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We find that, when the dilaton is implemented as a (pseudo-)Nambu-Goldstone boson using a conformal
compensator or “conformon” in a hidden gauge symmetric Lagrangian written to Oðp4Þ from which
baryons arise as solitons, namely, skyrmions, the vector manifestation and chiral symmetry restoration at
high density predicted in hidden local symmetry theory—which is consistent with Brown-Rho scaling—
are lost or sent to infinite density. It is shown that they can be restored if in medium the behavior of the ω
field is taken to deviate from that of the ρ meson in such a way that the flavor Uð2Þ symmetry is strongly
broken at increasing density. The hitherto unexposed crucial role of the ω meson in the structure of
elementary baryon and multibaryon systems is uncovered in this work. In the state of half-skyrmions to
which the skyrmions transform at a density n1=2 ≳ n0 (where n0 is the normal nuclear matter density),
characterized by the vanishing (space averaged) quark condensate but nonzero pion decay constant, the
nucleon mass remains more or less constant at a value ≳60% of the vacuum value, indicating a large
component of the nucleon mass that is not associated with the spontaneous breaking of chiral symmetry.
We discuss its connection to the chiral-invariant mass m0 that figures in the parity-doublet baryon model.
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I. INTRODUCTION

The properties of hadronic matter at high density are
poorly understood both theoretically and experimentally,
and pose a challenge in nuclear and particle physics. They
are critically concerned with such issues as the equation of
state (EoS) relevant for compact-star matter and the chiral
symmetry breaking/restoration in dense matter.
The sign problem in lattice QCD and the nonperturbative

nature of the strong interaction in the effective field theory
approaches restrict their applicability for dense matter
studies. A series of works [1] have shown that the skyrmion
approach, where the classical soliton solutions of the
mesonic theory capturing quantum chromodynamics
(QCD) in the large Nc limit are interpreted as baryons,
provides a natural framework for exploring dense baryonic
matter without being obstructed by the notorious problems
mentioned above. Furthermore, it enables one to study the
properties of dense matter and in-medium hadrons in a
unified way [2]. However, because of the parameter

dependence in the results of simple models that include
only a few low-lying mesons, the skyrmion approach could
not provide quantitatively meaningful predictions.
Recently, we have studied the skyrmion approach [3–6]

using a chiral Lagrangian, where the ρ and ω mesons are
introduced as the gauge bosons of the hidden local
symmetry (HLS) [7–9] with the Oðp4Þ terms in the chiral
order expansion including all the homogeneous Wess-
Zumino (hWZ) terms taken into account. All the param-
eters of the Lagrangian are fixed by their relations to the
Sakai-Sugimoto’s five-dimensional holographic QCD
(hQCD) model [10], while two parameters of the latter
are fixed to yield the empirical values of the pion decay
constant and the vector meson mass in matter-free space.
We shall refer to this model as HLS(π; ρ;ω).
Several remarkable results, qualitatively different from,

or not observed in, the previous works on skyrmions were
obtained in Refs. [3–6]. We will return to some of them
later. Here we mention a few to illustrate the key issues that
will concern what we treat in this paper.

(i) Although the results show some discrepancies from
nature, if one considers the fact that none of the
parameters is adjusted with baryon properties, they
could be taken as the first “parameter-free” predic-
tions of the skyrmion approach. Furthermore, in spite
of the limitations of the model such as the large Nc,
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large ’t Hooft constant (λ), and chiral limits taken in
the hQCD model, the semiquantitative agreement of
the results with experiments is quite remarkable.

(ii) The full Oðp4Þ terms, in particular the hWZ terms
that carry the ω meson degree of freedom, are found
to be essential for the soliton structure of elementary
baryons. This highlights the particularly important
role, thus far unexposed, played by the ω meson in
the baryon structure. We assert that the Lagrangian
given up to Oðp4Þ cannot be approximated by a few
terms as was done in the past.1

(iii) In dense matter simulated on the face-centered cubic
(FCC) crystal, it is found that the transition from
skyrmions to half-skyrmions accompanied by the
vanishing quark condensate takes place near the
normal nuclear matter density (denoted by n0 from
here on) in contrast to the case without the vector
mesons and the Oðp4Þ terms. In the latter case, the
transition density, denoted n1=2, is much too high
compared with n0. A qualitatively different feature
found there, which has not been noticed in the past, is
that the medium-modified pion decay constant f�π
that decreases smoothly up to n1=2 roughly in the
same way as in chiral perturbation calculations stops
decreasing at n1=2 and then stays more or less
constant, although the space averaged quark con-
densation hq̄qi vanishes in the half-skyrmion phase.
The nonvanishing f�π in the half-skyrmion phase
implies that the chiral symmetry remains still in
the Nambu-Goldstone mode even though hq̄qi¼0.
Thus, the quark condensate is not a good order
parameter in the crystal description.

(iv) It is found that the medium-modified effective
nucleon mass m�

N tracks closely f�π, indicating that
the large Nc approximation continues to hold in
medium. Furthermore, in the half-skyrmion phase,
the mass remains ∼60% of its vacuum value. The
condensate-independent mass is reminiscent of
the chiral-invariant baryon mass m0 that figures in
the parity-doublet baryon model [11], but its physi-
cal origin is not clarified yet.

We note that some of the features mentioned above are in
disagreement with what was obtained in the mean field
approximation [12] and in a naive formulation of HLS in
the meson sector [9]. In particular, they bring tension with
the vector manifestation (VM)2 and the Brown-Rho (BR)
scaling.

Given that what we are dealing with here is an effective
theory of QCD given in terms of the “macroscopic” degrees
of freedom, i.e., hadrons, we need to match the effective
theory to QCD at a certain scale at which the chiral
symmetry gets restored. By matching the correlators of
HLS to those of QCD in the Wilsonian sense, one finds that
near the chiral restoration scale, here the putative critical
density nc, the parameters in HLS should satisfy the
following relations:

f2πðq2 ¼ 0Þ→ 0; m2
ρ → m2

π ¼ 0; aðq2 ¼ m2
ρÞ → 1;

ð1Þ

which are called “vector manifestation” of the Wigner
realization of chiral symmetry [13]. The matching between
the effective theory and QCD renders the low energy
constants (LECs) of the theory intrinsically density
dependent.3 However, if, as mentioned, f�π stays as a
nonzero constant in the half-skyrmion phase and mρ does
not scale in medium, it is not clear how to access the VM
unless some other (hadronic) mechanism intervenes before
the QCD degrees of freedom enter.
The objective of this paper is to resolve this problem. For

this, we resort to scale (or conformal) symmetry of QCD.
It is well known that the chiral symmetry breaking and

scale symmetry are intricately linked to each other and that
chiral symmetry breaking could be triggered by sponta-
neous breaking of scale symmetry which in turn is caused
by the presence of explicit scale symmetry breaking
[15,16]. This is the mechanism that we exploit to inves-
tigate the possible realization of VM by incorporating the
QCD trace anomaly in HLS. We find that, with an
appropriate inclusion of the scalar field associated with
the explicit breaking of conformal symmetry, both VM and
the BR scaling [12] can be realized.
There are a variety of reasons to believe that the scalar

degree of freedom is needed in addition to those that figure
in HLS in the structure of both elementary baryon and
multibaryon systems. Firstly the skyrmion mass obtained in
HLS(π; ρ;ω) [3,4] overshoots the empirical nucleon mass
by ≳300 MeV. One expects that the OðN0

cÞ Casimir
energy, missing in the OðNcÞ soliton mass, can account
for the attraction needed of that amount. In the Skyrme
model, the Casimir contribution comes from pion loops that
account for the scalar channel and is of the right magnitude
to lower the mass from the canonical ∼1500 MeV down to

1These terms include the quartic Skyrme term in the pion-
only chiral Lagrangian as in the original Skyrme model or
the “minimal” HLS model with one hWZ term out of the
three (explained below).

2In the formulation of the VM in Ref. [9], the vanishing quark
condensate (hq̄qi ¼ 0) was used. Of course the vanishing of the ρ
meson mass can never occur unless fπ ¼ 0 at the chiral
restoration point identified with the VM.

