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Computer-Aided Classification of Visual Ventilation 
Patterns in Patients with Chronic Obstructive Pulmonary 
Disease at Two-Phase Xenon-Enhanced CT
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Objective: To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided 
classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive 
pulmonary disease (COPD).
Materials and Methods: Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in 
(WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into 
four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities 
with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image 
datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement 
on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed 
for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in 
the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without 
and with CAC maps using multirater κ statistics.
Results: Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of 
agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. 
Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56–0.62) at the initial 
assessment to excellent (κ = 0.82; 95% CI, 0.79–0.85) with the CAC map.
Conclusion: Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced 
interobserver agreement on visual classification of regional ventilation.
Index terms: Computer-aided classification; Computed tomography; Chronic obstructive pulmonary disease; Regional 
ventilation; Xenon CT
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a slowly 

progressing, irreversible airway disease caused by a mixture 
of airway inflammation and parenchymal destruction (1). 
COPD is the fourth leading cause of chronic morbidity 
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and mortality in the United States and will become the 
third leading cause of death worldwide by 2020 (2). The 
diagnosis and severity assessment of COPD are typically 
based on the patient’s symptoms and the results of 
spirometry (1); however, spirometry does not display the 
regional distribution of COPD (3). 

In order to assess the regional distribution as well as 
changes in COPD, various techniques with the use of CT 
(3, 4) and MR (5, 6) have been introduced. Among them, 
two-phase xenon ventilation CT was recently found to be 
feasible for visual classification of regional ventilation 
abnormalities by comparing the xenon attenuation of 
structural abnormalities with that of adjacent normal-
looking parenchyma in wash-in (WI)/wash-out (WO) 
images (7, 8). These regional ventilation patterns are well 
correlated with the various structural abnormalities in 
COPD (7) and may be further used to evaluate collateral 
ventilation (7-10). Visual classification, however, is 
potentially affected by observer variability given that 
interobserver agreements in interpreting variable chest CT 
findings were modest to poor among radiologists (11-14). 

Computer-aided classification (CAC) systems have 
been previously shown to have the potential to classify 
regional lung disease patterns on CT scans and to decrease 
interobserver variability (15-18). The purpose of our 
study, therefore, was to evaluate a CAC system for regional 
ventilation at two-phase xenon-enhanced CT in patients 
with COPD in terms of technical feasibility, performance, 
and interobserver agreement.

MATERIALS AND METHODS

This single-institution, retrospective study was approved 
by the institutional review board of our hospital, and 
informed consent was obtained from all of the patients.

Patients
From April 2008 through February 2009, a total of 38 

consecutive patients (36 men, 2 women; mean age, 65.9 
years; age range, 46–78 years) who met the diagnostic 
criteria for COPD (1) underwent two-phase xenon ventilation 
CT, and they were included in this study. These patients 
were identical to the initially enrolled patients in a previous 
two-phase xenon ventilation study (7). Predominant lung 
diseases included emphysema in 32 patients, tuberculosis-
destroyed lung in three patients, bronchiectasis in two 
patients, and postinfectious bronchiolitis obliterans in one 

patient.

Xenon Ventilation CT Protocol
Patients underwent xenon ventilation using tightly-

fitting face masks (King Systems Co., Noblesville, IN, USA) 
designed to deliver positive pressure ventilation. The 
xenon gas was a mixture of 30% nonradioactive xenon 
and 70% oxygen. The patients inhaled the xenon gas for 
approximately 1 minute during the WI period and 100% 
oxygen for 2 minutes during the WO period with the use 
of a xenon gas inhalation system (Zetron V; Anzai Medical, 
Tokyo, Japan). Patients were instructed to breathe normally 
during the WI and WO periods. The respiratory rate, oxygen 
saturation, blood pressure, as well as tidal carbon dioxide 
and xenon concentrations were closely monitored under the 
supervision of a chest radiologist. After the CT examination, 
all of the patients were observed for 30 minutes.

