
Journal of Physics: Conference Series

Refactoring, reengineering and evolution: paths to
Geant4 uncertainty quantification and performance
improvement
To cite this article: M Bati et al 2012 J. Phys.: Conf. Ser. 396 022038

 

View the article online for updates and enhancements.

Related content
Algorithms and parameters for improved
accuracy in physics data libraries
M Bati, M Han, S Hauf et al.

-

New data libraries and physics data
management tools
M Han, M G Pia, M Augelli et al.

-

Geant4 electromagnetic physics for high
statistic simulation of LHC experiments
J Allison, J Apostolakis, A Bagulya et al.

-

This content was downloaded from IP address 222.112.9.172 on 30/03/2018 at 08:02

https://doi.org/10.1088/1742-6596/396/2/022038
http://iopscience.iop.org/article/10.1088/1742-6596/396/2/022039
http://iopscience.iop.org/article/10.1088/1742-6596/396/2/022039
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042010
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042010
http://iopscience.iop.org/article/10.1088/1742-6596/396/2/022013
http://iopscience.iop.org/article/10.1088/1742-6596/396/2/022013


Refactoring, reengineering and evolution: paths to

Geant4 uncertainty quantification and performance

improvement
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Abstract. Ongoing investigations for the improvement of Geant4 accuracy and computational
performance resulting by refactoring and reengineering parts of the code are discussed. Issues in
refactoring that are specific to the domain of physics simulation are identified and their impact
is elucidated. Preliminary quantitative results are reported.

1. Introduction
The Geant4 [1, 2] simulation toolkit is nowadays a mature software system: at the time of
writing this paper, its reference publication [1] has collected more than 3000 citations [3]. The
development of Geant4 started in 1994 as the RD44 [4] project and its first version was released at
the end of 1998; since then, Geant4 has been used in a wide variety of experimental applications,
while further code development continued, also motivated by new requirements originating from
the experimental community.

Over the 18 years elapsed since the start of Geant4 development, the object oriented paradigm
has evolved from the status of pioneering technology into established methods and software
design techniques, while new compilers nowadays support features of the C++ language that
were not practically available in earlier versions.

Methods and techniques have been developed over the years to cope effectively with the
evolution of large scale object oriented systems by providing guidance for the improvement of
the design of existing software; some of them are now well established components of the software
engineering body of knowledge, and are documented in classical textbooks [5], [6], [7].

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022038 doi:10.1088/1742-6596/396/2/022038

Published under licence by IOP Publishing Ltd 1



While the architectural design of Geant4 established in RD44 has demonstrated its soundness
by supporting the growth of the toolkit and its applications in multidisciplinary environments,
Geant4 could profit from exploiting established refactoring and reengineering techniques to
improve the design in some parts of the code, especially those that have been subject to extensive
evolution in recent years, or that should accommodate new experimental requirements.

A project in progress investigates the benefits that could derive from the exploitation of these
techniques, namely in Geant4 physics domain: this investigation is not limited to evaluating
effects that are typically associated with design improvements, such as ease of maintenance
and facilitation of further extensions of functionality, but it also estimates their impact on the
quantification of Geant4 simulation accuracy and its computational performance. This project
also explores issues, and methods to address them, that, while conceptually similar to those
encountered in conventional refactoring projects, are specific to the environment of a large scale
physics software system such as Geant4.

This conference paper summarizes the main ideas underlying the ongoing R&D (research
and development) pursued by the authors, and a few initial results of the activity in progress;
extensive details are meant to be documented in dedicated publications in scholarly journals.

2. Vision
The activities documented in this paper - refactoring and reengineering parts of Geant4 code -
are carried out within the scope of a wider scientific research vision, focused on the investigation
of fundamental topics in particle transport. Research is articulated over two main areas, that are
logically and technically intertwined: the assessment of the state-of-the-art in physics modeling
for particle transport (with consequent improvement of Geant4 physics to reflect the state-of-
the-art, if not yet achieved), and the objective quantification of the uncertainty of simulation
results.

Refactoring and reengineering techniques support this scientific vision by contributing to
improve the software design, hence the transparency of Geant4 physics modeling, the capability
of quantifying its accuracy at a fine grained level of detail, and the agility towards implementing
state-of-the-art physics in a computationally effective environment.