3It should be stressed that when we refer to density depend-
ence, we are referring specifically to this intrinsic density
dependence [14]. Any truncation in a many-body system in
the sense of a Wilsonian renormalization group (RG) would
generate density dependence in the parameters of the model, and
it would be in practice very difficult to identify or isolate the
intrinsic density dependence coming from the matching to QCD
in nuclear observables. This has compounded the efforts to see
“partial chiral symmetry restoration” from nuclear experiments.
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∼1000 MeV [17]. Secondly, in the mean field approach to
nuclear matter, a (chiral) scalar mass of ∼600 MeV is
indispensable for binding the matter, counterbalancing the
repulsion from the ω meson exchange. Closer to the
problem at hand, the simulation of the nuclear property
from the FCC crystal shows that the density nmin at which
the per-skyrmion energy is the minimum is larger than the
normal nuclear density n0 and the binding energy at nmin is
∼100 MeV, which is larger than the empirical value
∼16 MeV per baryon [5]. These discrepancies also signal
that there is something missing in the present skyrmion
crystal description for the EoS of nuclear matter in HLS
(π; ρ;ω). Although there is such a defect in our approach, in
fact, what we are suggesting here is that one can make
predictions on certain fluctuation properties of hadrons on
top of the skyrmion background which is treated semi-
classically, which is what the simulation all about.
The advantage of having the vector mesons as (hidden)

gauge fields is that a systematic chiral perturbation theory
can be formulated with vector mesons in addition to the
pion [5].4 Introducing scalar fields in this framework is,
however, highly problematic. What was done in the past
and will be done here is to use the trick of the conformal
compensator field or “conformon”5 used in cosmology and
also in the technidilaton approach to a Higgs-like boson, to
write a conformally invariant Lagrangian with the con-
formal symmetry spontaneously broken by a Coleman-
Weinberg-type potential. The conformon field is then
identified as a (pseudo-)Nambu-Goldstone boson of spon-
taneously broken scale symmetry, i.e., the dilaton.
In what follows we analyze in what way this dilaton

resolves the problem mentioned above. This will reveal
how it affects the structure of both the elementary nucleon
and multibaryon systems at large density.
This paper is organized as follows. In Sec. II, after a

sketch of the general strategy of approaching elementary
baryon and multibaryon systems with one single
Lagrangian anchored on hidden local symmetry, we intro-
duce the dilaton associated with the scale symmetry
breaking of QCD as a conformon to HLS. This section
serves also to define the notations used in the present work.
In Sec. III the single skyrmion properties are studied using
the dilaton compensated HLS model. The effects of the
dilaton on the skyrmion matter properties and medium-
modified hadron properties are explored in Sec. IV. A
possible way to realize VM and restore chiral symmetry
with the effects of dilaton is also discussed. We give a

succinct summary of the results in Sec. V and further
discussions in Sec. VI.

II. HIDDEN LOCAL SYMMETRY LAGRANGIAN
WITH CONFORMAL INVARIANCE

We start with a brief description of the HLS Lagrangian
for defining the notations used in this paper. In free space,
the full symmetry group associated with the basic ingre-
dients, π, ρ, and ω, is Gfull ¼ ½SUð2ÞL × SUð2ÞR�chiral ×
½Uð2Þ�HLS in which the lowest-lying ρ and ω mesons
are incorporated as the gauge bosons of ½SUð2Þ�HLS and
½Uð1Þ�HLS components, respectively, of the “hidden local
symmetry” ½Uð2Þ�HLS. The HLS Lagrangian is constructed
by two 1-forms, α̂∥μ and α̂⊥μ, defined by

α̂∥μ ¼
1

2i
ðDμξR · ξ†R þDμξL · ξ†LÞ; ð2Þ

α̂⊥μ ¼
1

2i
ðDμξR · ξ†R −DμξL · ξ†LÞ; ð3Þ

with the chiral fields ξL and ξR, which are expressed in the
unitary gauge as

ξ†L ¼ ξR ¼ eiπ=2fπ ≡ ξ with π ¼ π · τ; ð4Þ

where τ’s are the Pauli matrices. The covariant derivative
associated with the hidden local symmetry is defined as

DμξR;L ¼ ð∂μ − iVμÞξR;L; ð5Þ

where Vμ represents the gauge boson of the HLS [7–9] as6

Vμ ¼
1

2
ðgωωμ þ gρρμÞ ð6Þ

and

ρμ ¼ ρμ · τ ¼
�

ρ0μ
ffiffiffi
2

p
ρþμffiffiffi

2
p

ρ−μ −ρ0μ

�
: ð7Þ

Up to Oðp4Þ, including the hWZ terms, the most general
HLS Lagrangian can be expressed as

LHLS ¼ LHLS
ð2Þ þ LHLS

ð4Þ þ LHLS
anom; ð8Þ

with
4The vector manifestation cannot be obtained unless the vector

meson mass can be considered as light as the pion mass as in
HLS. The phenomenological Lagrangians used in the literature
for treating vector mesons in dense medium can make sense only
in mean field and cannot address dropping vector meson masses.

5This term is borrowed from Ref. [18] in which it is used in
cosmology.

6In this paper, we distinguish the gauge coupling constants
for the ω and the ρ mesons which will be convenient for
discussing the medium modified hadron properties. In free
space, we take the hidden gauge symmetry as Uð2ÞHLS; thus
gω ¼ gρ ≡ g. If Uð2ÞHLS is broken in dense medium, they could
have different values.
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LHLS
ð2Þ ¼ f2πTrðα̂⊥μα̂

μ
⊥Þ þ af2πTrðα̂∥μα̂μ∥Þ þ Lkin; ð9Þ

where fπ is the pion decay constant, a is the HLS
parameter, and Lkin contains the kinetic terms of the vector
mesons:

Lkin ¼ −
1

2g2ρ
TrðVðρÞ

μν VðρÞ;μνÞ

−
1

2g2ω
TrðVðωÞ

μν VðωÞ;μνÞ; ð10Þ

with the field-strength tensors of vector mesons

VðρÞ
μν ¼ ∂μ

�
1

2
gρρν

�
− ∂ν

�
1

2
gρρμ

�

− i

�
1

2
gρρμ;

1

2
gρρν

�
;

VðωÞ
μν ¼ ∂μ

�
1

2
gωων

�
− ∂ν

�
1

2
gωωμ

�
: ð11Þ

For later discussions, we have separated the terms for the ρ
and ω mesons to allow different values for gρ and gω which
are the same in the case of ½Uð2Þ�HLS.
The Oðp4Þ Lagrangian is given by [9,19]

Lð4Þ ¼ y1Tr½α̂⊥μα̂
μ
⊥α̂⊥να̂

ν⊥� þ y2Tr½α̂⊥μα̂⊥να̂
μ
⊥α̂ν⊥� þ y3Tr½α̂∥μα̂μ∥α̂∥να̂ν∥� þ y4Tr½α̂∥μα̂∥να̂μ∥α̂ν∥�

þ y5Tr½α̂⊥μα̂
μ
⊥α̂∥να̂ν∥� þ y6Tr½α̂⊥μα̂⊥να̂

μ
∥α̂

ν
∥� þ y7Tr½α̂⊥μα̂⊥να̂

ν
∥α̂

μ
∥�

þ y8fTr½α̂⊥μα̂
μ
∥α̂⊥να̂

ν
∥� þ Tr½α̂⊥μα̂∥να̂

ν⊥α̂
μ
∥�g þ y9Tr½α̂⊥μα̂∥να̂

μ
⊥α̂ν∥�

þ iz4Tr½VðρÞ
μν α̂

μ
⊥α̂ν⊥� þ iz5Tr½VðρÞ

μν α̂
μ
∥α̂

ν
∥�: ð12Þ

Note that VðωÞ
μν does not appear in the z4 and z5 terms.

Finally, the anomalous parity hWZ terms Lanom are
written as

ΓhWZ ¼
Z

d4xLanom ¼ Nc

16π2

Z
M4

X3
i¼1

ciLi; ð13Þ

where M4 stands for the four-dimensional Minkowski
space and

L1 ¼ iTr½α̂3Lα̂R − α̂3Rα̂L�; ð14aÞ

L2 ¼ iTr½α̂Lα̂Rα̂Lα̂R�; ð14bÞ

L3 ¼ Tr½FVðα̂Lα̂R − α̂Rα̂LÞ�; ð14cÞ

in the 1-form and 2-form notations with

α̂L ¼ α̂∥ − α̂⊥;
α̂R ¼ α̂∥ þ α̂⊥;
FV ¼ dV − iV2: ð15Þ

In the Lagrangian (8) there appear many undetermined
constants which include fπ , a, gρ, gω, yiði ¼ 1;…; 9Þ,
ziði ¼ 4; 5Þ, and ciði ¼ 1; 2; 3Þ. To fix them phenomeno-
logically, we need a large number of experimental data,
which are not available at present and will not be available
in the near future. The recent development of holographic
QCD, however, improves the situation dramatically. As
discussed in Refs. [3,4], those coefficients can be fixed
completely by means of a set of “master formulas” that
match the four-dimensional effective theory (here HLS) to

