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Abstract
Let X , Y be vector spaces. It is shown that if an odd mapping f :X → Y satisfies the
functional equation

rf
(∑d

j=1 xj

r

)
+

∑
ι(j)=0,1∑d
j=1 ι(j)=l

rf
(∑d

j=1(–1)
ι(j)xj

r

)

= (d–1Cl –d–1 Cl–1 + 1)
d∑
j=1

f (xj) (.)

then the odd mapping f :X → Y is additive, and we use a fixed-point method to
prove the Hyers-Ulam stability of the functional equation (0.1) in multi-Banach
modules over a unital multi-C*-algebra. As an application, we show that every almost
linear bijection h :A → B of a unital multi-C*-algebraA onto a unital
multi-C*-algebra B is a C*-algebra isomorphism when h( 2

n

rn uy) = h( 2
n

rn u)h(y) for all
unitaries u ∈ U(A), all y ∈ A, and n = 0, 1, 2, . . . .
MSC: Primary 39B52; 46L05; 47H10; 47B48

Keywords: C*-algebra isomorphism; fixed point; generalized additive functional
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1 Introduction
Throughout this paper we assume that r is a positive rational number and d, l are integers
with  < l < d

 .
Let X and Y be Banach spaces. Consider amapping f : X → Y such that f (tx) is continu-

ous in t ∈ R for each fixed x ∈ X, and assume that there exist constants θ ≥  and p ∈ [, )
with

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ θ

(‖x‖p + ‖y‖p), x, y ∈ X.
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Rassias [] showed that there exists a unique R-linear mapping T : X → Y such that

∥∥f (x) – T(x)
∥∥ ≤ θ

 – p
‖x‖p, x ∈ X.

Găvruta [] extended the above theorem as follows: let G be an Abelian group, Y be a
Banach space and put

ϕ̃(x, y) =
∞∑
j=


j

ϕ
(
jx, jy

)
<∞, x, y ∈G.

If f :G → Y is a mapping satisfying

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ϕ(x, y), x, y ∈G,

then there exists a unique additive mapping T :G → Y such that

∥∥f (x) – T(x)
∥∥ ≤ 


ϕ̃(x,x), x ∈G.

Park [] applied Găvruta’s result to linear functional equations in Banach modules over a
C*-algebra. Several functional equations have been investigated in [, ] and []. In 
Baak, Boo and Rassias [] solved the following functional equation:

rf
(∑d

j= xj
r

)
+

∑
ι(j)=,∑d
j= ι(j)=l

rf
(∑d

j=(–)ι(j)xj
r

)

= (d–Cl –d– Cl– + )
d∑
j=

f (xj) (.)

(any solution of (.) will be called a generalized additive mapping) and proved its Hyers-
Ulam stability in Banach modules over a unital C*-algebra via the direct method. These
results were applied to investigate C*-algebra isomorphisms in unital C*-algebras.
In this paper, we prove theHyers-Ulam stability of the functional equation (.) inmulti-

Banach modules over a unital multi-C*-algebra via the fixed-point method. These results
are applied to investigate C*-algebra isomorphisms in unital multi-C*-algebras.

2 Fixed-point theorems
We recall two fundamental results in the fixed-point theory.

Theorem . [, ] Let (X,d) be a complete metric space and let J : X → X be strictly
contractive, i.e.,

d(Jx, Jy) ≤ Ld(x, y), x, y ∈ X

for a Lipschitz constant L < . Then
() the mapping J has a unique fixed point x* ∈ X ,
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() the fixed point x* is globally attractive, i.e.,

lim
n→∞ Jnx = x*, x ∈ X,

() the following inequalities hold:

d
(
Jnx,x*

) ≤ Lnd
(
x,x*

)
,

d
(
Jnx,x*

) ≤ 
 – L

d
(
Jnx, Jn+x

)
,

d
(
x,x*

) ≤ 
 – L

d(x, Jx)

for all x ∈ X and nonnegative integers n.

Let X be a non-empty set. A function d : X × X → [,∞] is called a generalized metric
on X if for any x, y, z ∈ X, we have:
() d(x, y) =  if and only if x = y,
() d(x, y) = d(y,x),
() d(x, z) ≤ d(x, y) + d(y, z).

