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Abstract. The fuzzy stability problems for the Cauchy additive functional equation and the Jensen
additive functional equation in fuzzy Banach spaces have been investigated by Moslehian et al.

Using fixed point method, we prove the Hyers-Ulam stability of the functional equation
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1. Introduction and preliminaries

Katsaras [?] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure

on the space. Some mathematicians have defined fuzzy norms on a vector space from various points

of view [?, ?, ?]. In particular, Bag and Samanta [?], following Cheng and Mordeson [?], gave an

idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek

type [?]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and

investigated some properties of fuzzy normed spaces [?].

We use the definition of fuzzy normed spaces given in [?, ?, ?] to investigate a fuzzy version of the

Hyers-Ulam stability for the functional equation (0.1) in the fuzzy normed vector space setting.

Definition 1.1. [?, ?, ?, ?] Let X be a real vector space. A function N : X × R → [0, 1] is called a

fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c| ) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
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(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;

(N6) for x ̸= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [?, ?].

Definition 1.2. [?, ?, ?, ?] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said

to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0.

In this case, x is called the limit of the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3. [?, ?, ?] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called

Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0,

we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each

Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector

space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at

a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence {f(xn)} converges

to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous on X

(see [?]).

The stability problem of functional equations originated from a question of Ulam [?] concerning the

stability of group homomorphisms. Hyers [?] gave a first affirmative partial answer to the question of

Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [?] for additive mappings and by

Th.M. Rassias [?] for linear mappings by considering an unbounded Cauchy difference. A generaliza-

tion of the Th.M. Rassias theorem was obtained by Găvruta [?] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Th.M. Rassias’ approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional

equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional

equation was proved by Skof [?] for mappings f : X → Y , where X is a normed space and Y is a

Banach space. Cholewa [?] noticed that the theorem of Skof is still true if the relevant domain X is

replaced by an Abelian group. Czerwik [?] proved the Hyers-Ulam stability of the quadratic functional

equation. The stability problems of several functional equations have been extensively investigated by

a number of authors and there are many interesting results concerning this problem (see [?]–[?], [?, ?],

[?]–[?], [?]–[?]).

In [?], the author proved that if an even mapping f : V →W satisfies the functional equation (0.1),

then the even mapping f : V → W is quadratic, and that if an odd mapping f : V → W satisfies the

functional equation (0.1), then the odd mapping f : V →W is Cauchy additive. Moreover, the author

proved the Hyers-Ulam stability of the quadratic functional equation (0.1) in real Banach spaces.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.



Fuzzy stability of additive-quadratic functional equation

Theorem 1.4. [?, ?] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly

contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [?] were the first to provide applications of stability theory of

functional equations for the proof of new fixed point theorems with applications. By using fixed point

methods, the stability problems of several functional equations have been extensively investigated by

a number of authors (see [?], [?], [?], [?], [?], [?]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of the functional

equation (0.1) in fuzzy Banach spaces for an odd case. In Section 3, we prove the Hyers-Ulam stability

of the functional equation (0.1) in fuzzy Banach spaces for an even case.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy Banach space.

Let l be a fixed integer greater than 1.

2. Hyers-Ulam stability of the functional equation (0.1): an odd case

In this section, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach

spaces for an odd case.

For a given mapping f : X → Y , we define

Cf(x1, · · · , xl) : = lf

(
l∑

i=1

xi

)
+

l∑
i=1

f

lxi − l∑
j=1

xj


− l2 + l

2

l∑
i=1

f(xi)−
l2 − l

2

l∑
i=1

f(−xi)

for all x1, · · · , xl ∈ X.

Using fixed point method, we prove the Hyers-Ulam stability of the functional equation Cf(x1, · · · , xl)
= 0 in fuzzy Banach spaces: an odd case.

Theorem 2.1. Let φ : X l → [0,∞) and ψ(x) := φ(x, · · · , x︸ ︷︷ ︸
l times

) be functions such that there exists an

L < 1 with φ(x1, · · · , xl) ≤ L
l φ (lx1, · · · , lxl) for all x1, · · · , xl ∈ X. Let f : X → Y be an odd mapping

satisfying

N (Cf(x1, · · · , xl), t) ≥
t

t+ φ(x1, · · · , xl)
(2.1)

for all x1, · · · , xl ∈ X and all t > 0. Then A(x) := N -limn→∞ lnf
(

x
ln

)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (l2 − l2L)t

(l2 − l2L)t+ Lψ(x)
(2.2)

for all x ∈ X and all t > 0.
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Proof. Letting x1 = · · · = xl = x in (2.1), we get

N
(
lf (lx)− l2f(x), t

)
≥ t

t+ φ(x, · · · , x︸ ︷︷ ︸
l times

)
=

t

t+ ψ(x)
(2.3)

for all x ∈ X.

Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ ψ(x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma 2.1

of [?].)

Now we consider the linear mapping J : S → S such that

Jg(x) := lg
(x
l

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ψ(x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
lg
(x
l

)
− lh

(x
l

)
, Lεt

)
= N

(
g
(x
l

)
− h

(x
l

)
,
L

l
εt

)
≥

Lt
l

Lt
l + ψ

(
x
l

) ≥
Lt
l

Lt
l + L

l ψ(x)

=
t

t+ ψ(x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.3) that

N

(
f (x)− lf

(x
l

)
,
Lt

l2

)
≥

L
l t

L
l t+ ψ

(
x
l

) ≥ t

t+ ψ (x)
(2.4)

for all x ∈ X. So d(f, Jf) ≤ L
l2 .

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A
(x
l

)
=

1

l
A(x) (2.5)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a unique

fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
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This implies that A is a unique mapping satisfying (2.5) such that there exists a µ ∈ (0,∞) satisfying

N(f(x)−A(x), µt) ≥ t

t+ ψ(x)

for all x ∈ X;

(2) d(Jnf,A) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

lnf
( x
ln

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

l2 − l2L
.

This implies that the inequality (2.2) holds.

By (2.1),

N
(
lnCf

(x1
ln
, · · · , xl

ln

)
, lnt

)
≥ t

t+ φ
(
x1

ln , · · · ,
xl

ln

)
for all x1, · · · , xl ∈ X, all t > 0 and all n ∈ N. So

N
(
lnCf

(x1
ln
, · · · , xl

ln

)
, t
)
≥

t
ln

t
ln + Ln

ln φ (x1, · · · , xl)

for all x1, · · · , xl ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
ln

t
ln +Ln

ln φ(x1,··· ,xl)
= 1 for all x1, · · · , xl ∈ X

and all t > 0,

N (CA(x1, · · · , xl), t) = 1

for all x1, · · · , xl ∈ X and all t > 0. Thus the mapping A : X → Y is additive, as desired. �

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with

norm ∥ · ∥. Let f : X → Y be an odd mapping satisfying

N (Cf(x1, · · · , xl), t) ≥
t

t+ θ
∑l

j=1 ∥xj∥p
(2.6)

for all x1, · · · , xl ∈ X and all t > 0. Then A(x) := N -limn→∞ lnf
(

x
ln

)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (lp − l)t

(lp − l)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

φ(x1, · · · , xl) := θ
l∑

j=1

∥xj∥p

for all x1, · · · , xl ∈ X. Then we can choose L = l1−p and we get the desired result. �

Theorem 2.3. Let φ : X l → [0,∞) and ψ(x) := φ(x, · · · , x︸ ︷︷ ︸
l times

) be functions such that there exists an

L < 1 with φ(x1, · · · , xl) ≤ lLφ
(
x1

l , · · · ,
xl

l

)
for all x1, · · · , xl ∈ X. Let f : X → Y be an odd mapping
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satisfying (2.1). Then A(x) := N -limn→∞
1
ln f (l

nx) exists for each x ∈ X and defines an additive

mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (l2 − l2L)t

(l2 − l2L)t+ ψ(x)
(2.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1

l
g (lx)

for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ψ(x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
1

l
g (lx)− 1

l
h (lx) , Lεt

)
= N (g (lx)− h (lx) , lLεt)

≥ lLt

lLt+ ψ (lx)
≥ lLt

lLt+ lLψ(x)

=
t

t+ ψ(x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.3) that

N

(
f(x)− 1

l
f(lx),

t

l2

)
≥ t

t+ ψ(x)

for all x ∈ X and all t > 0. Thus d(f, Jf) ≤ 1
l2 .

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A (lx) = lA(x) (2.8)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a unique

fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that A is a unique mapping satisfying (2.8) such that there exists a µ ∈ (0,∞) satisfying

N(f(x)−A(x), µt) ≥ t

t+ ψ(x)

for all x ∈ X;

(2) d(Jnf,A) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

1

ln
f (lnx) = A(x)

for all x ∈ X;
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(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ 1

l2 − l2L
.