the five-dimensional hQCD model. In the large Nc and
large λ limit, the hQCD has two parameters which can be
related to the empirical values of the pion decay constant
and the vector meson mass. Then with these quantities
fixed in the meson sector, all the coefficients of the HLS
Lagrangian we are dealing with are determined by the
master formula. Here we employ the Sakai-Sugimoto
hQCD model [10] which is supposed to be dual to our
HLS model, with the empirical values

fπ ¼ 92.4 MeV; mω ¼ mρ ¼ 775.5 MeV; ð16Þ

where the ½Uð2Þ�HLS in free space has been taken.
The essential point in deriving HLS from hQCD models

that have 5D Dirac-Born-Infeld part and the Chern-Simons
part,

S5 ¼ SDBI5 þ SCS5 ; ð17Þ

where

SDBI5 ¼ NcGYM

Z
d4xdz

�
−
1

2
K1ðzÞTr½F μνF μν�

þ K2ðzÞM2
KKTr½F μzF μz�

�
; ð18Þ

SCS5 ¼ Nc

24π2

Z
M4×R

w5ðAÞ; ð19Þ

is to make the mode expansion of the 5D gauge field
AMðx; zÞ [M ¼ ðμ; zÞ with μ ¼ 0; 1; 2; 3] and integrate
out all the modes except the pseudoscalar and the
lowest-lying vector mesons. This reduces AMðx; zÞ to
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Ainteg
M ðx; zÞ which in the Azðx; zÞ ¼ 0 gauge amounts to the

substitution [3,4]

Aμðx; zÞ → Ainteg
μ ðx; zÞ

¼ α̂⊥μψ0 þ ðα̂∥μ þ VμÞ þ α̂∥μψ1ðzÞ; ð20Þ

where fψnðzÞg are the eigenfunctions satisfying the
following eigenvalue equation obtained from the action:

−K−1
1 ðzÞ∂z½K2ðzÞ∂zψnðzÞ� ¼ λnψnðzÞ; ð21Þ

with λn being the nth eigenvalue (λ0 ¼ 0). Here, K1ðzÞ and
K2ðzÞ are the warping factors in the fifth direction of the
five-dimensional space-time, which are explicitly K1ðzÞ ¼
K−1=3ðzÞ and K2ðzÞ ¼ KðzÞ with KðzÞ ¼ 1þ z2 in the
Sakai-Sugimoto model [10].
In this paper, in order to distinguish the ρ and ω mesons

associated to the SUð2Þ and Uð1Þ components, respectively,
of the 5D gauge field AMðx; zÞ, we rewrite Eq. (20) as

Aμðx; zÞ → Ainteg
μ ðx; zÞ

¼ α̂⊥μψ0 þ ðα̂∥μ þ VμÞ
þ α̂SUð2Þ∥μ ψ1ðzÞ þ ~̂αUð1Þ∥μ ~ψ1ðzÞ; ð22Þ

where again we have separated out the SU(2) part and the
U(1) part in the last two terms. The expression for ~̂αUð1Þ∥μ can
be obtained from Eq. (2) by removing all the isotriplets.
With these conventions one can easily see that ψ1ðzÞ and
~ψ1ðzÞ are the wave functions of the ρ and ω mesons,
respectively.
Substituting Eq. (22) into the five-dimensional hQCD

models leads to the HLS Lagrangian. For the Oðp2Þ terms
we have the following relations for the low energy
constants:

f2π ¼ NcGYMM2
KK

Z
dzK2ðzÞ½ _ψ0ðzÞ�2;

af2π ¼ NcGYMM2
KKλ1hψ2

1i;
1

g2ρ
¼ NcGYMhψ2

1i;

1

g2ω
¼ NcGYMh ~ψ2

1i: ð23Þ

The parameters a, fπ , and the gauge coupling constants gρ
and gω satisfy the following relations:

ag2ρf2π ¼ m2
ρ; ag2ωf2π ¼ m2

ω: ð24Þ

Therefore, ψ1ðzÞ and ~ψ1ðzÞ satisfy

~ψ1ðzÞ ¼
mρ

mω
ψ1ðzÞ: ð25Þ

By using Eq. (25), we get the master formula of the low
energy constants of the Oðp4Þ terms as [20]7

y1 ¼ −y2 ¼ −
f2π
m2

ρ
NhQCDhð1þ ψ1 − ψ2

0Þ2i;

y3 ¼ −y4 ¼ −
f2π
m2

ρ
NhQCDhψ2

1ð1þ ψ1Þ2i;

y5 ¼ 2y8 ¼ −y9 ¼ −2
f2π
m2

ρ
NhQCDhψ2

1ψ
2
0i;

y6 ¼ −ðy5 þ y7Þ;

y7 ¼
2f2π
m2

ρ
NhQCDhψ1ð1þ ψ1Þð1þ ψ1 − ψ2

0Þi;

z4 ¼
2f2π
m2

ρ
NhQCDhψ1ð1þ ψ1 − ψ2

0Þi;

z5 ¼ −
2f2π
m2

ρ
NhQCDhψ2

1ð1þ ψ1Þi;

c1 ¼
mρ

mω

��
_ψ0ψ1

�
1

2
ψ2
0 þ

1

6
ψ2
1 −

1

2

�		
;

c2 ¼
mρ

mω

��
_ψ0ψ1

�
−
1

2
ψ2
0 þ

1

6
ψ2
1 þ

1

2
ψ1 þ

1

2

�		
;

c3 ¼
mρ

mω

��
1

2
_ψ0ψ

2
1

		
; ð26Þ

where NhQCD ¼ λ1=
R
dzK2ðzÞ½ _ψ0ðzÞ�2, and the wave func-

tion ~ψ1ðzÞ associated with the ω field in ci has been
expressed in terms of ψ1ðzÞ associated with the ρ field
through the relation (25). For deriving the expressions of yi
and zi, we have considered that the U(1) degree of freedom
should disappear in these terms because of the antisym-
metric field tensor appearing in the Dirac-Born-Infeld part.
The integrals appearing in the above relations are defined by

hAi≡
Z

∞

−∞
dzK1ðzÞAðzÞ;

hhAii≡
Z

∞

−∞
dzAðzÞ: ð27Þ

A. Predictions of HLS

To highlight the principal effect of the dilaton in dense
skyrmion matter, we briefly review the predictions of
dilatonless HLS obtained in the previous works. In
Ref. [4] it was shown that this model yields the soliton
mass of 1184 MeV, which is quite good as a “parameter-
free” result. Although it is larger by about 300 MeV than

7Here, we express the master formula in terms of fπ and mρ.
The factor mρ=mω in ci arises from the normalization of ψ1.
In free space we have mρ=mω ¼ 1.
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the observed nucleon mass, it is not difficult to understand
where this difference may come from. As mentioned in
Sec. I, in the standard Skyrme model (with pions only), an
excess of ∼500 MeV can be reduced by the Casimir energy
[17] that comes at the next order in Nc, i.e.,OðN0

cÞ. We will
see below that the dilaton contributes to remove a part of
that excess, although not enough.
The HLS Lagrangian also provides a noticeable

improvement in the dense baryonic matter study [5]
compared to what exists in the literature. Here, the
skyrmion–half-skyrmion transition takes place near the
normal nuclear matter density, rendering the process
phenomenologically relevant. A distinctively novel result
is that in the half-skyrmion phase, the intrinsic density-
dependent (or effective in-medium) pion decay constant f�π
is nonvanishing and stays independent of density. The in-
medium nucleon mass m�

N scales similarly to the pion
decay constant, which is indicative of the large Nc
dominance. This (nearly) constant nucleon mass in the
half-skyrmion phase resembles the nonvanishing chiral-
invariant mass in the parity-doublet chiral model for
baryons [11]. We will return to this matter in the discussion
section in connection with the origin of the nucleon mass.
What seems not evident is the movement toward the

vector manifestation of the HLS given in Eq. (1). In order to
arrive at the fixed point that would correspond to the chiral
transition, which is a quantum phase transition, the corre-
lators of HLS should be matched to those of QCD. For this,
it is clear that one has to understand the quantum structure
of the half-skyrmion phase. As suggested in Ref. [21], it
could involve a topology-triggered change from a Fermi-
liquid state to a non-Fermi-liquid state. This issue needs to
be clarified.