Theorem. [, ] Let (X,d) be a complete generalizedmetric space and let J : X → X be
a strictly contractive mapping with a Lipschitz constant L < . Then, for each x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞, n≥ 

or there exists a positive integer n such that:
() d(Jnx, Jn+x) < ∞, n≥ n,
() the sequence (Jnx) converges to a fixed point y* of J ,
() y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) <∞},
() d(y, y*) ≤ 

–Ld(y, Jy), y ∈ Y .

3 Multi-normed spaces
The notion of a multi-normed space was introduced by Dales and Polyakov []. This con-
cept is somewhat similar to an operator sequence space and has some connections with
operator spaces and Banach lattices. Motivations for the study of multi-normed spaces
and many examples are given in [–].
Let (E ,‖ · ‖) be a complex normed space and k ∈ N. We denote by Ek the linear space

E ⊕· · ·⊕E consisting of k-tuples (x, . . . ,xk), where x, . . . ,xk ∈ E . The linear operations on
Ek are defined coordinate-wise. The zero element of either E or Ek is denoted by . Finally,
we denote by Nk the set {, . . . ,k} and by �k the group of permutations on k symbols.

Definition . [, ] A multi-norm on {Ek : k ∈N} is a sequence
(‖ · ‖k

)
=

(‖ · ‖k : k ∈N
)

such that ‖ · ‖k is a norm on Ek for k ∈N, ‖ · ‖ = ‖ · ‖, and for any integer k ≥ , we have
(A) ‖(xσ (), . . . ,xσ (k))‖k = ‖(x, . . . ,xk)‖k , σ ∈ �k , x, . . . ,xk ∈ E ,
(A) ‖(αx, . . . ,αkxk)‖k ≤ (maxi∈Nk |αi|)‖(x, . . . ,xk)‖k , α, . . . ,αk ∈C, x, . . . ,xk ∈ E ,
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(A) ‖(x, . . . ,xk–, )‖k = ‖(x, . . . ,xk–)‖k–, x, . . . ,xk– ∈ E ,
(A) ‖(x, . . . ,xk–,xk–)‖k = ‖(x, . . . ,xk–)‖k–, x, . . . ,xk– ∈ E .
A sequence ((Ek ,‖ · ‖k) : k ∈N) is then said to be a multi-normed space.

Lemma . [, ] Suppose that ((Ek ,‖ · ‖k) : k ∈ N) is a multi-normed space. Then for
any k ∈N, we have
(a) ‖(x, . . . ,x)‖k = ‖x‖, x ∈ E ,
(b) maxi∈Nk ‖xi‖ ≤ ‖(x, . . . ,xk)‖k ≤ ∑k

i= ‖xi‖ ≤ kmaxi∈Nk ‖xi‖, x, . . . ,xk ∈ E .

From Lemma .(b), it follows that if (E ,‖ · ‖) is a Banach space, then (Ek ,‖ · ‖k) is a
Banach space for each k ∈N (in this case we say that ((Ek ,‖ · ‖k) : k ∈N) is a multi-Banach
space).
Now, we recall two important examples of multi-norms (see [, ]).

Example . The sequence (‖ · ‖k : k ∈N) on {Ek : k ∈N} defined by

∥∥(x, . . . ,xk)∥∥k :=max
i∈Nk

‖xi‖, x, . . . ,xk ∈ E

is a multi-norm called the minimummulti-norm. The terminology ‘minimum’ is justified
by property (b) from Lemma ..

Example . Let {(‖ · ‖α
k : k ∈ N) : α ∈ A} be a (non-empty) family of all multi-norms on

{Ek : k ∈N}. For k ∈ N, set

∥∥∣∣(x, . . . ,xk)∥∥∣∣k := sup
α∈A

∥∥(x, . . . ,xk)∥∥α

k , x, . . . ,xk ∈ E .

Then (‖| · ‖|k : k ∈ N) is a multi-norm on {Ek : k ∈N} called the maximum multi-norm.