The project adopts an iterative-incremental life-cycle model [8], which is illustrated in figure
1: while it is supported by a broad scientific vision, concrete deliverables are produced in the
course of the activity, which are practically usable in the current simulation environment and
respond to existing experimental issues.

3. Technical matters
Refactoring and reengineering techniques are extensively documented in several books (e.g.
[5], [6], [7]) and journal articles; the reader is referred to them for detailed information. The
classical definitions of the two terms, as given in the above cited books, is reported in table 3
for convenience.

A recurrent term in the context of refactoring, also mentioned in the following sections, is
“smell”; it was introduced in [5]. Code smell is a surface indication that there might be a deeper
problem in the software system; by definition a smell is quick to spot (e.g. a long method).
Nevertheless code smells do not always indicate a real problem; usually they are not bugs, i.e.
they do not prevent the program from functioning correctly, rather they indicate weaknesses in
design that may hinder further development or increase the risk of errors in the future.
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Figure 1. Simplified illustration of the life-cycle model adopted in the investigation of the
state-of-the-art in physics models for particle transport.

Table 1. Definition of relevant concepts.
Concept Definition Source
Refactoring “Refactoring is the process of changing a software system

in such a way that it does not alter the external behavior [5]
of the code yet improves its internal structure”

Reengineering Reengineering “seeks to transform a legacy system into
the system you would have built if you had the luxury [7]
of hindsight and could have known all the new requirements
that you know today”.

4. R&D in Geant4 electromagnetic physics
Geant4 electromagnetic physics package has been subject to major evolution since the first
release of Geant4: it has included developments for new functionality, and has been the
playground for extensive design modifications. Several “code smells” listed in Fowler’s seminal
“Refactoring” book can be identified in this package (e.g. long methods, long parameter lists
etc.); standard refactoring techniques can be applied to attempt to improve the quality of the
software design.

Neither these symptoms nor the techniques to deal with them will be analyzed in detail here;
rather the attention is focused on less conventional “smells” identified in this code, which are
specific to the physics simulation environment, although conceptually similar to typical problems
addressed by refactoring techniques.

Duplicated code is “number one in the stink parade” according to [5]. In the context of
Geant4 electromagnetic physics in-depth analysis of the code and its physics performance has
also identified duplicated physics functionality and duplicated atomic parameters, which appear
as different code.
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Figure 2. Percent difference of Rayleigh scattering cross sections calculated by Geant4
“Penelope” and “Livermore” models.

Duplicated physics models are models that provide identical functionality and simulation
accuracy in different implementations. An example is the identical simulation of Rayleigh
scattering in the Geant4 models identified as “Livermore” and “Penelope”, respectively
associated with different classes: both models, as they are released in Geant4 9.5, are based
on the interpolation of cross sections and form factors tabulated in the EPDL97 [9] data
library. Figure 2 shows the percent difference between the cross sections calculated by the
two models: the very small differences appearing in the histogram are the results of EPDL97
data interpolation in the respective implementations. The two implementations exhibit identical
compatibility with experimental data, quantified by means of goodness-of-fit-tests [10, 11].
Further details on this issue can be found in [12]. This duplication of functionality is the
result of recent evolutions in the Geant4 implementation of Penelope-like models: the Penelope-
like Rayleigh scattering implemented in the first reengineering of Penelope [13] was based on
the original Penelope model, which did not use EPDL97; the current Geant4 implementation
was reengineered from a later version of Penelope (Penelope 2008), where the original Rayleigh
scattering model had been replaced by one based on EPDL97.

Duplicated physical parameters were also identified in Geant4 electromagnetic package: for
instance, different sets of atomic electron binding energies. The duplication of atomic data
in different parts of the code is prone to generate inconsistencies in simulation observables
depending on them. Significant investment in software redesign is necessary to deal with atomic
data consistently, while ensuring optimal accuracy for all the simulation models that use them;
further details are discussed in [14].