B. Conformally compensating HLS

It is also plausible that higher-order corrections and/or
heavier vector mesons such as the a1 could play an important
role in approaching the chiral restoration point. Our thesis in
this paper, as stated in Sec. I, is that what is crucially needed
in the HLS structure is the scalar degree of freedom.
As stated in Sec. I, we introduce the scalar needed as a

dilaton that figures in spontaneous breaking of scale
symmetry (SBSS) which is locked to spontaneous breaking
of chiral symmetry (SBCS) [16]. The idea is that the trace
anomaly of QCD provides the explicit breaking of scale
symmetry that is needed to trigger the SBSS. It is well
known that, without the explicit breaking, the spontaneous
breaking cannot occur [15]. We associate the part of the
gluon condensate that remains “unmelted” above the
critical temperature or density, i.e., the “hard glue” in
the language of Ref. [14], with the explicit breaking of scale
symmetry. We follow the standard procedure of incorpo-
rating the nonlinearly realized scale invariance of adding a
field χ as the “conformal compensator” (or conformon for
short). The procedure is to make the HLS Lagrangian

conformally invariant and then add a potential V that
breaks conformal invariance spontaneously. The sponta-
neous breaking makes the conformon a (pseudo-)Nambu-
Goldstone boson, i.e., the dilaton.
If one assumes that the vector fields have scale dimen-

sion 1,8 then this conformon trick modifies only the Oðp2Þ
term in Eq. (8), since the Oðp4Þ terms are scale invariant
as they are. Putting in the dilaton part of the Lagrangian,
we have

LdHLS-I ¼ LdHLS-I
ð2Þ þ LHLS

ð4Þ þ LHLS
anom þ Ldilaton; ð28Þ

where

LdHLS-I
ð2Þ ¼ f2π

�
χ

fχ

�
2

Tr½α̂⊥μα̂
μ
⊥� þ af2π

�
χ

fχ

�
2

Tr½α̂∥μα̂μ∥�

þ Lkin; ð29Þ

Ldilaton ¼
1

2
∂μχ∂μχ þ V: ð30Þ

Here Lkin is the kinetic term of vector mesons as given in
Eq. (10) and fχð≠ 0Þ is the vacuum expectation value of the
field χ. The potential V in this system is not known except
that it should reproduce the “soft glue” part in the trace
anomaly [14]. If one assumes that the conformal symmetry
breaking term is small, then the potential takes the familiar
Coleman-Weinberg form (see, e.g., Ref. [22])

V ¼ −
m2

χf2χ
4

��
χ

fχ

�
4
�
ln

�
χ

fχ

�
−
1

4

�
þ 1

4

�
: ð31Þ

We shall refer to the Lagrangian (28) with the potential
given by Eq. (31) as dHLS-I(π; ρ;ω).
As we shall see below, since the conformon couples in

the same way to both the ρ and the ω mesons as well as to
the derivative of the U field, as the dilaton condensate
decreases with density, the energy density of the system
diverges with increasing density, as found in the minimal
model in Ref. [23].9 This leads to a contradictory situation

8This can be supported by the observation that

ρμ ∼
i
gρ

ð∂μξRξ
†
R þ ∂μξLξ

†
LÞ;

in the limit that mρ → ∞.
9The so-called minimal model corresponds to the truncated

Lagrangian of HLS with the LECs yi ¼ zi ¼ c3 ¼ 0 and c1 ¼
−c2 ¼ 2=3 in Eq. (8) below. This is gotten by dropping allOðp4Þ
terms in the Lagrangian except one term ∝ ωμBμ (where Bμ is the
baryon number current) in the hWZ that results if one substitutes
the equation of motion for the ρ with the ρ mass set to infinity in
the hWZ part of the Lagrangian but not elsewhere. Obviously this
limit precludes ab initio a dropping ρ mass and hence the VM,
that we consider unacceptable.
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that as the density increases, the pion decay constant and
the vector meson mass are forced to increase, instead of
decrease.
There are two ways out of this conundrum. Both resort to

the possible breaking of ½Uð2Þ�HLS symmetry for the ρ
and ω.
One is to implement the observation made in Ref. [24]

that the symmetry is broken in the gauge coupling gω ≠ gρ.
This resolves the above-mentioned problem in a similar
way to what is discussed in Ref. [24]. This matter will be
addressed in more detail in the discussion section as it
raises further issues to be explored.
The other is to break ½Uð2Þ�HLS symmetry in the mass

term so that in medium, while the ρ mass has the VM
property, the ω mass does not, which would prevent the
increasing repulsion. This can be done by applying the
conformal compensator to the ρ sector but not to the ω
sector. We have not yet figured out how to justify this
structure in a rigorous way.10 What we have done in this
paper is simply not to apply the conformon to the ω mass.
To do this we factor out the ωmass term in the second term
of LHLS

ð2Þ and couple χ2 only to the rest. We shall refer to this
Lagrangian as dHLS-II(π; ρ;ω). Then it reads

LdHLS-II ¼ LdHLS-II
ð2Þ þ LHLS

ð4Þ þ LHLS
anom þ Ldilaton; ð32Þ

where

LdHLS-II
ð2Þ ¼ f2π

�
χ

fχ

�
2

Tr½α̂⊥μα̂
μ
⊥� þ af2π

�
χ

fχ

�
2

Tr½α̂∥μα̂μ∥�SUð2Þ

þ 1

2
af2πg2ωωμω

μ þ Lkin: ð33Þ

The rest are the same as in dHLS-I(π; ρ;ω). In the second
term, the subscript SUð2Þ denotes that only the isovector
part is considered and the ωmass term is factored out. Note
that in free space χ=fχ ¼ 1, so that the Uð2ÞHLS symmetry
is restored. We are considering the case that the medium
breaks ½Uð2Þ�HLS symmetry in such a way that, while the ρ
mass scales in density, the ω mass does not. This is
analogous to the weak scaling of the ω-nucleon coupling
in Ref. [24], where the symmetry breaking is attributed to
the vector coupling. We shall see that this simple modi-
fication resolves the long-standing problem started in
Ref. [23] and enables chiral symmetry to be restored
and the vector symmetry to be manifest at some critical
density nc.
The incorporation of the dilaton in dHLS-II(π; ρ;ω) brings

in two undetermined constants fχ andmχ . Since there are no
experimental values, we shall just take them as free param-
eters. We will present the results obtained with [23]

fχ ¼ 240 MeV;

mχ ¼ 720 MeV: ð34Þ

In the limit of mχ → ∞, all of the numerical results trivially
converge to those of HLS(π; ρ;ω) reported in Refs. [3–6].

III. SINGLE SKYRMION PROPERTIES
IN DHLS-I AND DHLS-II

We first study the effect of the dilaton on the single
skyrmion properties. The soliton solution can be found in
the spherical form as

ξðrÞ ¼ exp ½iτ · r̂FðrÞ=2�;

ρμðrÞ ¼ GðrÞ
gρr

ðr̂ × τÞiδμi;

ωμðrÞ ¼ WðrÞδμ0;
χðrÞ ¼ fχCðrÞ: ð35Þ

The standard collective rotation quantization [26] is
made by the transformation

ξðrÞ → ξðr; tÞ ¼ AðtÞξðrÞA†ðtÞ;
VμðrÞ → Vμðr; tÞ ¼ AðtÞVμðrÞA†ðtÞ; ð36Þ

where AðtÞ is a time-dependent SU(2) matrix, which
defines Ω by

iτ ·Ω≡ A†ðtÞ∂0AðtÞ; ð37Þ

which leads to the most general forms for the vector-meson
excitations as

ρ0ðr; tÞ ¼ AðtÞ 2
gρ

½τ · Ωξ1ðrÞ þ τ̂ · r̂Ω · r̂ξ2ðrÞ�A†ðtÞ;

ωiðr; tÞ ¼ φðrÞ
r

ðΩ × r̂Þi: ð38Þ

Since the dilaton field χ is a spin-0 isoscalar field, it is not
affected by the collective rotation. The boundary conditions
of the wave functions are given in Ref. [4] and those for
CðrÞ read

C0ð0Þ ¼ 0; Cð∞Þ ¼ 1: ð39Þ

It is then straightforward to calculate the soliton mass
and the moment of inertia from which the equations of
motion for the wave functions introduced in Eqs. (35) and
(38) can be read. We refer the details to Ref. [4], which can
be easily used to obtain the equations of motion in the case
with the dilaton field.