Lemma . [] Suppose that k ∈N and (x, . . . ,xk) ∈ Ek . For each j ∈ {, . . . ,k}, let (xjn)n∈N
be a sequence in E such that limn→∞ xjn = xj. Then for each (y, . . . , yk) ∈ Ek we have

lim
n→∞

(
xn – y, . . . ,xkn – yk

)
= (x – y, . . . ,xk – yk).

Definition . [, ] Let ((Ek ,‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence
(xn)n∈N in E is said to be a multi-null sequence if for each ε > , there exists an n ∈ N

such that

sup
k∈N

∥∥(xn, . . . ,xn+k–)∥∥k < ε, n≥ n.

We say that the sequence (xn)n∈N is multi-convergent to x ∈ E and write limn→∞ xn = x if
(xn – x)n∈N is a multi-null sequence.

Definition . [, ] Let (A,‖ · ‖) be a normed algebra such that ((Ak ,‖ · ‖k) : k ∈ N) is
a multi-normed space. Then ((Ak ,‖ · ‖k) : k ∈ N) is called a multi-normed algebra if

∥∥(ab, . . . ,akbk)∥∥k ≤ ∥∥(a, . . . ,ak)∥∥k · ∥∥(b, . . . ,bk)∥∥k , k ∈N,a, . . . ,ak ,b, . . . ,bk ∈A.

http://www.advancesindifferenceequations.com/content/2012/1/162
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The multi-normed algebra ((Ak ,‖ · ‖k) : k ∈ N) is said to be a multi-Banach algebra if
((Ak ,‖ · ‖k) : k ∈ N) is a multi-Banach space.

Example . Let p, q be such that  ≤ p ≤ q < ∞ and A = 	p. The algebra A is a Banach
sequence algebra with respect to coordinate-wise multiplication of sequences (see Exam-
ple .. of []). Let (‖ · ‖k : k ∈ N) be the standard (p,q)-multi-norm on {Ak : k ∈ N}
(see []). Then ((Ak ,‖ · ‖k) : k ∈N) is a multi-Banach algebra.

Definition . Let ((Ak ,‖ · ‖k) : k ∈N) be a multi-Banach algebra and assume thatA is a
(unital) C*-algebra. If the involution ∗ satisfies∥∥(

a*a, . . . ,a
*
kak

)∥∥
k =

∥∥(a, . . . ,ak)∥∥
k , k ∈N,a, . . . ,ak ∈A,

then ((Ak ,‖ · ‖k) : k ∈N) is called a (unital) multi-C*-algebra.

Definition . Let ((Ak ,‖·‖k) : k ∈N) be amulti-Banach algebra and ((X k ,‖·‖k) : k ∈N)
be a multi-Banach space. Assume also that X is a Banach left module overA. We say that
((X k ,‖ · ‖k) : k ∈ N) is a multi-Banach left module over ((Ak ,‖ · ‖k) : k ∈ N) if there is an
M ≥  such that∥∥(ax, . . . ,akxk)∥∥k ≤ M

∥∥(a, . . . ,ak)∥∥k · ∥∥(x, . . . ,xk)∥∥k

for all k ∈N, a, . . . ,ak ∈A, x, . . . ,xk ∈X .

4 Stability of an odd functional equation inmulti-Banachmodules over a
multi-C*-algebra

Throughout this section, we assume that ((Ak ,‖ · ‖k) : k ∈ N) is a unital multi-C*-algebra,
and ((X k ,‖ · ‖k) : k ∈ N) and ((Yk ,‖ · ‖k) : k ∈N) are multi-Banach left modules over ((Ak ,
‖ · ‖k) : k ∈N). Moreover, by U(A) we denote the unitary group of A.

Lemma . [] Let X and Y be vector spaces. An odd mapping f : X → Y satisfies (.) for
all x, . . . ,xd ∈ X if and only if f is additive.

Corollary . [] Let X and Y be vector spaces. An odd mapping f : X → Y satisfies

rf
(
x + y
r

)
= f (x) + f (y), x, y ∈ X

if and only if f is additive.