Automated techniques for the identification of duplicated code are available to facilitate the
refactoring process [7]; nevertheless, to a large extent the identification of “bad smells” in the
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code relies on the intuition of experienced software developers. The duplicated physics models
and parameters in Geant4 electromagnetic package discussed above were identified thanks to
rigorous physics validation analyses, complemented by in-depth code review.

Duplicated code and duplicated physics functionality implemented in Geant4 should be
pruned. Also code that exhibits inferior physics functionality than the model identified as
the state-of-the-art, and comparable or inferior computational performance should be pruned.

An undesirable physics feature identified in the current design of Geant4 electromagnetic
physics is the coupling between total cross section and final state calculation in the same
class. Greater flexibility in choosing the two modeling approach independently would ensure the
optimization of physics configuration in experimental scenarios that are especially concerned
with simulation accuracy or computational performance. It is worthwhile to note that the
responsibilities for cross section calculation and final state generation have been decoupled in
Geant4 hadronic physics domain since the RD44 phase.

Another undesirable feature of the current design of Geant4 electromagnetic package is due
to dependencies on other parts of the software: for instance, a full scale Geant4-based simulation
application, involving a geometry model, is required even for testing low level physics modeling,
such as a cross section calculation.

The last two features are associated with an inadequate problem domain analysis: refactoring
techniques are not sufficient to deal with these deficiencies, which require improving the problem
domain decomposition to provide sound foundation for the software design. A prototype design
that addresses these issues, deriving from more effective problem domain analysis, was presented
at a previous conference [15]; this design approach, which exploits generic programming
techniques, has been adopted in a recent large scale study of photon elastic scattering simulation
[12], where it demonstrated its ability to support the development of a large variety of physics
models and has enabled in-depth verification and validation of their capabilities.

A new model of photon elastic scattering based on S-matrix calculations (SM) has been
developed in the course of this study, which improves the compatibility with experiment
by approximately a factor two with respect to models currenty implemented in Geant4
(EPDL97), although at the price of some deterioration of computational performance [12].
Alternatively, more modern form factor calculations (MFASF) can improve the compatibility
with experimental data by approximately 40% with respect to current Geant4 models without
additional computational burden. The main results of the experimental validation process are
summarized in table 2; the efficiency reported in the table represents the fraction of test cases
where the χ2 test finds a model compatible with experimental data with 0.01 significance. The
full set of results is documented in [12].

Table 2. Efficiency of photon elastic scattering models at reproducing experimental data
Scattering angle EPDL97 SM MFASF
0◦ ≤ θ ≤ 180◦ 0.38 ±0.06 0.77 ±0.05 0.52 ±0.06
θ ≤ 90◦ 0.40 ±0.06 0.82 ±0.05 0.54 ±0.06
θ > 90◦ 0.06 ±0.06 0.59 ±0.05 0.12 ±0.06

The refactoring process requires a sound and fine-grained testing system to ensure that it
does not modify the functionality of the code. In the project in progress it is complemented
by thorough testing for the validation of Geant4 physics models and the evaluation of their
computational performance. This fine-grained testing process allows the identification of the
various elements that contribute to the functionality of a class, and the quantification of their
accuracy and computational performance, to a great level of detail. One of the results of this
process is the quantification of the contributions to computational performance intrinsically
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Figure 3. Computational performance of various Rayleigh scattering models“Livermore”
models.

due to physics modeling, and those related to other algorithms. For instance, it has allowed
the identification of an inefficient sampling algorithm as the responsible for the apparently
poor computational performance of Rayleigh scattering implementation in the so-called Geant4
“Livermore model” shown in figure 3. Once the inefficient sampling algorithm is replaced by a
more efficient one, the computational performance of that physics drops significantly, becoming
equivalent to the performance of the fastest models shown in figure 3.

A further attempt to improve computational performance in Geant4 physics domain by
shifting the emphasis from algorithms to data libraries is currently the object od exploration:
it consists of minimizing the use of algorithms in physics modeling, while privileging the use of
data libraries. A related study in progress evaluates the possibility of merging physics models
providing functionality for different energy rangess by smoothing data tabulations derived
from them, rather than through algorithms as it is currently done in Geant4 [16]. If the
ongoing prototype investigations prove that these methods would achieve significant performance
improvements without degradation of physics accuracy, a more extensive reengineering process
will be justified. Preliminary investigations of reengineering Geant4 data management domain
[17] have demonstrated significant gains in computational performance.