10See Ref. [25] for the relevance of the Freund-Nambu theorem
to dense matter problems. There the problem of the ω mass was
not addressed.
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By solving the coupled equations of motion, one can
calculate the properties of a single skyrmion. Shown in
Table I are the skyrmion properties obtained in dHLS-I and
dHLS-II. We present the results with the dilaton parameters
given in Eq. (34). For comparison, we show the results in
HLS that has no dilaton field. By varying the dilaton mass
we could also confirm that, the heavier the dilaton mass, the
closer the results of dHLS-I and dHLS-II come to those of
HLS, as anticipated.
The inclusion of the dilaton does indeed reduce the

soliton mass, although not as much as needed. The mass
reduction is found to be ∼50 MeV and ∼90 MeV, respec-
tively, for dHLS-I and dHLS-II.11 Given that the dilaton
mass term itself increases the soliton mass by about the
same amount in magnitude, we see that the attraction due to
the dilaton coupling to other fields is twice the mass
reduction, which is substantial. Here, the main contribution
comes from the factor ðχ=fχÞ2 in the Lagrangian Lð2Þ,
which is less than 1 in the central region of the skyrmion.
On the other hand, in dHLS-I, the ω mass is reduced
effectively by the same factor and provides more repulsion
to the solution, as can be checked by the increase of the
soliton mass from the hWZ terms. As for the N-Δ mass
difference denoted by ΔM in Table I, the dilaton causes its
increase. It is not desirable but can be understood from the
fact that ΔM is inversely proportional to the moment of
inertia with respect to the isospin rotation. With the dilaton
field, the factor ðχ=fχÞ2 in Lð2Þ causes smaller moment of
inertia that leads to a larger ΔM. On the other hand, the
skyrmion size is almost unaffected by the presence of the
dilaton. The rms radius of the soliton evaluated by
weighting the baryon number density,

ffiffiffiffiffiffiffiffiffiffiffi
hr2iB

p
, is almost

unchanged by the incorporation of the dilaton, and the
energy density weighted rms radius

ffiffiffiffiffiffiffiffiffiffiffi
hr2iE

p
shows only a

slight change. The breakdown of the soliton mass in each
model is shown in Table I.
The profiles of the wave functions of dHLS-I and dHLS-

II are shown by dashed and dot-dashed lines, respectively,
in Fig. 1. For comparison, the wave functions of HLS are
also given by solid lines, for which CðrÞ ¼ 1 and hence is
not drawn. One can find that the wave functions FðrÞ,GðrÞ,
and WðrÞ are almost unaffected by the presence of the
dilaton field. This explains that the skyrmion size is almost
unaffected by the dilaton field, as is verified in Table I.

However, the changes in WðrÞ show opposite behaviors in
dHLS-I and dHLS-II. We can understand such a change
in WðrÞ by the fact that the ω mass scales by the factor
ðχ=fχÞ in dHLS-I, becoming effectively lighter in the
central region, while it is not scaled in dHLS-II. The wave
function of the dilaton field CðrÞ illustrates that the scale
symmetry—and consequently the chiral symmetry—is
partially restored in the central region of the skyrmion,
which is consistent with the chiral bag picture [28,29].

IV. DENSE SKYRMION MATTER
IN dHLS-I AND dHLS-II

A. FCC skyrmion crystal

Although the effect of the dilaton on a single skyrmion is
relatively minor, the dilaton plays a far more important role
in dense matter made of such skyrmions. The dense
skyrmion matter can be constructed by putting the sky-
rmions onto the FCC crystal sites following the procedure
outlined, for example, in Refs. [2,5,23]. To get the lowest
energy configuration, the skyrmion at each lattice site
should be arranged in such a way that the nearest skyrmions
have the maximum attraction, for which the skyrmions at
the closest sites should be relatively rotated in the isospin
space by an angle π about the axis perpendicular to the line
joining them. This requires that πðrÞ, ρμðrÞ, ωμðrÞ, and χðrÞ

TABLE I. Numerical results of the skyrmion properties. Msol and ΔMð≡MΔ −MNÞ are in units of MeV, whileffiffiffiffiffiffiffiffiffiffiffi
hr2iB

p
and

ffiffiffiffiffiffiffiffiffiffiffi
hr2iE

p
are in fm.ffiffiffiffiffiffiffiffiffiffiffi

hr2iB
p ffiffiffiffiffiffiffiffiffiffiffi

hr2iE
p

ΔM Msol MOðp2Þ
sol MOðp4Þ

sol Manom
sol Mdilaton

sol

HLS 0.43 0.59 522.8 1188.8 878.4 −125.1 435.4 0
dHLS-I 0.43 0.60 555.1 1138.0 746.2 −114.9 458.0 48.8
dHLS-II 0.41 0.58 636.0 1099.1 696.0 −117.1 431.4 89.0
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FIG. 1 (color online). Profiles of the wave functions in HLS
(solid lines), dHLS-I (dashed lines), and dHLS-II (dot-dashed
lines). In HLS, CðrÞ ¼ 1 and it is not drawn here.11In the minimal model, this reduction is about 50 MeV [27].
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for the FCC crystal configuration12 should obey the
periodic but distorted boundary conditions associated with
the required symmetries with respect to the translation,
reflection, fourfold rotations, and so on. (See Ref. [23] for
details.)
The classical solutions for π, ρ, ω, and χ mesons

satisfying the symmetries and carrying a specified baryon
number per box can be obtained by applying the Fourier
expansion method developed in Ref. [30] for the original
Skyrme model, then generalized in Ref. [23] for the model
with vector mesons and dilaton. For π, ρ, and ω fields, we
use the convention of HLSðπ; ρ;ωÞ described in Ref. [5].
The isoscalar dilaton field χ could be expanded as

χðrÞ
fχ

¼
X
abc

βχabc cos

�
πax
L

�
cos

�
πby
L

�
cos

�
πcz
L

�
ð40Þ

with the expansion coefficients βχabc with the same integer
set ða; b; cÞ as that of the ω meson. Here, L is the half
length of the edge of a single FCC box containing four
skyrmions. The normal nuclear matter density n0 ¼
0.17=fm3 corresponds to the crystal size L ∼ 1.43 fm.
The minimum energy configuration can be found

numerically by taking the expansion coefficients as the
variational variables. However, the ω meson field needs a
special treatment as in Ref. [23]. Since the ω meson
provides a repulsive interaction and gives a positive definite
contribution to the energy, a straightforward variational
process always ends up with the trivial results ω0 ¼ 0. It is
nonetheless the correct solution to the equation of motion
for the ω with the nonvanishing source term; viz.,

½−∂i∂i þ C2ðrÞm2
ω�ω0ðrÞ ¼ SωðrÞ; ð41Þ

where

CðrÞ ¼
�
χðrÞ=fχ for dHLS-I
1 for dHLS-II

: ð42Þ

Both in dHLS-I and dHLS-II, the source term, Sω in
Eq. (41), comes from the hWZ terms,

Sω ¼ −
gωNc

32π2
εijk½ðc1 þ c2Þ ~α⊥i · ð ~α∥j × ~α∥kÞ

þ ðc1 − c2Þ ~α⊥i · ð ~α⊥j × ~α⊥kÞ
− 2c3fVij · ~α⊥k − εijk∂ið ~α∥j · ~α⊥kÞg�: ð43Þ

Thanks to the symmetries of the fields, the source term can
be expanded in the Fourier series with the same set of the
integers ða; b; cÞ as those of ωðrÞ and can be written as

SωðrÞ ¼
X
abc

γabc cos

�
πax
L

�
cos

�
πby
L

�
cos

�
πcz
L

�
: ð44Þ

Then, the equation of motion for the ω can be reduced to a
linear matrix equation for βωabc asX

a0b0c0
Dabc;a0b0c0β

ω
a0b0c0 ¼ γabc; ð45Þ

where the matrix elements D
−∂2i
abc;a0b0c0 from the Laplacian ∂2

i
and Dm2

ω

abc;a0b0c0 from the ω mass term in dHLS-II form
diagonal matrices,

D
−∂2i
abc;a0b0c0 ¼ ða2 þ b2 þ c2Þ

�
π

L

�
2

δaa0δbb0δcc0 ;

Dm2
ω

abc;a0b0c0 ¼ m2
ωδaa0δbb0δcc0 : ð46Þ

The matrix DC2m2
ω from the space-dependent ω mass term

with C2ðrÞ in dHLS-I is nondiagonal and its element has
the form of

DC2m2
ω

abc;a0b0c0 ¼ m2
ω

X
a00;b00;c00

βC
2

a00b00c00fa0a00afb0b00bfc0c00c; ð47Þ

with the Fourier expansion coefficients βC
2

abc for C
2ðrÞ and

fa0a00a ¼
8<
:

δa0a if a00 ¼ 0;
δa00a if a0 ¼ 0;
1
2
δa;a0�a00 if a0a00 ≠ 0.