Given a mapping f :X → Y , we set

Duf (x, . . . ,xd) := rf
(∑d

j= uxj
r

)
+

∑
ι(j)=,∑d
j= ι(j)=l

rf
(∑d

j=(–)ι(j)uxj
r

)

– (d–Cl –d– Cl– + )
d∑
j=

uf (xj)

for all u ∈U(A) and x, . . . ,xd ∈X .

http://www.advancesindifferenceequations.com/content/2012/1/162
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Theorem . Let r 
=  and f :X → Y be an odd mapping such that for every k ∈N there
is a function ϕk :X kd → [,∞) with

lim
j→∞

rj

j
ϕk

(
j

rj
x, . . . ,

j

rj
xd, . . . ,

j

rj
xk, . . . ,

j

rj
xkd

)
= , (.)∥∥(

Duf (x, . . . ,xd), . . . ,Duf (xk, . . . ,xkd)
)∥∥

k

≤ ϕk(x, . . . ,xd, . . . ,xk, . . . ,xkd) (.)

for all u ∈U(A) and x, . . . ,xd, . . . ,xk, . . . ,xkd ∈X . If there exists an L <  such that

ϕk

( d︷ ︸︸ ︷

r
x,


r
x, . . . , , . . . ,

d︷ ︸︸ ︷

r
xk,


r
xk, . . . , 

)

≤ 
r
Lϕk

( d︷ ︸︸ ︷
x,x, . . . , , . . . ,

d︷ ︸︸ ︷
xk,xk, . . . , 

)
for all k ∈ N and x, . . . ,xk ∈X , then there is a uniqueA-linear generalized additive map-
ping L :X → Y with

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k

≤ 
(d–Cl –d– Cl– + )( – L)

ϕk(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

) (.)

for all k ∈N and x, . . . ,xk ∈X .

Proof Put

X := {L :X → Y}

and

d(L,h) = inf
{
C ∈R+ :

∥∥(
L(x) – h(x), . . . ,L(xk) – h(xk)

)∥∥
k

≤ Cϕk
( d︷ ︸︸ ︷
x,x, , . . . , , . . . ,

d︷ ︸︸ ︷
xk ,xk , , . . . , 

)
,k ∈ N,x, . . . ,xk ∈X

}
for all L,h ∈ X. It is easy to show that (X,d) is a complete generalized metric space.
Define a mapping J : X → X by

JL(x) := r

L

(

r
x
)
, L ∈ X,x ∈X .

Analysis similar to that in the proof of Theorem . in [] (see also the proof of Lemma .
in []) shows that

d(JL, Jh) ≤ Ld(L,h), L,h ∈ X.

http://www.advancesindifferenceequations.com/content/2012/1/162
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Fix k ∈ N. Putting u =  ∈ U(A), xi = xi = x, and xi = · · · = xid =  for i ∈ {, . . . ,k} in
(.), we have∥∥∥∥(

rf
(

r
x

)
– f (x), . . . , rf

(

r
xk

)
– f (xk)

)∥∥∥∥
k

≤ 
d–Cl –d– Cl– + 

ϕk(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

),

because f is odd and t :=d– Cl –d– Cl– +  =d– Cl –d– Cl– + . We thus get

∥∥∥∥(
f (x) –

r

f
(

r
x

)
, . . . , f (xk) –

r

f
(

r
xk

))∥∥∥∥
k

≤ 
t

ϕk(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

), x, . . . ,xk ∈X ,

and therefore,

d(f , Jf ) ≤ 
t
. (.)

Consequently, by Theorem ., there exists a mapping L :X → Y such that
() L is a fixed point of J , i.e.,

L
(

r
x
)
=

r
L(x), x ∈X , (.)

and L is unique in the set

Y =
{
L ∈ X : d(f ,L) < ∞}

.

This means that L is a unique mapping satisfying (.) such that there exists a C ∈ (,∞)
with

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k ≤ Cϕk(x,x, , . . . , ︸ ︷︷ ︸

d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

)

for all k ∈N and x, . . . ,xk ∈X .
() d(Jnf ,L) →  as n→ ∞. This implies the equality

lim
n→∞

rn

n
f
(
n

rn
x
)
=L(x) x ∈X . (.)

