varphi_1(x_1, x_2) = \theta_1(||x_1||^p + ||x_2||^p)$ and $\varphi_2(x, y) = \theta_2(||x||^p + ||y||^p)$ for all $x_1, x_2, x, y \in A$. We have

$$\lim_{n \to \infty} |2|^{2n} \varphi_2\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = \lim_{n \to \infty} (|2|^{n(2-p)}) \theta_2(||x||^p + ||y||^p) = 0 \quad (x, y \in A),$$
$$\lim_{n \to \infty} |2|^{4n} \varphi_1\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}\right) = \lim_{n \to \infty} |2|^{n(4-p)} \theta_1(||x_1||^p + ||x_2||^p) = 0 \quad (x_1, x_2 \in A).$$

Applying Theorem 2.4, we conclude the required result.

Acknowledgments

C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).

References

- [1] J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, 1989.
- [2] M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50 (2009), Article ID 042303.
- [3] C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), 74-86.
- [4] D.G. Bourgin, Class of transformations and bordering transformations, Bull. Amer. Math. Soc. 27 (1951), 223-237.
- [5] C. Borelli and G.L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), 229–236.
- [6] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
- [7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.

C. Park, S. Shagholi, A. Javadian, M.B. Savadkouhi, M. Eshaghi Gordji

- [8] A. Ebadian, N. Ghobadipour and M. Eshaghi Gordji, A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C^{*}-ternary algebras, J. Math. Phys. 51 (2010), Article ID 103508.
- M. Eshaghi Gordji, Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras, Abs. Appl. Anal. 2010, Article ID 393247 (2010).
- [10] M. Eshaghi Gordji and A. Bodaghi, On the stability of quadratic double centralizers on Banach algebras, J. Comput. Anal. Appl. 13 (2011), 724–729.
- [11] M. Eshaghi Gordji, R. Farokhzad Rostami and S.A.R. Hosseinioun, Nearly higher derivations in unital C^{*}algebras, J. Comput. Anal. Appl. 13 (2011), 734–742.
- [12] M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, E. Rashidi and M. Aghaei, Ternary Jordan derivations on C^{*}-ternary algebras, J. Comput. Anal. Appl. 12 (2010), 463–470.
- [13] M. Eshaghi Gordji, J.M. Rassias and N. Ghobadipour, Generalized Hyers-Ulam stability of the generalized (n, k)-derivations, Abs. Appl. Anal. 2009, Article ID 437931 (2009).
- [14] R. Farokhzad and S.A.R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Int. J. Nonlinear Anal. Appl. 1 (2010), No. 1, 42–53.
- [15] N. Ghobadipour, A. Ebadian, Th.M. Rassias and M. Eshaghi Gordji, A perturbation of double derivations on Banach algebras, Commun. Math. Anal. 11 (2011), 51–60.
- [16] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996) 217–235.
- [17] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- [18] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Basel, Berlin, 1998.
- [19] G. Isac and Th.M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory. 72 (1993), 131–137.
- [20] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368–372.
- [21] H. Kim and I. Chang, stability of the functional equations related to a multiplicative derivation, J. Appl. Computing. 11 (2003), 413–421.
- [22] A. Najati and Th.M. Rassias, Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Anal.-TMA 72 (2010), 1755–1767.
- [23] C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal.-TMA 57 (2004), 713-722.
- [24] C. Park, On the stability of the quadratic mapping in Banach modules, J. Math. Anal. Appl. 276 (2002), 135–144.
- [25] C. Park and Th.M. Rassias, Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, J. Math. Anal. Appl. 322 (2006), 371–381.
- [26] C. Park and Th.M. Rassias, Homomorphisms and derivations in proper JCQ*-triples, J. Math. Anal. Appl. 337 (2008), 1404–1414.
- [27] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [28] S. Shagholi, M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of ternary quadratic derivations on ternary Banach algebras, J. Comput. Anal. Appl. 13 (2011), 1097–1105.
- [29] S. Shagholi, M. Eshaghi Gordji and M. Bavand Savadkouhi, Nearly ternaty cubic homomorphisms in ternary Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106–1114.
- [30] N. Shilkret, Non-Archimedian Banach algebras, Thesis (Ph.D.)-Polytechnic Univ., ProQuest LLC, 1968.
- [31] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano. 53 (1983), 113–129.
- [32] S.M. Ulam, A collection of Mathematical problems, Interscience Publ, New York., 1960.