ð48Þ

Finally, the Fourier expansion coefficients βωabc can be
obtained by multiplying the inverse matrix D−1 to γabc.
In Fig. 2, we present the obtained energy per baryon

ðE=BÞ as a function of the crystal size L. The contributions
from Lð2Þ, Lð4Þ, and Lanom to E=B are also presented. The
results from dHLS-I and dHLS-II are shown by dashed and
dot-dashed lines, respectively. For comparison, HLS results
are also shown by solid lines. Besides the overall reduction
in E=B due to the changes in the single skyrmion mass, as
discussed in the previous section, we can see that, in the
case of dHLS-I, nmin where E=B has the minimum value is
slightly moved to a lower value than that of HLS. In the
case of dHLS-II, there is no noticeable change in nmin but
E=B drops suddenly at a density denoted by nc ≃ 4n0
whose position is given by the vertical solid lines in Fig. 2,
i.e., at L≃ 0.9 fm. As we will see later, at this density, not
only does the overall average of the dilaton field vanish but
also χðrÞ ¼ 0 in the whole space. In Fig. 2(b), we can see
explicitly the effect of the dilaton on the Lð2Þ, Lð4Þ, and
Lanom contributions to E=B. One can see that they have
similar density dependence. It shows clearly that, as in the
case of a single skyrmion, the dilaton field mainly affects
the contributions from Lð2Þ. Again, this reflects that the
dilaton couples only to the terms of Lð2Þ.
Figure 3 shows the space averaged quantities, hσi and

hχi, as functions of the crystal size L. Here, σ is defined by
12In this paper, we deal with the skyrmion crystal only at the

leading order in Nc.
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U ¼ ξ2 ¼ σ þ iτ · ϕπ and the space average hAi of quantity
AðrÞ is

hAi ¼ 1

Vbox

Z
box

d3rAðrÞ; ð49Þ

where the integral is over a single FCC box with the volume
Vbox ¼ 8L3. The vanishing of hσi signals the skyrmion–
half-skyrmion phase transition. In Fig. 3(a) it is shown that
the density of the half-skyrmion phase transition n1=2 is
changed with the inclusion of the dilaton. Interestingly,
they are opposite in dHLS-I and dHLS-II; in dHLS-I, n1=2
becomes slightly lower than that of HLS, while it becomes
slightly higher in dHLS-II.
As can be seen in Fig. 3(b), the dependence of hχi on the

crystal size at high density is completely different in dHLS-I
and dHLS-II. In dHLS-I, as density increases, hχi decreases
until the density approaches to about nmin, but after that it
begins to increase. Such an increase in hχi has been reported
in the previous work of Ref. [23]. Once we accept that the
scale symmetry is locked to the chiral symmetry, we expect
hχi to decrease, not increase, as density increases. The main
reason for this behavior comes from the χ2 term that we have
introduced into the second term in Lð2Þ, which makes the ω

mass scale with χ. The contribution of the hWZ term to E=B
can be approximately expressed as

ðE=BÞanom
¼ 1

4

Z
box

d3r
Z

d3r0SωðrÞ expð−m
�
ωjr− r0jÞ

4πjr− r0j Sωðr0Þ; ð50Þ

wherem�
ω is the “effective” ωmass. Note that the integration

over r is restricted in the single FCC box but that over r0 is
over all the space. In order to make ðE=BÞanom finite, the
screening through a nonvanishing ω mass is unavoidable.
The model based on dHLS-II, where ½Uð2Þ�HLS sym-

metry is broken down to ½SUð2Þ × Uð1Þ�HLS, avoids the
above-mentioned difficulty. We see in Fig. 3(b) that hχi
smoothly decreases to, and beyond, n1=2 and drops rapidly
to zero when a higher density nc is reached.13
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FIG. 2 (color online). (a) Energy per baryon E=B as a function
of crystal size L. (b) Contributions from Lð2Þ, Lð4Þ, and Lanom to
E=B. The results of dHLS-I and dHLS-II are given by the dashed
and dot-dashed lines, respectively, while those of HLS are shown
by solid lines for comparison. The vertical dotted line shows the
position of normal nuclear density, i.e., L ¼ 1.43 fm, and the
vertical solid line shows that of the critical density nc that
corresponds to L≃ 0.9 fm.
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FIG. 3 (color online). (a) The expectation value hσi and
(b) hχi=fχ as functions of crystal size L. The notations are the
same as in Fig. 2.

13As discussed in Ref. [31], an alternative way to get finite
ðE=BÞanom is to introduce a scale-dependent gω to weaken the
source itself. In Ref. [31], this was realized by multiplying the Sω
term by the factor χ3 so that the decrease in the effectiveωmass is
accompanied by the decrease in the effective source. However, it
is found that the weakening of the ω coupling upsets the stability
of the single skyrmion for a light dilaton that is needed for nuclear
phenomenology. As a variation along this direction, one can
endow an explicit density dependence in gω. In this case, there is
no problem with the single skyrmion properties. This will be
described in the discussion section.
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B. In-medium properties of mesons

Once the skyrmion crystal is constructed, one can use it
to study the in-medium properties of mesons as proposed in
Refs. [2,32]. Taking the skyrmion crystal solution as
background classical fields, we can interpret the fluctuating
fields on top of it as the corresponding mesons in dense
baryonic matter. For this purpose, we denote the minimum
energy solutions as ξð0ÞðrÞ, ρað0Þμ , ωð0Þ

μ , and χð0Þ, and then
introduce the fluctuating fields as

ξL;R ¼ ~ξL;Rξð0ÞL;R;

VðρÞ;a
μ ¼ 1

2
gρρ

að0Þ
μ þ 1

2
g�ρ ~ρaμ;

VðωÞ
μ ¼ 1

2
gωω

ð0Þ
μ þ 1

2
g�ω ~ωμ;

χ ¼ χð0Þ þ ~χ; ð51Þ

where ~ξ†L ¼ ~ξR ¼ ~ξ ¼ expðiτa ~πa=2fπÞ, ~ρaμ, ~ωμ, and ~χ stand
for the corresponding fluctuating fields. In Eq. (51), g�ρ and
g�ω are the medium modified HLS gauge couplings of the ρ
and ω mesons, respectively. It is worth noting that the
decomposition given in Eq. (51) can easily keep the HLS of
the matter in terms of the expansion of the quantum
fluctuations by imposing that the fluctuations transform
homogeneously under the HLS, but the matter fields
transform the same as their corresponding original
quantities in HLS. By substituting the fields in Eq. (51)
into the dHLS Lagrangian, one can obtain the medium
modified one.
To define the pion decay constant in the skyrmion matter,

we consider the axial-vector current correlator

iGab
μνðpÞ ¼ i

Z
d4xeip·xh0∣TJa5μðxÞJb5νð0Þ∣0i: ð52Þ

This correlator can be evaluated from the medium modified
Lagrangian by introducing the corresponding external
source by gauging the chiral symmetry, i.e., substituting
the covariant derivative defined in Eq. (5) with

DμξL ¼ ð∂μ − iVμÞξL þ iξL;RLμ;

DμξR ¼ ð∂μ − iVμÞξR þ iξL;RRμ; ð53Þ

where Lμ and Rμ are introduced as the gauge fields of the
chiral symmetry. The external source of the axial-vector
current Jμ5 is a combination ðRμ − LμÞ=2.
In the present calculation, we do not consider the

contributions from the loop diagrams of the fluctuation
fields to the correlator of Eq. (52). Therefore, as illustrated
in Fig. 4, there are three types of contributions: (i) the
contact diagram, (ii) the pion exchange diagram, and
(iii) the ρ exchange diagram. In the present evaluation of
the correlator, we only consider the matter effect from
ξð0ÞL;R and χð0Þ but leave a complete calculation, including

derivative on them, to our future publication. In such an
approximation, the three types of contributions are
expressed as

ðiÞ∶ if2πgμνδab
�χ2ð0Þ
f2χ

�
1þ 1 − a

2

��
1 −

2

3
ϕ2
π

�
− 1

��	
;

ðiiÞ∶ − if2π
pμpν

p2
δab

�χ2ð0Þ
f2χ

��
1 −

2

3
ϕ2
π

�
− 1

�	
;

ðiiiÞ∶ iδab
�χ2ð0Þ
f2χ

a2g2f4π

p2 −
χ2ð0Þ
f2χ

m2
ρ

�
gμν −

pμpν

χ2ð0Þ
f2χ

m2
ρ

�

×
χ2ð0Þ
f2χ

��
1 −

2

3
ϕ2
π

�
− 1

�	
: ð54Þ

Summing over the above three types of contributions, one
concludes that, to the leading order of the p2=ðχ2ð0Þm2

ρ=f2χÞ
expansion, the axial-vector current correlator (52) is gauge
invariant and therefore can be decomposed into the
longitudinal and transverse parts as

Gab
μνðpÞ ¼ δab½PTμνGTðpÞ þ PLμνGLðpÞ�; ð55Þ

where the polarization tensors PL;T are defined as

PTμν ¼ gμi

�
δij −

pipj

jpj2
�
gjν;

PLμν ¼ −
�
gμν −

pμpν

p2

�
− PTμν: ð56Þ

We next define the medium modified pion decay constant
through the longitudinal component in the low energy limit

f�2π ≡ − lim
p0→0

GLðp0; p ¼ 0Þ

¼ f2π

�χ2ð0Þ
f2χ

�
1 −

2

3
ð1 − σ2ð0ÞÞ

�	
; ð57Þ

where the intrinsic density dependence is brought in by the
minimal energy solution ðχð0Þ=fχÞ2 and σ2ð0Þ, and the

relation σ2ð0Þ þ ϕ2
π ¼ 1 has been used. Note that, because

of the rho meson exchange effect, the medium modified fπ
is independent of the HLS parameter a.