() d(f ,L) ≤ 
–Ld(f , Jf ), which together with (.) gives

d(f ,L)≤ 
t – tL

,

and therefore, inequality (.) holds for all x, . . . ,xk ∈X .

http://www.advancesindifferenceequations.com/content/2012/1/162
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Next, note that the fact that themapping f is odd and (.) imply thatL is odd.Moreover,
by (.) and (.), we get∥∥(

DL(x, . . . ,xd), . . . ,DL(xk, . . . ,xkd)
)∥∥

k

= lim
n→∞

rn

n

∥∥∥∥(
Df

(
n

rn
x, . . . ,

n

rn
xd

)
, . . . ,Df

(
n

rn
xk, . . . ,

n

rn
xkd

))∥∥∥∥
k

≤ lim
n→∞

rn

n
ϕk

(
n

rn
x, . . . ,

n

rn
xd, . . . ,

n

rn
xk, . . . ,

n

rn
xkd

)
= 

for all k ∈ N and x, . . . ,xd, . . . ,xk, . . . ,xkd ∈ X , and therefore, L is a generalized additive
mapping.
Fix u ∈ U(A) and x ∈X . Using (.) and (.), we have∥∥(DuL(x, , . . . , ︸ ︷︷ ︸

d– times

), . . . ,DuL(x, , . . . , ︸ ︷︷ ︸
d– times

)
∥∥
k

= lim
n→∞

rn

n

∥∥∥∥(
Duf

(
n

rn
x, , . . . , ︸ ︷︷ ︸

d– times

)
, . . . ,Duf

(
n

rn
x, , . . . , ︸ ︷︷ ︸

d– times

))∥∥∥∥
k

≤ lim
n→∞

rn

n
ϕk

(
n

rn
x, , . . . , ︸ ︷︷ ︸

d– times

, . . . ,
n

rn
x, , . . . , ︸ ︷︷ ︸

d– times

)
= ,

and consequently,

(d–Cl –d– Cl– + )rL
(
ux
r

)
= (d–Cl –d– Cl– + )uL(x).

Since L is a generalized additive mapping, from Lemma . it follows that L is additive,
and therefore,

L(ux) = rL
(
ux
r

)
= uL(x), u ∈U(A),x ∈X .

As in the proof of Theorem ., in [] one can now show that L is anA-linear mapping.
�

Corollary . Let r 
=  and θ ,p ∈ (,∞). Assume also that p >  for r > , and p <  for
r < . If f :X → Y is an odd mapping such that

∥∥(
Duf (x, . . . ,xd), . . . ,Duf (xk, . . . ,xkd)

)∥∥
k ≤ θ

( d∑
j=

‖xj‖p + · · · +
d∑
j=

‖xkj‖p
)

for all u ∈ U(A), k ∈ N, and x, . . . ,xd, . . . ,xk, . . . ,xkd ∈ X , then there exists a unique A-
linear generalized additive mapping L :X → Y with∥∥(

L(x) – f (x), . . . ,L(xk) – f (xk)
)∥∥

k

≤ rp–θ
(rp– – p–)(d–Cl –d– Cl– + )

(‖x‖p + · · · + ‖xk‖p
)

for all k ∈N and x, . . . ,xk ∈X .

http://www.advancesindifferenceequations.com/content/2012/1/162
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Proof Putting L = p–
rp– and

ϕk(x, . . . ,xd, . . . ,xk, . . . ,xkd)

= θ

( d∑
j=

‖xj‖p + · · · +
d∑
j=

‖xkj‖p
)
,

for all k ∈ N and x, . . . ,xd, . . . ,xk, . . . ,xkd ∈ X , in Theorem ., we get the desired asser-
tion. �

Theorem . Let r 
= . Let f : X → Y be an odd mapping for which there is a function
ϕ :X kd → [,∞) such that

lim
j→∞

j

rj
ϕ

(
rj

j
x, . . . ,

rj

j
xd, . . . ,

rj

j
xk, . . . ,

rj

j
xkd

)
= ,∥∥(

Duf (x, . . . ,xd), . . . ,Duf (xk, . . . ,xkd)
)∥∥

k

≤ ϕ(x, . . . ,xd, . . . ,xk, . . . ,xkd) (.)