All of the patients were imaged on a CT scanner (Somatom 
Definition; Siemens Medical Solutions, Forchheim, Germany) 
during breath holding at full inspiration. Pre-xenon CT 
was performed using a single tube with a tube voltage of 
120 kV, tube current-time product of 150 mAs (reference 
effective milliampere seconds), and collimation of 64 x 
0.6 mm that covered the entire thorax in a caudocranial 
acquisition. After xenon inhalation, two-phase CT scans 
were performed using the same coverage. The CT scan 
during the WI period was taken at approximately 1 minute 
after the initiation of xenon inhalation when the xenon 
concentration reached 30%. The CT scan during the WO 
period was usually obtained at 80–90 seconds when xenon 
reached zero on the tidal xenon concentration curve after 
stopping xenon inhalation. Scanning parameters for xenon 
ventilation CT were as follows: a 512 x 512-pixel matrix, 
14 x 1.2-mm collimation, 51 mAs (reference effective 
milliampere seconds) at 140 kV and 213 mAs (reference 
effective milliampere seconds) at 80 kV, a pitch of 0.45, 
and a 0.33-second rotation time. Images were reconstructed 
with 1.5-mm thickness, 1.2-mm increment, and using soft-
tissue reconstruction kernels (B30f for pre-xenon images 
and D30f for xenon images).

Generation of WI and WO Images
Wash-in and WO images were obtained with Syngo Dual 

Energy (Siemens Medical Solutions, Forchheim, Germany), 
which was based on the material decomposition theory 
(19). To assess data of the whole lung, the minimum value 
was set at -1024 Hounsfield units (HU) and the maximum 
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value was set at -500 HU. Color-coded maps displaying a 
progression from blue, sky blue, green, and yellow to red in 
relation to HU ranging from 1 to 50 were applied to the WI 
and WO images. 

Classification of the Ventilation Pattern Using the CAC 
System

Our proposed CAC system for regional ventilation at two-
phase xenon CT consists of lung segmentation, deformable 
registration, determination of xenon attenuation types, 
pattern classification of regional ventilation, and generation 
of a color-coded map (Fig. 1). 

To restrict the registration to the lung parenchyma, the 
left and right lungs were separately segmented using the 
three-dimensional (3D) region growing method with a 
threshold of -400 HU for the lung and airway, and then -950 
HU for the airway with subsequent subtraction technique 
(20). To correct positional differences and local deformation 
of the lungs, the lungs on WO images were globally aligned 
to the WI image using affine registration based on narrow-
band distance propagation, and affine-transformed lungs 
were nonlinearly deformed by a demon algorithm using a 
combined gradient force and active cells (21). Then, each 
pixel in the WI and WO images was assigned to one of the 
three attenuation types through Equation 1 (below). Lower 
and upper threshold values were estimated by calculating 
the mean and standard deviation of xenon attenuation 
histograms through Equations 2 and 3. Weight w was 

automatically estimated by calculating the ratio of the 
normal area to the whole lung. The normal-attenuating lung 
was defined as the HU of pixels -950 HU or greater in the 
original CT images (Fig. 2). 

       t(x) = 
A(x) < Tlow : low

Tlow ≤ A(x) ≤ Thigh : iso (Eq 1)
Thigh < A(x) : high

Tlow = μ - α*wσ (Eq 2)
Thigh = μ + β*wσ (Eq 3),

where, t(x) is the attenuation type of pixel x, A(x) is the 
xenon attenuation of a pixel x, μ is the mean value of the 
xenon attenuation histogram, σ is the standard deviation of 
the xenon attenuation histogram, w is weight, and α, β are 
coefficients for weight.

The assigned attenuation types were used to classify 
the corresponding pixel of WI and WO images into the 
following four ventilation patterns (Fig. 3): pattern A (iso-
attenuation or high attenuation in the WI image and iso-
attenuation in the WO image), pattern B (iso-attenuation 
or high attenuation in the WI image and high attenuation 
in the WO image), pattern C (low attenuation in both the 
WI and WO images), and pattern D (low attenuation in the 
WI image and iso-attenuation or high attenuation in the 
WO image). For the visual pattern recognition of CAC maps; 
blue, sky blue, red, and yellow were each designated to 
patterns A, B, C, and D in color-coded maps.