FIG. 4. Three types of contributions to the correlator of
Eq. (52): (i) the contact diagram, (ii) the pion exchange diagram,
and (iii) the ρ exchange diagram. Shaded blobs stand for the
skyrmion matter interaction vertices.
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In our present approach, since only the Oðp2Þ terms of
HLS are considered, we should have

g�ρ ¼ gρ ð58Þ
for the normalization of the ρmeson field in medium. Thus,
because of the dilaton compensator, the ρ meson mass is
modified to be

m�2
ρ ¼

�χ2ð0Þ
f2χ

	
m2

ρ: ð59Þ

As for the ω meson mass, dHLS-I and dHLS-II lead to
different results:

m�2
ω ¼

8<
:

�
χ2ð0Þ
f2χ

	
m2

ω for dHLS-I;

m2
ω for dHLS-II

ð60Þ

From Eqs. (59) and (60) one may think that the BR
scaling for the ρ and ω meson masses is reproduced in
dHLS-I [12]. However, as will be shown below, since hχi
increases with increasing density above n1=2, the masses
increase so they are not consistent with the BR scaling for
n ≥ n1=2. Also the pion decay constant scales differently
from that of the vector meson masses.
Plotted in Fig. 5 are f�π=fπ and m�

ρ=mρ that show their
dependence on the crystal size. Since m�

ω=mω is equal to
m�

ρ=mρ in dHLS-I or it does not scale in dHLS-II, we do not
show it here. As for f�π=fπ, for density up to ∼n1=2, the
scaling behavior is mainly governed by σð0Þ, so that both in
dHLS-I and in dHLS-II it decreases smoothly down
to f�π=fπ ∼ 2=3.
For density larger than n1=2, the scaling behavior is

governed by χ2ð0Þ=f
2
χ, for which dHLS-I and dHLS-II yield

different results. In both cases, f�π=fπ stays ∼2=3 for a
while. Then, after nmin it starts to increase in dHLS-I, but it
goes down at higher density and then drops to zero at nc in
dHLS-II. The in-medium ρ meson mass m�

ρ scales only

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hχ2ð0Þ=f2χi

q
that is similar to hχð0Þ=fχi, so it decreases

monotonically until ∼nmin, after which it starts to increase
in dHLS-I, although it will ultimately drop to zero at nc in
dHLS-II.
The situation in dHLS-II is much simpler and appealing

over all the range of density. The quantities tied to chiral
symmetry, f�π=fπ andm�

ρ=mρ, do vanish at nc, showing that
chiral symmetry is restored and the vector manifestation is
realized. It is intriguing that the VM is realized at the
expense of breaking the ½Uð2Þ�HLS symmetry in medium
and letting the ω meson mass remain unscaled.

C. The half-skyrmion phase

The half-skyrmion phase exhibits some unusual proper-
ties of hadrons. This may be indicative of a non-Fermi

liquid structure mentioned above [21]. As one can see in
Fig. 5, in the phase for n ≥ n1=2, hσi ¼ 0 but f�π ≠ 0. At the
edge of the half-skyrmion phase, say, at nc, the half-
skyrmion phase presumably transits to the Wigner phase
with hχi ¼ 0 and f�π ¼ 0. In the Wigner phase the chiral
symmetry is restored.
A question that arises is how to formulate the vector

manifestation starting from the half-skyrmion phase. In
matching the HLS and QCD correlators in arriving at the
VM [9,13], the condition hq̄qi → 0 plays a key role. Now
in the half-skyrmion phase, hq̄qi ¼ 0 but the pion decay
constant is not zero. So we see that the VM cannot be
realized in the half-skyrmion phase. Furthermore, since
gðmρÞ ≠ 0 because of m2

ρ ¼ aðmρÞg2ρðmρÞf2πðmρÞ ≠ 0, the
Georgi’s “vector realization” of chiral symmetry [33,34]
cannot be arrived at.
Now let us approach the Wigner phase from the half-

skyrmion phase. At density nc, the effective pion decay
constant and the ρ meson mass take the values

m�
ρðncÞ ¼ 0; f�πðm�

ρðncÞÞ ¼ f�πð0Þ ¼ 0; ð61Þ
which can be regarded as the conditions to realize VM in
medium. In this sense, we can say that the VM of Eq. (1)
could be realized in the model of dHLS-II.
It has been discussed in the literature [31,35] that there is

a possible pseudo–gap phase in QCD in which quarks
condensate and acquire constituent mass, but chiral

0

0.2

0.4

0.6

0.8

1

f π∗ 
/ f

π

HLS
dHLS-I
dHLS-II

0.511.522.5
L (fm)

0

0.2

0.4

0.6

0.8

1

m
ρ∗ 

/ m
ρ

(b)

(a)

FIG. 5 (color online). The dependence of (a) f�π=fπ and
(b) m�

ρ=mρ on the crystal size L. The notations are the same
as in Fig. 2.
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symmetry is not broken because the condensate phase is
completely disordered. This situation is very similar to
what happens in the half-skyrmion phase where the space
average of quark-antiquark condensate vanishes and the ρ
is still massive, indicating that the quark acquires a
constituent mass. Thus if the order parameter of QCD
were interpreted as the space averaged quark-antiquark
condensate as in Refs. [31,35], the half-skyrmion phase can
be taken as the pseudo–gap phase. It could also be
“quarkyonic.”14 Note that, in the half-skyrmion phase,
the quark condensate is locally nonzero.

D. In-medium baryon properties

Substituting the inputs fπ, mρ, and mω with the corre-
sponding medium modified f�π , m�

ρ, and m�
ω into the master

formula (26), one can obtain the in-medium LECs of HLS.
Using these in-medium LECs we can then calculate the
intrinsic density-dependent nucleon mass. We plot in Fig. 6
the effective mass M�

sol to see its density dependence.
From Fig. 6, we see that the soliton mass, which is

identified as the nucleon mass in the large Nc limit, can be
parametrized as

m�
N ¼ m0 þ Δðhq̄qiÞ; ð62Þ

where Δ is the part of the nucleon mass arising from hq̄qi
that vanishes at n ¼ n1=2 and m0 is the chiral-invariant
mass, reminiscent of what figures in the parity doublet
picture of baryons [11].
We next make a parametrization of the scalings of f�π ,

m�
ρ, andm�

N from our results shown in Figs. 5 and 6. Such a
parametrization would make some results of the present
work easier to apply, for example, to the nuclear force and
the EoS of nuclear matter [21]. Here we only consider the
results from dHLS-II. Note that although f�π and m�

N scale
similarly, m�

ρ scales in a different way.
We can roughly parametrize the medium-modified pion

decay constant f�π illustrated in Fig. 5(a) and the in-medium
nucleon mass m�

N illustrated in Fig. 6 as

m�
N

mN
≃ f�π

fπ
≃

8<
:

1
1þ0.6ðn=n0Þ2 for n < n1=2;

0.63 for n1=2 < n < nc;

0 for n > nc:

ð63Þ

For the in-medium vector meson mass m�
ρ in Fig. 5(b) we

parametrize it as

m�
ρ

mρ
≃

(
1

1þ0.4ðn=ncÞ2 for n < nc;

0 for n > nc:
ð64Þ

V. SUMMARY OF THE RESULTS

The series of work done with multi-skyrmions obtained
from a chiral Lagrangian with vector mesons incorporated
as hidden gauge fields to simulate dense baryonic matter
revealed a number of features that were not observed in
chiral models without vector mesons. The model used in
the present work is based on the Lagrangian written up to
Oðp4Þ in the chiral expansion, including the pion, the ρ
meson, and the ω meson, and is parameter free thanks to
master formulas derived from the 5D holographic QCD
action that arises from gauge-gravity duality of hQCD, as
well as from dimensional deconstruction starting from
SUð2ÞL × SUð2ÞR current algebra. This Lagrangian is
considered to be as close as one can hope to reach the
large Nc limit of QCD properly.
To repeat the most remarkable results:
(1) The isosinglet vector meson ω plays a crucial role in

the structure of both the elementary nucleon and
multinucleon systems. Given that the ω meson is in
the topological term encoding anomaly, it cannot be
properly, if at all, captured in models that have no
explicit ω degree of freedom such as the famous
Skyrme model or chiral perturbation theory.