for all u ∈ U(A) and all x, . . . ,xd, . . . ,xk, . . . ,xkd ∈ X . If there exists an L <  such
that

ϕ

( d︷ ︸︸ ︷
r

x,

r

x, . . . , ,

d︷ ︸︸ ︷
r

x,

r

x, . . . , , . . . ,

d︷ ︸︸ ︷
r

xk,

r

xk, . . . , 

)

≤ r

Lϕ

( d︷ ︸︸ ︷
x,x, . . . , ,

d︷ ︸︸ ︷
x,x, . . . , , . . . ,

d︷ ︸︸ ︷
xk,xk, . . . , 

)
for all x,x, . . . ,xk ∈ X . Then there exists a unique A-linear generalized additive map-
ping L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k

≤ sup
k∈N

L
(d–Cl –d– Cl– + )( – L)

ϕ(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

)

for all x, . . . ,xk ∈X .

Proof Note that f () =  and f (–x) = –f (x) for all x ∈ X since f is an odd mapping.
Let u =  ∈ U(A). Putting xi = xi = x and xi = · · · = xim = ,  ≤ i ≤ k in (.), we
have∥∥∥∥(

rf
(

r
x

)
– f (x), . . . , rf

(

r
xk

)
– f (xk)

)∥∥∥∥
k

≤ 
d–Cl –d– Cl– + 

ϕ(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

).
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Letting t :=d– Cl –d– Cl– + , we get

∥∥∥∥(
f (x) –


r
f
(
r

x

)
, . . . , f (xk) –


r
f
(
r

xk

))∥∥∥∥
k

≤ 
rt

ϕ

(
r

x,

r

x, , . . . , ︸ ︷︷ ︸

d– times

, . . . ,
r

xk ,

r

xk , , . . . , ︸ ︷︷ ︸

d– times

)

≤ L
t

ϕ(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

)

for all x, . . . ,xk ∈X .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r < , and let θ and p >  be positive real numbers, or let r > , and let θ

and p <  be positive real numbers. Let f :X → Y be an odd mapping such that

∥∥(
Duf (x, . . . ,xd), . . . ,Duf (xk, . . . ,xkd)

)∥∥
k ≤ θ

( d∑
j=

‖xj‖p + · · · +
d∑
j=

‖xkj‖p
)

for all u ∈U(A) and all x, . . . ,xd, . . . ,xk, . . . ,xkd ∈X . Then there exists a uniqueA-linear
generalized additive mapping L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k

≤ sup
k∈N

rp–θ
(p– – rp–)(d–Cl –d– Cl– + )

(‖x‖p + · · · + ‖xk‖p
)

for all x ∈ X.

Proof Define

ϕ(x, . . . ,xd, . . . ,xk, . . . ,xkd) = θ

( d∑
j=

‖xj‖p + · · · +
d∑
j=

‖xkj‖p
)
.

Putting L = rp–
p– in Theorem ., we get the desired result. �

Now we investigate the Hyers-Ulam stability of linear mappings for the case d = .

Theorem . Let r 
= . Let f : X → Y be an odd mapping for which there is a function
ϕ :X k → [,∞) such that

lim
j→∞

rj

j
ϕ

(
j

rj
x,

j

rj
y, . . . ,

j

rj
xk ,

j

rj
yk

)
= ,∥∥∥∥(

rf
(
ux + uy

r

)
– uf (x) – uf (y), . . . , rf

(
uxk + uyk

r

)
– uf (xk) – uf (yk)

)∥∥∥∥
k

≤ ϕ(x, y, . . . ,xk , yk) (.)
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for all u ∈U(A) and all x, . . .xk , y . . . , yk ∈X . If there exists an L <  such that

ϕ

(

r
x,


r
x,


r
x,


r
x, . . . ,


r
xk ,


r
xk

)
≤ 

r
Lϕ(x,x,x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈ X . Then there exists a unique A-linear generalized additive mapping
L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k

≤ sup
k∈N

L
( – L)

ϕ(x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈X .

Proof Let u =  ∈U(A). Putting x = y in (.), we have

∥∥∥∥(
rf

(

r
x

)
– f (x), . . . , rf

(

r
xk

)
– f (xk)

)∥∥∥∥
k
≤ ϕ(x,x, . . . ,xk ,xk)

for all x ∈ X. So∥∥∥∥(
f (x) –

r

f
(

r
x

)
, . . . , f (xk) –

r

f
(

r
xk

))∥∥∥∥
k
≤ 


ϕ(x,x, . . . ,xk ,xk)

for all x ∈ X.
The rest of the proof is the same as in the proof of Theorem .. �

Corollary . Let r > , and let θ and p >  be positive real numbers, or let r < , and let θ

and p <  be positive real numbers. Let f : X → Y be an odd mapping such that

∥∥∥∥(
rf

(
ux + uy

r

)
– uf (x) – uf (y), . . . , rf

(
uxk + uyk

r

)
– uf (xk) – uf (yk)

)∥∥∥∥
k

≤ θ

k∑
j=

(‖xj‖p + ‖yj‖p
)

for all u ∈U(A) and for all x, . . . ,xk ∈X . Then there exists a uniqueA-linear generalized
additive mapping L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k ≤ sup

k∈N
rp–θ

rp– – p–

k∑
j=

‖xj‖p

for all x, . . . ,xk ∈X .

Proof Define ϕ(x, y, . . . ,xk , yk) = θ
∑k

j=(‖xj‖p + ‖yj‖p), and apply Theorem .. Then we
get the desired result. �
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Theorem . Let r 
= . Let f : X → Y be an odd mapping for which there is a function
ϕ :X k → [,∞) such that

lim
j→∞

j

rj
ϕ

(
rj

j
x,

rj

j
y, . . . ,

rj

j
xk ,

rj

j
yk

)
= ,∥∥∥∥(

rf
(
ux + uy

r

)
– uf (x) – uf (y), . . . , rf

(
uxk + uyk

r

)
– uf (xk) – uf (yk)

)∥∥∥∥
k

≤ ϕ(x, y, . . . ,xk , yk), (.)

for all u ∈U(A) and all x, . . . ,xk , y, . . . , yk ∈X . If there exists an L <  such that

ϕ

(
r

x,

r

x,

r

x,

r

x, . . . ,

r

xk ,

r

xk

)
≤ r


Lϕ(x,x,x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈ X . Then there exists a unique A-linear generalized additive mapping
L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k ≤ sup

k∈N


( – L)
ϕ(x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈X .

Proof Let u =  ∈U(A). Putting x = y in (.), we have∥∥∥∥(
rf

(

r
x

)
– f (x), . . . , rf

(

r
xk

)
– f (xk)

)∥∥∥∥
k
≤ ϕ(x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈X . So∥∥∥∥(
f (x) –


r
f
(
r

x

)
, . . . , f (xk) –


r
f
(
r

xk

))∥∥∥∥
k
≤ 

r
ϕ

(
r

x,

r

x, . . . ,

r

xk ,

r

xk

)
≤ 


Lϕ(x,x, . . . ,xk ,xk)

for all x, . . . ,xk ∈X .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r > , and let θ and p >  be positive real numbers. Or let r < , and let
θ and p <  be positive real numbers. Let f : X → Y be an odd mapping such that∥∥∥∥(

rf
(
ux + uy

r

)
– uf (x) – uf (y), . . . , rf

(
uxk + uyk

r

)
– uf (xk) – uf (yk)

)∥∥∥∥
k

≤ θ

k∑
j=

(‖xj‖p + ‖yj‖p
)

for all u ∈ U(A) and all x, . . . ,xk ∈ X . Then there exists a unique A-linear generalized
additive mapping L :X → Y such that

sup
k∈N

∥∥(
L(x) – f (x), . . . ,L(xk) – f (xk)

)∥∥
k ≤ sup

k∈N
rp–θ

p– – rp–

k∑
j=

‖xj‖p
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for all x, . . . ,xk ∈X .