This implies that the inequality (2.7) holds.

The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space

with norm ∥·∥. Let f : X → Y be an odd mapping satisfying (2.6). Then A(x) := N -limn→∞
1
ln f (l

nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (l − lp)t

(l − lp)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

φ(x1, · · · , xl) := θ
l∑

j=1

∥xj∥p

for all x1, · · · , xl ∈ X. Then we can choose L = lp−1 and we get the desired result. �

3. Hyers-Ulam stability of the functional equation (0.1): an even case

In this section, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach

spaces for an even case.

Using fixed point method, we prove the Hyers-Ulam stability of the functional equation Cf(x1, · · · , xl)
= 0 in fuzzy Banach spaces: an even case.

Theorem 3.1. Let φ : X l → [0,∞) and ψ(x) := φ(x, · · · , x︸ ︷︷ ︸
l times

) be functions such that there exists an

L < 1 with φ(x1, · · · , xl) ≤ L
l2φ (lx1, · · · , lxl) for all x1, · · · , xl ∈ X. Let f : X → Y be an even

mapping satisfying f(0) = 0 and (2.1). Then Q(x) := N -limn→∞ l2nf
(

x
ln

)
exists for each x ∈ X and

defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (l3 − l3L)t

(l3 − l3L)t+ Lψ(x)
(3.1)

for all x ∈ X and all t > 0.

Proof. Letting x1 = · · · = xl = x in (2.1), we get

N
(
lf (lx)− l3f(x), t

)
≥ t

t+ φ(x, · · · , x︸ ︷︷ ︸
l times

)
=

t

t+ ψ(x)
(3.2)

for all x ∈ X.

Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

Now we consider the linear mapping J : S → S such that

Jg(x) := l2g
(x
l

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ψ(x)
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for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
l2g
(x
l

)
− l2h

(x
l

)
, Lεt

)
= N

(
g
(x
l

)
− h

(x
l

)
,
L

l2
εt

)
≥

Lt
l2

Lt
l2 + ψ

(
x
l

)
≥

Lt
l2

Lt
l2 + L

l2ψ(x)
=

t

t+ ψ(x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (3.2) that

N

(
f (x)− l2f

(x
l

)
,
Lt

l3

)
≥

L
l2 t

L
l2 t+ ψ

(
x
l

) ≥ t

t+ ψ (x)
(3.3)

for all x ∈ X. So d(f, Jf) ≤ L
l3 .

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q
(x
l

)
=

1

l2
Q(x) (3.4)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a unique

fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.4) such that there exists a µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t+ ψ(x)

for all x ∈ X;

(2) d(Jnf,Q) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

l2nf
( x
ln

)
= Q(x)

for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

l3 − l3L
.

This implies that the inequality (3.1) holds.

The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space

with norm ∥ · ∥. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.6). Then Q(x) := N -

limn→∞ l2nf
(

x
ln

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (lp − l2)t

(lp − l2)t+ θ∥x∥p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 3.1 by taking

φ(x1, · · · , xl) := θ
l∑

j=1

∥xj∥p

for all x1, · · · , xl ∈ X. Then we can choose L = l2−p and we get the desired result. �

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let φ : X l → [0,∞) and ψ(x) := φ(x, · · · , x︸ ︷︷ ︸
l times

) be functions such that there exists an

L < 1 with φ(x1, · · · , xl) ≤ l2Lφ
(
x1

l , · · · ,
xl

l

)
for all x1, · · · , xl ∈ X. Let f : X → Y be an even

mapping satisfying f(0) = 0 and (2.1). Then Q(x) := N -limn→∞
1
l2n f (l

nx) exists for each x ∈ X and

defines a quadratic mapping Q : X → Y such that

N (f(x)−A(x), t) ≥ (l3 − l3L)t

(l3 − l3L)t+ ψ(x)

for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector

space with norm ∥ · ∥. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.6). Then

Q(x) := N -limn→∞
1
l2n f (l

nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (l2 − lp)t

(l2 − lp)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

φ(x1, · · · , xl) := θ
l∑

j=1

∥xj∥p

for all x1, · · · , xl ∈ X. Then we can choose L = lp−2 and we get the desired result. �
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