Assessment of a Standard of Reference of the Ventilation 
Pattern for Each Structural Abnormality

After reviewing all of the structural abnormalities in the 
pre-xenon dual source CT images, a predominant xenon 
ventilation pattern for each structural abnormality on WI/
WO images was assessed in consensus by two radiologists 
with experience in two-phase xenon ventilation CT (Fig. 
4). For assessment of the predominant xenon ventilation 
pattern for each structural abnormality, a color overlay of 
xenon attenuation in the corresponding area on WI/WO 
images was compared with that in the adjacent normal-
attenuating lung showing normal xenon enhancement. The 
assessed ventilation pattern in consensus served as the 
reference standard.

Optimization and Validation of Datasets
Two series of image datasets of structural abnormalities 

were randomly extracted for optimization and validation. 

Fig. 1. Overall strategy of CAC system with multi-step post-
processing procedures. CAC = computer-aided classification, WI = 
wash-in, WO = wash-out

Two phase xenon ventilation CT

Generation of WI and WO images

Generation of color-coded map

Segmentation of lung parenchyma on WI and WO images

Deformable registration of WI and WO images

Determination of attenuation type in each pixel
on WI and WO images

Classification of regional ventilation pattern
in each corresponding pixel of WI and WO images



Korean J Radiol 15(3), May/Jun 2014kjronline.org 389

CAC at Xenon-Enhanced CT

Both the optimization and validation datasets consisted of 
a total of eighty image datasets including twenty structural 
abnormalities per pattern. Each image dataset contained 
axial CT, WI, and WO images, and a CAC map. A single 
freehand region of interest (ROI) covering the structural 
abnormality on CT was drawn and pasted into the WI and 
WO images, and the CAC map, so that the location of the 
structural abnormality could be easily identified by one of 
the authors. The average area of ROI was maintained at 
approximately 0.5 cm2 (range, 0.26–0.69 cm2).

Optimization of the CAC System
The proposed CAC system was optimized by qualitative 

and quantitative comparisons of CAC candidate models 

with the reference. A series of CAC candidate models were 
generated by applying a series of candidate coefficients (α, 
β) of weight used in an equation for two thresholds (Tlow, 
Thigh) with one digit after the decimal point. To narrow down 
the number of candidate coefficients to less than five, CAC 
maps for eight image datasets were preliminarily generated 
using coefficients ranging from 0.1 to 2.0. The predominant 
ventilation pattern of the ROI on CAC maps was visually 
compared to the reference by a radiologist. The top five 
candidate coefficients, for which the CAC map was in good 
agreement with the reference, were chosen. If CAC maps 
generated by candidate coefficients did not definitively 
work out when compared to the reference, those candidate 
coefficients were discarded even if the number of remnant 

Fig. 2. Determination of xenon attenuation in CAC system.
A. Estimation of thresholds in xenon attenuation histogram. Two thresholds (Tlow, Thigh) are estimated by calculating mean and standard deviation 
of xenon attenuation histogram. t(x) is attenuation type of pixel x, A(x) is xenon attenuation of pixel x, μ is mean value of xenon attenuation 
histogram, σ is standard deviation of xenon attenuation histogram, w is weight, and, α, β are coefficients for weight. B. Representative image 
of automatic estimation of weight for thresholds using ratio of normal area to whole area using sigma function. Yellow represents abnormal low-
attenuating parenchyma with attenuation values less than -950 HU. Weight w is automatically estimated by calculating ratio of normal area to 
whole lung. CAC = computer-aided classification, HU = Hounsfield units
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candidate coefficients was less than five. After narrowing 
down the number of candidate coefficients, the same 
review processes were performed for the full optimization 
set with a series of CAC maps based on those coefficients. 
The agreement between the CAC map and the reference was 
calculated on a per-lesion basis for qualitative comparison. 
Quantitative comparison was performed on a per-pixel 
basis. The number of pixels on the CAC map within the ROI 
in agreement with the reference was calculated. 