Proof Define ϕ(x, y, . . . ,xk , yk) = θ
∑k

j=(‖xj‖p + ‖yj‖p), and apply Theorem .. Then we
get the desired result. �

5 Isomorphisms in unital multi-C*-algebras
Throughout this section, assume that A and B are unital multi-C*-algebras with unit e.
Let U(A) be the set of unitary elements in A.
We investigate C*-algebra isomorphisms in unital multi-C*-algebras.

Theorem . Let r 
= . Let h : A → B be an odd bijective mapping satisfying h( nrn uy) =
h( nrn u)h(y) for all u ∈ U(A), all y ∈ A, and n = , , , . . . , for which there exists a function
ϕ :Akd → [,∞) such that

lim
j→∞

rj

j
ϕ

(
j

rj
x, . . . ,

j

rj
xd, . . . ,

j

rj
xk, . . . ,

j

rj
xkd

)
= ,∥∥(

Dμh(x, . . . ,xd), . . . ,Dμh(xk, . . . ,xkd)
)∥∥

k

≤ ϕ(x, . . . ,xd, . . . ,xk, . . . ,xkd),∥∥∥∥(
h
(
n

rn
u*

)
– h

(
n

rn
u

)*

, . . . ,h
(
n

rn
u*k

)
– h

(
n

rn
uk

)*)∥∥∥∥
k

≤ ϕ

(
n

rn
u, . . . ,

n

rn
u︸ ︷︷ ︸

d times

, . . . ,
n

rn
uk , . . . ,

n

rn
uk︸ ︷︷ ︸

d times

)

for allμ ∈ S := {λ ∈ C | |λ| = }, all u, . . . ,uk ∈ U(A), n = , , , . . . , and all x, . . . ,xkd ∈ A.
Assume that limn→∞ rn

n h(
n
rn e) is invertible. Then the odd bijective mapping h :A→ B is a

C*-algebra isomorphism.

Proof Consider the multi-C*-algebras A and B as left Banach modules over the unital
multi-C*-algebra C. By Theorem ., there exists a unique C-linear generalized additive
mappingH :A→ B such that

sup
k∈N

∥∥(h(x) –H(x), . . . ,h(xk) –H(xk)
∥∥
k

≤ sup
k∈N


(d–Cl –d– Cl– + )

ϕ(x,x, , . . . , ︸ ︷︷ ︸
d– times

, . . . ,xk ,xk , , . . . , ︸ ︷︷ ︸
d– times

)

for all x, . . . ,xk ∈A in whichH :A→ B is given by

H(x) = lim
n→∞

rn

n
h
(
n

rn
x
)

for all x ∈A.
The rest of the proof is similar to the proof of Theorem . of []. �

Corollary . Let r > , and let θ and p >  be positive real numbers. Or let r < , and let
θ and p <  be positive real numbers. Let h :A→ B be an odd bijective mapping satisfying
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h( nrn uy) = h( nrn u)h(y) for all u ∈U(A), all y ∈A, and all n = , , , . . . , such that

∥∥(
Dμh(x, . . . ,xd), . . . ,Dμh(xk, . . . ,xkd)

)∥∥
k ≤ θ

d∑
j=

(‖xj‖p + · · · + ‖xkj‖p
)
,

∥∥∥∥(
h
(
n

rn
u*

)
– h

(
n

rn
u

)*

, . . . ,h
(
n

rn
u*k

)
– h

(
n

rn
uk

)*)∥∥∥∥
k
≤ kd

pn

rpn
θ

for allμ ∈ S, all u ∈ U(A), n = , , , . . . , and all x, . . . ,xkd ∈A. Assume that limn→∞ rn
n ×

h( nrn e) is invertible. Then the odd bijectivemapping h :A→ B is a C*-algebra isomorphism.

Proof Define ϕ(x, . . . ,xd, . . . ,xk, . . . ,xkd) = θ
∑d

j=(‖xj‖p + · · · + ‖xkj‖p), and apply Theo-
rem .. Then we get the desired result. �
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