(2) The density n1=2 at which the skyrmion–half-
skyrmion transition, a generic feature of all the
skyrmion models on crystal, takes place is found
to be not far from the equilibrium nuclear matter
density n0 ∼ 0.17 fm−3. It is therefore testable ex-
perimentally, such as through the medium modified
kaon mass [36] and nuclear tensor force [37] (for a
recent review, see, e.g., Ref. [38]). Without the ρ and
ω fields, the transition takes place at much too low a
density to be compatible with what is accurately
known in normal nuclear matter, and without the
hWZ term—i.e., without the ω meson—it comes
much too high to be relevant to nature.

0.511.522.5
L (fm)

400

600

800

1000

1200

M
so

l*
  (

M
eV

)

HLS
dHLS-I
dHLS-II

FIG. 6 (color online). In-medium modified skyrmion mass as a
function of L. The notations are the same as in Fig. 2.

14But we know that at least on the crystal lattice, the quark
condensate is not a good order parameter for chiral symmetry.
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(3) In medium, the effective pion decay constant f�π
encoding the intrinsic density dependence is found
to drop smoothly, roughly in consistency with chiral
perturbation theory, to the density n1=2, but stops
dropping at n1=2 and remains constant ∼ð60%–80%Þ
of the free-space value in the half-skyrmion phase.

(4) The in-medium nucleon mass m�
N tracks closely the

in-medium pion decay constant f�π (multiplied by a
scale-invariant factor proportional to

ffiffiffiffiffiffi
Nc

p
) which

indicates that the large Nc dominance holds in
medium as it does in free space and stays constant
∼ð60%–80%Þ of the free-space value in the half-
skyrmion phase for n ≥ n1=2. Given that hq̄qi� ¼ 0

in the half-skyrmion phase, the constant nucleon
mass must be a chirally invariant term in the
Lagrangian. This resembles the chiral-invariant m0

term in the parity-doublet baryon model. In our
calculation, such a term is not explicitly present in
the Lagrangian with which the skyrmion crystal is
constructed. Therefore, it could very well be a
symmetry “emergent" from many-body correlations
different from what Glozman interprets as an in-
trinsic property of QCD in Ref. [39].

The items 3 and 4 get support from independent analyses
based on the one-loop RG flow with baryon HLS (BHLS)
and mean-field approximation with dilaton-implemented
BHLS [24]. This suggests that the qualitative structure of
the half-skyrmion phase is correct. However, as pointed out
in the present work, there is a tension with the VM and BR
scaling. This is because, since the pion decay constant and
the ρ meson mass stay constant and do not tend to the VM
fixed point, one cannot make the matching of the HLS
correlators to those of QCD crucial to describe chiral
restoration at a certain high density nc.
In this paper, we remove the obstacle to the VM found in

the HLS crystal by the dilaton field associated with the
spontaneous breaking of conformal symmetry. We found
that in order for the dilaton to retain the VM feature or BR
scaling, the ½Uð2Þ�HLS symmetry for the ρ and ω which
seems to hold in matter-free space has to be broken in
medium. With the symmetry breaking induced in the vector
meson mass rather than in the gauge coupling as was done
in Ref. [24], all four features mentioned above were
retained and, in addition, the tension with the VM present
in the HLS model (without the dilaton) could be removed.
We should point out that there are some caveats to the

“good” results mentioned above. (1) The energy of the
system is minimized at a larger density than the known
equilibrium density n0 with a binding energy much larger
than the empirical value. This is not surprising since we
have here a large Nc theory. In standard nuclear many-body
theory anchored on effective field theory, a similar over-
binding and higher saturation density are obtained unless
one introduces three- and multibody forces (see, e.g.,
Ref. [40]). Whether this “higher-order” effect is encoded

in the crystal calculation needs to be clarified. (2) In all
cases considered, the density n1=2 comes below the
empirical value of n0, with the HLS-II giving n1=2 close
to n0. From the phenomenology discussed in Ref. [41], the
density n1=2 most likely relevant to nature should be ≲2n0.
However, it seems that there will be no difficulty even if
n1=2 comes close to but above n0. (3) The half-skyrmion
structure is a classical picture, already present in the
skyrmion description of mass number 4 (see Ref. [42])
and will surely be modified by quantum effects.

VI. FURTHER DISCUSSIONS

It is interesting to compare what we have found in this
paper to what have been seen in other developments, which
are closely related to each other.

(i) Phenomenologically relevant is the application of
the skyrmion–half-skyrmion topology change to an
effective nuclear field theory description of the EoS
for compact stars [41]. Using the notion that top-
ology change can be “translated” into the parameter
change of an effective Lagrangian, here in the form
of the “intrinsic density dependence” defined above,
an effective nuclear Lagrangian was constructed by
means of renormalization group equations and
applied to calculating a high-order nuclear many-
body problem. The principal observation there was
that in order to correctly describe nuclear matter
and then extrapolate to higher density, it was
essential that the effective nucleon mass drop
smoothly to ∼0.8mN up to density ∼2n0 and then
stay constant up to the density ∼5.5n0 predicted to
be present in the interior of a massive neutron star
and that the ωNN coupling be more or less unscaled
in the density regime involved. This is roughly the
feature obtained in dHLS-II.

(ii) Supposewe follow the development made in Ref. [24]
using the mean-field approximation in dHLS-I, sup-
plemented with explicit baryon degrees of freedom
and ½Uð2Þ�HLS symmetry breaking in the gauge
coupling constants instead of in the vector meson
masses. In the dHLS-Iðπ; ρ;ωÞ crystal calculation,
the corresponding procedure would be to replace gω
with a density-dependent one in the form of

gω → gω
1

1þ Bðn=n0Þ
; ð65Þ

where n0 is the normal nucleon density and B is a
parameter. We refer to this model as dHLS-Ia and
present the obtained results for the per-skyrmion
energy and M�

sol in Fig. 7 for two cases with B ¼
0.10 and 0.22, respectively. The dilaton mass is taken
to be mχ ¼ 720 MeV, as before. Our result shows
that to arrive at the minimum of E=B, a smaller
parameter B is preferred. It clearly shows that there is
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a density region after n1=2 in which the nucleon mass
is nearly density independent. This agrees with the
observation made in Ref. [24]. Note that because of
the density-dependent coupling gω, n1=2 is pushed to
a higher density by the dilaton.

(iii) In the HLS calculation, we find that, in the half-
skyrmion phase, the space average hσi ¼ 0, but
hσ2i ≠ 0 although it is a small density-dependent
quantity. This observation might indicate that,
although the space average quarkonia condensate
vanishes in the half-skyrmion phase, the space
average tetraquark condensate does not. Probably
this is the first example which realizes the chiral
symmetry breaking pattern SUðNfÞL × SUðNfÞR →
SUðNfÞV × ZðNfÞA proposed in Ref. [43] emergent
in dense baryonic matter, whose features of the
thermodynamic quantities and hadron mass spectra
of this phase in the two flavor case are explored in
Ref. [44]. If one assumes the Gell-Mann–Oakes–
Renner relation holds in the half-skyrmion phase in
the form f�π2m�

π
2 ¼ Dhσ2i�, with D a density-

independent constant, then since hσ2i� drops to a
small value while f�π remains more or less constant,
one should expect m�

π should accordingly decrease
fast in the half-skyrmion phase in the real world
where the pion mass is nonzero. This would imply
that the contribution from the pion exchange to the
nuclear tensor forces will be enhanced for density

n ≥ n1=2 and hence will increase the net tensor-force
attraction, as is clear from the finding in Ref. [41].
As was pointed out a long time ago by Pandhar-
ipande and Smith [45], such an enhanced tensor
force could lead to a p-wave π0-condensed neutron
solid at high density in compact stars.

(iv) A remarkable feature that has been uncovered in all
models anchored on HLS is that at a certain density
above the normal nuclear matter density, the effec-
tive nucleon mass m�

N stops being dependent on the
chiral condensate, saturating at ≳60% of the free-
space mass, and then stays constant until quark
deconfinement. We note that this is reminiscent of
the chiral-invariant mass m0 posited in the parity-
doublet baryon model. The mass m0 could be an
intrinsic quantity of QCD proper in the sense
suggested in Ref. [39]. However, the parity-doublet
baryon model is an effective theory. Now in our
treatment, the chiral-invariant mass—that breaks
explicitly conformal invariance—is not put in
ab initio in the Lagrangian. Therefore, it is plausible
that it rather reflects an emergent symmetry due to
HLS skyrmion interactions, and not an intrinsic one.
We note that since what we are looking at is a
process of “unbreaking symmetry” by density, this
indicates a subtle mechanism by which the nucleon
mass could have been generated.
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