Validation of the CAC System
Six radiologists with 20, 9, 8, 7, 6, and 6 years of 

experience in interpreting CT scans, respectively reviewed 

the validation image datasets. The validation image datasets 
were presented in a predetermined randomized order, which 
was the same for each reader. Each reader was blinded to 
the clinical information and independently classified the 
ventilation pattern of ROIs twice sequentially without 
and with a CAC map. Prior to reviewing the validation 
image dataset, each reader was provided with instructions 
including the definition and representative images of each 
ventilation pattern in WI and WO images, and the CAC map. 
The interpretation time was not limited.

Statistical Analysis
The CAC model with the highest proportion of agreement 

for all patterns was considered to have been qualitatively 
optimized. For quantitative comparison, an area under the 
receiver operating characteristic curve was assessed with 
regard to the number of pixels on the CAC map within the 
ROI in agreement with the reference for each pattern. The 
CAC system having the largest average area under the curve 
was considered to have been quantitatively optimized.

The average percentage of agreement between reader 
pairs on pattern classification per image set was evaluated 
for validating the optimized CAC system. The number of 
image sets with complete agreement across all readers 
was calculated. Interobserver agreement for the pattern 
classification was determined using multirater Cohen’s 
kappa value (22). A κ value of less than 0.20 indicated 
poor agreement; a κ value of 0.21–0.40, fair agreement; a κ 
value of 0.41–0.60, moderate agreement; a κ value of 0.61–
0.80, good agreement; and a κ value of more than 0.81, 
excellent agreement. Interobserver agreement between 
reader pairs was also calculated. All analyses were compared 
between assessments without a CAC map and with a CAC 
map. Statistical analyses were performed using the SPSS 
package (SPSS 21.0, SPSS Inc., Chicago, IL, USA). A two-
sided significance level of 5% was considered to indicate 
statistical significance. 

RESULTS

Optimization of the CAC System
Computer-aided classification maps were successfully 

generated in 31 of 38 patients (81.5%). Segmentation of 
the right and left lungs failed in seven patients. Optimized 
coefficient of weight for Thigh was directly judged to be 
1.0 as CAC maps with other candidate coefficients clearly 
misclassified the ventilation pattern of ROIs. Candidate 

38 included patients

80 image datasets for optimization

Comparison with reference

Decision of optimized weight factor

80 image datasets for validation

31 patients with successfully generated CAC map

Assessment of reference value of ventilation pattern
for each structural abnormalities by radiologists in consensus

Random extraction of structural abnormalities
representative of pattern A, B, C, D

Generation of series of CAC map
with different weight factors

Generation of CAC map
with optimized weight factor

Analysis of observer agreement
without and with CAC map

Independent assessment of
ventilation pattern by radiologists

without and with CAC map

Fig. 4. Flowchart of optimization and validation of CAC system. 
CAC = computer-aided classification

Iso or high

Iso or high

Low

Iso

Pattern A Pattern B Pattern C Pattern D

High Low
WO xenon

attenuation type

WI xenon
attenuation type

Xenon attenuation type

Fig. 3. Decision rule of CAC system in classifying regional 
ventilation patterns. CAC = computer-aided classification, WI = 
wash-in, WO = wash-out
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coefficients of weight for Tlow were narrowed from 0.3 to 
0.7. Qualitative and quantitative analyses revealed that the 
optimized coefficient for Tlow was 0.5, with the proportion 
of agreement and average area under the curve of optimized 
CAC maps being 94% (75/80) and 0.994, respectively (Tables 
1, 2) (Figs. 5, 6). 

