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Abstract 

In this paper, we take into considerations of the inverse problem for LQ-PID control. 

Solving the inverse problem, explicit formulas are developed such that the closed loop system 

is optimal by an LQ-PID controller. The inverse problem of LQ-PID control is analytically 

formulated via the frequency-domain and algebraic characterizations of LQR with respect to 

special forms of the state weighting matrix Q. We apply the LQ-PID control to AQM(Active 

Queue Management) routers from the viewpoint of the inverse problem. In the controller 

design procedure, the practical effectiveness of the proposed analysis is demonstrated by the 

numerical simulation of AQM routers. 
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1. Introduction 

In optimal control theory, the interest for the IP (inverse problem: When is a given control 

law G optimal for some state weighting Q of a performance index?) has been actively grown 

since Kalman’s outstanding paper [1] was published, dealing with the properties of LQR 

(Linear Quadratic Regulator) [2]. Thereafter the researches have been extended to linear H2 

[3], H∞ [4] control. 

We deal with the IP for LQ-PID (Linear Quadratic-Proportional Integral Derivative) 

control, in which the output feedback PID control is successively linked to LQR with the full 

state feedback augmenting a new state for second order systems [5, 6]. Recent two papers 

have shown the attempts to relate the performance indices to the design specifications in time 

and frequency domains for LQ-PID control [5, 6].  

In the LQ-PID control, the purpose of this research is not only to present the allowable 

region of the feedback control gain such that a closed loop system is optimal, but to find the 

formula of state weighting matrix Q to give the same optimal control gain. By the analysis of 

the IP, we, hence, clarify the relation between the optimal feedback control gain and the 

corresponding performance index. The allowable region indicates obviously the condition of 

the feedback control gain to make the controlled system optimal in the sense of the LQ-PID 

control. From the relation, one can then conversely check if the optimal controller makes the 

closed loop poles place in the desired region or satisfy the desired specifications. In this 

paper, we set the problem under the simple and familiar restrictions without the loss of the 

generality, as symmetric and a p.s.d (positive semi-definite) Q and a positive scalar ρ. 

Whereas the symmetric and p.s.d Q can be variously factorized, we take account into the 

special forms to be partitioned by diagonal and single row matrices. The case of the diagonal 

partitioned matrix was dealt with for LQ-PID control since this is relatively more convenient 

to directly match the performance index to the time domain specifications such as overshoot, 

rising time, and settling time [5]. On the other hand, it is very useful to associate the 

frequency loop shaping method with the single row partitioned matrix for frequency domain 

specifications of LQ-PID control [1, 6]. That is why among the general p.s.d Qs, we consider 
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the two special cases in this paper. From the results, it is expected that the result of this 

research is helpful to determine the allowable set of the performance index in order to meet 

the time and frequency domain specifications in practice. To formulate the IP, we utilized the 

characterizations of optimality, so-called as algebraic and frequency-domain characterizations 

for the analytic clarification and the simplicity of the formula in such cases, rather than the 

numerical approaches by LMI (Linear Matrix Inequality) [1, 7].  

We apply the LQ-PID control to AQM routers supporting TCP flows from the viewpoint 

of the IP, on which more attention has recently focused as important issues for congestion 

controls of the information and sensor networks [8, 9]. 

The paper is organized as follows. We introduce the LQ-PID formulation by transforming 

the PID control into LQ approach for the comprehension of readers in Section 2. The IP of the 

LQ-PID control is analyzed by algebraic and frequency characterizations with respect to such 

cases of the weighting matrix Q in the next section. The effectiveness of the proposed 

analysis is shown practically by the numerical simulation of AQM routers in Section 4.  

Finally, some concluding remarks are contained. 

 

2. LQ-PID Control 

Briefly, we introduce the LQ-PID formulation in the paper of Suh and Yang [5], in which 

the optimal feedback control law was successfully related to the PID control for the second 

order system by augmenting the integral of the output variable as a new state variable.  

Consider the following second order model: 

 

(1) 

where y(t), u(t), ζ and ωn are the output variable, the control variable, the damping ratio, and 

the natural frequency, respectively. The augmented plant is represented as Eq. (2).  

 

(2) 

  

The quadratic performance criterion is the same as the convenient form in optimal 

control as following 

(3) 

 

, assuming that the weighting factor Q is symmetric and p.s.d, and ρ is positive scalar. The 

linear feedback control law is obtained as follows 

(4) 

 

where G is ρ
-1

B
T
K and K=K

T
 is the solution of the ARE under the condition that (A,Q) be 

observable. The design parameter matrix G is then as following 

 

(5) 
 

The optimal control law of Eq. (6) is represented as the following PID control formula: 
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The tuning parameters of the LQ-PID controller are hence Q and ρ, obtained by solution K. 
 