5. R&D in Geant4 radioactive decay simulation
Significant effort has been invested into assessing the accuracy of Geant4 radioactive decay
simulation, and improving its physics accuracy and computational performance.

The reengineering process has improved the design, which is now based on a sound domain
decomposition and is characterized by well identified responsibilities. A class diagram illustrating
the main features of the reengineered software design is shown in figure 4.

Refactoring results in improved computational performance, as can be observed in figure
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Figure 4. Class diagram of Geant4 radioactive decay resulting from the reengineering process.

5. Further improvement in computational performance are achieved by a new model, which is
based on a different conceptual approach with respect to the model currently implemented in
Geant4, since it treats the decay chain in statistical terms. The reengineered software design can
accommodate both modeling alternatives, whose different underlying approaches may address
different use cases: this extension of functionality would have not been possible in the context
of the original package design.

Extensive details of the reengineering process and its achievements are documented in [18],
along with the results of the experimental validation of the software.
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Figure 37: Absolute performance of the new code and the current Geant4 code when decaying the 233U
decay chain. The chain length was varied by setting different initial nuclei.

Auger-electron emission is needed and simulation performance is critical the author thus recommends
the use of the new statistical approach.

Decay Chain Performance

The decay chain performance comparison is shown in Figure 37. Here one should consider that the
current Geant4 code does not take into account the time at which the chain emission is to be sampled
at. Instead it is in the user’s responsibility to keep track of relevant emission. This behavior results in
a severe performance penalty because much of the sampled emission may actually not be of interest at
all. The new code samples the decay chain in such a way that only emissions occurring after a given
time period are actually produced. This explains the increase in computing time needed by the new
code between 233U as the initial isotope and 229Th. As shown in Figure 35 Thorium has a much shorter
half-life time than Uranium. Since the time period over which the emission from the chain is sampled
remains fixed at 3 × 1013 s = 95120 years much less Uranium than Thorium will have decayed. This
also reduces the number of subsequent decays within the chain and hence much less emission has to be
sampled.

If only the emission of a single isotope within a chain is of interest, the behavior of both codes is
similarly divergent. Again the current Geant4 inefficiently samples all occurring emission, regardless of
the importance for the simulation result. Instead the user must identify this emission and discard of the
rest. In contrast the new code allows to select the sampling of individual isotopes within a given chain.
Only the emission resulting from such decays will be sampled and passed to tracking. In Figure 37 this
scenario is shown by the two single data points labeled ”End of chain - C” for the new code with classical
deexcitation sampling and ”End of chain - S” for the new code with statistical deexcitation sampling. The
time needed by the old code is given by 233U data point of the ”old” curve. In total the performance gain
for decay chains is ≈ 800% when using statistical sampling and still ≈ 450% for classical deexcitation
sampling.

71

Figure 5. Computational performance of radioactive decay simulation when decaying 233U:
current Geant4 code (red), reengineered code (blue) and new algorithm (green).

Figure 41: Nuclide charts showing the median relative intensity deviations per isotope for X-ray (top) and
Auger-electron (bottom) emission. Simulations using the current Geant4 code are shown on
the left; simulations using the new code and employing the statistical approach are shown on
the right.

77

Figure 6. Nuclide charts showing the median relative intensity deviations from reference data
per isotope for Auger electron emission for the original Geant4 radioactive decay code (left),
and for the reengineered one (right), which exploits improved atomic parameters.

The reengineering of Geant4 radioactive decay code profits from the improvements to atomic
parameters discussed in section 4 regarding the refactoring of Geant4 electromagnetic physics,
resulting in better agreement with respect to reference data: an example of results is illustrated
in figure 6, where nuclide charts show the median relative intensity deviations from reference
data per isotope for Auger electron emission for the original Geant4 radioactive decay code, and
for the reengineered one, which exploits improved atomic parameters.

Conclusion
Ongoing activities concerning the improvement of Geant4 design by means of refactoring and
reengineering techniques have achieved significant results, that demonstrate their contribution
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to improved physics accuracy and computational performance.
Further evaluations are in progress.
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