Validation of the CAC System
The number of cases in agreement between reader pairs 

regarding the classification of ventilation patterns ranged 
from 47 to 68 cases (mean, 55.5; standard deviation, 
5.7) without a CAC map, and from 63 to 75 cases (mean, 
70.2; standard deviation, 3.3) with a CAC map. The mean 
percentage of agreement between reader pair results 
increased from 55.4% without a CAC map to 69.2% with a 
CAC map. The number of cases reaching complete agreement 

among all readers doubled from 26 cases (32.5%) to 54 
cases (67.5%). Multirater kappa value showed a significant 
increase from 0.59 (95% confidence interval [CI]: 0.56, 
0.62) to 0.82 (95% CI: 0.79, 0.85). Among the patterns, 
interobserver agreement of pattern B was the highest 
regardless of the CAC map (without CAC; kappa, 0.72, 95% 
CI, 0.57–0.87; with CAC; kappa, 0.91, 95% CI, 0.75–1.00) 
(Table 3). Kappa values among all reader pairs ranged from 
0.45 to 0.80 at the initial assessment and from 0.72 to 0.92 
with a CAC map (Table 4).

DISCUSSION

In this study, we developed and optimized the CAC 
system for visual ventilation pattern analysis at two-
phase xenon ventilation CT. The optimized CAC system was 

Table 1. Results of Qualitative Analysis for Optimization of Tlow in CAC System
Proportion of CAC in Accord with Reference (%)

For All Patterns For Pattern A For Pattern B For Pattern C For Pattern D

Coefficient for weight
in Tlow threshold

0.3 87 (69/80)   90 (18/20) 90 (18/20) 80 (16/20) 85 (17/20)
0.4 91 (73/80) 100 (20/20) 95 (19/20) 85 (17/20) 85 (17/20)
0.5 94 (75/80) 100 (20/20) 95 (19/20) 85 (17/20) 95 (19/20)
0.6 76 (61/80) 100 (20/20) 95 (19/20) 55 (11/20) 65 (13/20)
0.7 74 (59/80)   90 (18/20) 90 (18/20) 55 (11/20) 60 (12/20)

Note.— Numbers in parenthesis indicate number of image datasets. Candidate coefficients for weight in Tlow threshold were analyzed to 
find optimal value for equation. CAC = computer-aided classification

t(x) = 

A(x) < Tlow : low

Tlow ≤ A(x) ≤ Thigh : iso Thigh = μ + β*wσ Tlow = μ - α*wσ
Thigh < A(x) : high

Table 2. Results of Quantitative Analysis for Optimization of Tlow in CAC System

Averaged AUC  
for All Patterns

AUC of CAC in Accord with Reference in ROC Analysis 
For Pattern A For Pattern B For Pattern C For Pattern D

Coefficient for weight
in Tlow threshold

0.3
0.981 

(0.952–1.000)
0.983 

(0.961–1.000)
0.994 

(0.984–1.000)
0.982 

(0.959–1.000)
0.964 

(0.903–1.000)

0.4
0.990 

(0.975–1.000)
0.988 

(0.966–1.000)
0.999 

(0.996–1.000)
0.978 

(0.952–1.000)
0.995  

(0.985–1.000)

0.5
0.994 

(0.985–1.000)
0.999 

(0.996–1.000)
0.998 

(0.994–1.000)
0.984 

(0.962–1.000) 
0.996 

(0.989–1.000)

0.6
0.990 

(0.978–1.000)
0.999  

(0.996–1.000)
0.998 

(0.994–1.000)
0.972 

(0.942–1.000)
0.992 

(0.979–1.000)

0.7
0.972 

(0.937–1.000)
0.966  

(0.918–1.000)
0.994 

(0.984–1.000)
0.974 

(0.945–1.000)
0.953 

(0.900–1.000)

Note.— Numbers in parenthesis indicate lower and upper limits of 95% confidence interval. Candidate coefficients for weight in Tlow 
threshold were analyzed to find optimal value for equation. AUC = area under the curve, CAC = computer-aided classification, ROC = 
receiver operating characteristic

t(x) = 

A(x) < Tlow : low

Tlow ≤ A(x) ≤ Thigh : iso Thigh = μ + β*wσ Tlow = μ - α*wσ
Thigh < A(x) : high
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qualitatively and quantitatively proven to properly classify 
the pattern of regional xenon ventilation and to decrease 
interobserver variability regarding visual classification of 
regional ventilation patterns. In developing the CAC system, 
establishing thresholds (Tlow, Thigh) was a critical issue, 
and simple automatic application of mean and standard 
deviation of weight was proven to show less optimal 
performance. Therefore, we devised coefficients (α, β) for 

weight in determining the thresholds and optimized the CAC 
by selecting coefficients that showed the best performance.