3. Inverse Problem of LQ-PID Control 

In this paper, we deal with the inverse optimal problem of LQ-PID control, by which the 

p.s.d and symmetric Q is determined, given G and ρ to satisfy the performance 

specifications. Since the analysis of the IP depends on the type of Q, we regard following 

two cases of factorization of Q=N
T
N without the loss of generality among many kinds of 

partitioned matrices of Q.  

Case 1 is based on the diagonal matrix Q factorized by a diagonal N, which was applied to  

Suh and Yang’s paper since it has the advantage to give the simple intuition with respect to 

relation between the quadratic performance and the state weighting Q. The other case of Q is 

the single row partitioned matrix, which makes it easy to analyze the optimal feedback system 

in frequency domain, approached by Yang and Suh [6]. Hence, the cases are presented as 

follows 

 

Case 1)                                                       

 

 

Case 2) 

This inverse optimal control problem is characterized by two approaches as analyzed 

in Kalman’s paper [1]. One is based on ARE, called as algebraic characterization of 

optimality. This nonlinear ARE and Eq. (5) can be transformed into the LME (Linear 

Matrix Equality) in term of the solution K as follows 

 (7) 

Substituting Eq. (5) to Eq. (7), the elements of the diagonal Q are obtained as 

 (8)  

For the Case 2, we use the frequency-domain characterization of optimality as 

follows   

i) G be a stable control law  

 

ii)   

 

where  

(9) 

i) and ii) are the conditions for the stability and FDE (Frequency Domain 

Equivalent) of ARE, respectively.  

According to Theorem 9 in Kalman's paper [1], necessary and sufficient conditions 

for optimality of G are consisted of the following stability condition I of the closed loop 

system and the existence condition II of p.s.d matrix Q, which are modified from the 

above two conditions i) and ii). 
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where ψk(s), ψ(s), and Ψ(s) denote the characteristic equations of the closed and open 

loop system, and the numerator polynomial of N(sI-A)
-1

B, respectively. 

In Case 2, the simple relation between Q and G is clarified by Eq. (10), derived by 

substituting Eq. (9) to the condition II). 

 

 

 

(10) 

 

For the stability condition I, ψk(s) should satisfy the Routh-Hurwitz. If the condition 

II is satisfied by Eq. (11), then a real number N is available since it has no imaginary 

roots in Eq. (10).  

 

 

 

 

 

 (11) 

 

 

Suppose that we take the classical second order system, where c, ζ and ωn are all 

positive real numbers. The stability conditions can be summarized as g0>0 , g2>-2ζ 

/(cωn) and g1>g0/((2ζωn+cωn
2
g2))-1/c. For the existence of the solution of the IP, they 

are parabolically related between g1 and g2, combined with the stability condition for g2.  

Finally, the formulas of the state weighting Q are described Eq. (8) and (10) with 

respect to Case 1 and 2, respectively. And the conditions are that the right side of Eq. 

(8) is positive and inequality condition of Eq. (11) is satisfied in order to exist the 

optimal solution of LQ-PID control 

 

4. A Case Study for TCP/AQM  

We implement the LQ-PID control to TCP/AQM systems in the simulations to verify 

the practical effectiveness of the proposed analysis. The same example was dealt with 

in Hollot et al’s papers [10]. In the simulation, we consider 60 of TCP flows Naqm, 3750 

packets/secs link capacity Caqm, and the propagation delays Tp for the flows range 

uniformly between 160 and 240msec. The maximum buffer qmax and window size Wmax 

are 800 and 20 packets. For linearization, operating points, W0, q0, p0, and R0 are 15 

packets, 175 packets, 0.0084 and 0.247sec, respectively. 
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GHuang=10
4*

[3.086 6.630 1.447] is selected by Huang’s method for a comparison of 

the optimality [19]. We realized that the control law GHuang isn’t optimal in the 

viewpoint of LQ-PID approach since the solution isn’t obtainable in the IP, analysed in 

this paper.  

 

5. Conclusion 

In this paper, we have analyzed the IP for LQ-PID control. The IP is to determine the 

weighting Q corresponding to the given G and R for the optimality. Among many 

factorizations of a p.s.d and symmetric Q, we handle the particular two cases such as 

the diagonal (Case 1) the single row partitioned (Case 2) matrices of Q. In such cases, 

we analytically formulated the simple relation to connect G with Q by ARE and FDE, 

based on Kalman’s paper. From the formulas, the allowable conditions of the LQ-PID 

control gain were obtained to make the controlled feedback system optimal.  

We applied the LQ-PID control to the AQM routers from the viewpoint of the IP. 

The numerical case study for the TCP/AQM router has shown the various manners to 

determine practically the tuning parameter Q with the various factorizations by the 

analysis of the IP, given the proposed LQ-PID control gain G.  

Consequently, it is expected that this paper provides the effective way to determine the 

weighting Q by the analysis with respect to the relationships between the design parameters 

and the weighting factors via the IP in order to meet design specification in time and 

frequency domains.  
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