The pattern classification of regional xenon ventilation 
was proposed to reflect the presence of inflow and outflow 
limitations, and collateral ventilation (7). Iso- or high 
attenuation in the WI image and iso-attenuation in the WO 
image (pattern A) means no inflow and outflow limitations, 
which is the typical ventilation of a normal lung and the 

A

C

B

D
Fig. 5. Representative images of patterns A and C for structural abnormalities in 64-year-old male with Gold stage I emphysema. 
Large subpleural bulla in right basal lung on CT (A; arrows) shows high attenuation on wash-in xenon-enhanced image (B) and iso-attenuation 
on wash-out xenon-enhanced image (C). This ventilation pattern is compatible with pattern A shown on CAC map in blue (D). Small subpleural 
bulla anterior to large bulla on CT (A; arrowhead) shows low attenuation on wash-in (B) and wash-out xenon-enhanced images (C). This 
ventilation pattern is in agreement with pattern C and is correctly visualized on CAC map in red (D). CAC = computer-aided classification
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most predominant pattern even in cases of emphysema. Iso- 
or high attenuation in the WI image and high attenuation 
in the WO image (pattern B) means delayed WO of xenon 
suggesting an outflow limitation. Low attenuation in the 

WI image in patterns C and D means delayed WI of xenon 
suggesting an inflow limitation. The difference between 
patterns C and D is the presence of collateral ventilation 
causing high attenuation in the WO image in pattern D. 

A

C

B

D
Fig. 6. Representative image of patterns B and D for structural abnormalities in 72-year-old male with Gold stage II emphysema. 
Small subpleural bulla in right upper lobe on CT (A; arrowheads) shows high attenuation on wash-in (B) and wash-out xenon-enhanced images (C), 
which is compatible with pattern B shown in CAC map in sky blue (D). Large subpleural bulla in right lower lobe on CT (A; arrows) shows low 
attenuation on wash-in (B) and wash-out xenon-enhanced images (C). This ventilation pattern is in agreement with pattern D and is correctly 
visualized on CAC map in yellow (D). CAC = computer-aided classification
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Although this proposed classification at two-phase xenon 
CT did not fundamentally validate whether the classified 
patterns of regional ventilation properly reflected the actual 
regional ventilation, it may have a clinical significance in 
understanding the heterogeneous phenotypes of COPD (23), 
and in identifying collateral ventilation in bronchoscopic 
lung volume reduction (24, 25).

Despite the potential of xenon CT in classifying 
ventilation patterns in COPD patients, interobserver 
agreements on pattern classification of regional ventilation 
among reviewers were limited to fair agreement as 
mentioned in our earlier concerns on observer variability. 
This may be related to the use of a relatively small size 
of ROIs in our study as a predominant pattern of regional 
ventilation may be more easily recognized in larger-sized 
ROIs. However, it was difficult to choose a large-sized 
ROI as regional ventilation is at times inhomogeneous 
within a single structural abnormality. In addition, pattern 
A of regional ventilation was much more predominant 
than the other patterns and this makes a larger-sized ROI 
inapplicable.

Interobserver agreements among the reviewers 
improved irrespective of the type of ventilation pattern 
with review of CAC maps. Among the four patterns, the 
highest interobserver agreement was achieved in pattern 
B. When we consider that high xenon attenuation is only 
needed to designate pattern B, readers might have had 

more difficulties in differentiating between iso- and low-
attenuation than in differentiating between iso- and high-
attenuation in the WI and WO images. This may be associated 
with the asymmetric distribution of xenon in the normal-
attenuating lung in the WI and WO images. Although the 
normal-attenuating lung showed a wide spectrum of xenon 
attenuation, the most frequent attenuation of the normal-
attenuating lung was around 25 HU or less in the range of 0 
to 50 in the WI image. The most frequent attenuation in the 
WO image was around 15 HU or less. Accordingly, readers 
had a narrower color range for differentiating between 
iso- and low-attenuation than for differentiating between 
iso- and high-attenuation, especially in the WO image. 
These difficulties in differentiating between relative xenon 
attenuation can increase in patients with a smaller portion 
of the normal-attenuating lung. 

In this study, the right and left lungs could not be 
automatically segmented in seven patients during the 
registration of lung parenchyma. This failure of lung 
segmentation occurred in areas that were in close contact 
with the pleura of both lungs, also known as anterior and 
posterior junctional lines. These junctional lines were too 
thin to be perceived by the 3D region growing method, and 
therefore, both lungs were fused around the junctional lines 
after the automatic segmentation. Even though the possible 
failure of lung segmentation might be a potential limitation 
of our CAC system, we believe that this limitation can be 

Table 3. Observer Agreement on Assessment of Ventilation Pattern without or with CAC Maps
Multirater Generalized Kappa

For All Patterns For Pattern A For Pattern B For Pattern C For Pattern D 

Observer agreement
Without CAC map

0.59 
(0.56–0.62)

0.53 
(0.37–0.69)

0.72 
(0.57–0.87)

0.60 
(0.45–0.76)

0.52 
(0.36–0.68)

With CAC map
0.82 

(0.79–0.85)
0.75 

(0.60–0.90)
0.91 

(0.75–1.00)
0.83 

(0.68–0.99)
0.79 

(0.63–0.95)

Note.— Numbers in parenthesis indicate lower and upper limits of 95% confidence interval. CAC = computer-aided classification

Table 4. Interobserver Agreement for All Patterns among All Reader Pairs without and with CAC Maps Using Kappa Statistics
Without CAC Map (Readers)

1 2 3 4 5 6

With CAC map
(Readers)

1 0.51 0.45 0.55 0.45 0.52
2 0.83 0.63 0.55 0.63 0.67
3 0.87 0.80 0.58 0.66 0.80 
4 0.77 0.72 0.75 0.57 0.65
5 0.87 0.82 0.87 0.75 0.67
6 0.92 0.82 0.87 0.80 0.87

Note.— Kappa values among all reader pairs ranged from 0.45 to 0.80 without CAC maps and ranged from 0.72 to 0.92 after reviewing 
CAC maps. Readers 1 through 6 have twenty years, nine years, eight years, seven years, and six years (readers 5 and 6) of experience in 
interpreting CT scans, respectively. CAC = computer-aided classification
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overcome by manual segmentation in such cases. Indeed, 
we succeeded in generating CAC maps in the patients 
with failure of lung segmentation by performing manual 
segmentation.

There are several limitations to our study. First, the 
number of cases was relatively small. However, we validated 
the proposed CAC system using image datasets that were 
totally different from those used during optimization. 
Second, neither this proposed CAC system nor the readers 
involved in the review of validation set considered the 
effect of artifacts, which can lead to misclassification of 
the actual regional xenon ventilation. Therefore, when this 
approach is applied in clinical practice, readers should check 
for the presence of artifacts within the ROIs by reviewing 
WI and WO images prior to accepting the results of the 
CAC map. Third, the regional ventilation pattern at xenon-
enhanced CT could not fundamentally validate whether the 
classified pattern of regional ventilation properly reflected 
the actual regional ventilation. A further investigation 
is needed to compare the results of CAC system with 
functional information obtained from other functional 
imaging techniques or with lung pathology. 

In conclusion, our proposed CAC system demonstrated the 
potential to improve interobserver variability in classifying 
regional ventilation patterns at xenon ventilation CT using 
a dual-energy technique.
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