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1 Introduction and preliminaries
Katsaras [] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Somemathematicians have defined fuzzy norms on a vector space
from various points of view [–]. In particular, Bag and Samanta [], followingCheng and
Mordeson [], gave an idea of a fuzzy norm in such amanner that the corresponding fuzzy
metric is of Kramosil and Michalek type []. They established a decomposition theorem
of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy
normed spaces [].
We use the definition of fuzzy normed spaces given in [, , ] to investigate a fuzzy

version of the Hyers-Ulam stability for the Cauchy additive functional inequality and for
theCauchy-Jensen additive functional inequality in the fuzzy normed vector space setting.

Definition . [, –] Let X be a real vector space. A function N : X × R → [, ] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈R,

(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c �= ;
(N) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for x �= , N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given

in [, ].

Definition . [, –] Let (X,N) be a fuzzy normed vector space. A sequence {xn} inX is
said to be convergent or converge if there exists an x ∈ X such that limn→∞ N(xn – x, t) = 
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for all t > . In this case, x is called the limit of the sequence {xn} and we denote it by
N- limn→∞ xn = x.

Definition . [, , ] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is called Cauchy if for each ε >  and each t >  there exists an n ∈ N such that for all
n≥ n and all p > , we have N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be com-
plete and the fuzzy normed vector space is called a fuzzy Banach space.
We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-

tinuous at a point x ∈ X if for each sequence {xn} converging to x in X, the sequence
{f (xn)} converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said
to be continuous on X (see []).
We will use the following notations:
Mn(X) is the set of all n× n-matrices in X ;
ej ∈M,n(C) is that jth component is  and the other components are zero;
Eij ∈Mn(C) is that (i, j)-component is  and the other components are zero;
Eij ⊗ x ∈Mn(X) is that (i, j)-component is x and the other components are zero.

For x ∈ Mn(X), y ∈Mk(X),

x⊕ y =

(
x 
 y

)
.

Note that (X, {‖ · ‖n}) is a matrix normed space if and only if (Mn(X),‖ · ‖n) is a normed
space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for A ∈ Mk,n(C), x =
(xij) ∈Mn(X) and B ∈Mn,k(C), and that (X, {‖ · ‖n}) is a matrix Banach space if and only if
X is a Banach space and (X, {‖ · ‖n}) is a matrix normed space.
A matrix normed space (X, {‖ · ‖n}) is called an L∞-matrix normed space if ‖x⊕ y‖n+k =

max{‖x‖n,‖y‖k} holds for all x ∈Mn(X) and all y ∈Mk(X).
Let E, F be vector spaces. For a given mapping h : E → F and a given positive integer n,

define hn :Mn(E)→Mn(F) by

hn
(
[xij]

)
=

[
h(xij)

]

for all [xij] ∈Mn(E).
We introduce the concept of a matrix fuzzy normed space.

Definition . Let (X,N) be a fuzzy normed space.
() (X, {Nn}) is called amatrix fuzzy normed space if for each positive integer n,

(Mn(X),Nn) is a fuzzy normed space and Nk(AxB, t) ≥ Nn(x, t
‖A‖·‖B‖ ) for all t > ,

A ∈Mk,n(R), x = [xij] ∈Mn(X) and B ∈Mn,k(R) with ‖A‖ · ‖B‖ �= .
() (X, {Nn}) is called amatrix fuzzy Banach space if (X,N) is a fuzzy Banach space and

(X, {Nn}) is a matrix fuzzy normed space.
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Example . Let (X, {‖ · ‖n}) be a matrix normed space. Let Nn(x, t) := t
t+‖x‖n for all t > 

and x = [xij] ∈Mn(X). Then

Nk(AxB, t) =
t

t + ‖AxB‖k ≥ t
t + ‖A‖ · ‖x‖n · ‖B‖ =

t
‖A‖·‖B‖
t

‖A‖·‖B‖ + ‖x‖n

for all t > ,A ∈Mk,n(R), x = [xij] ∈Mn(X) andB ∈Mn,k(R) with ‖A‖·‖B‖ �= . So, (X, {Nn})
is a matrix fuzzy normed space.

The abstract characterization given for linear spaces of bounded Hilbert space opera-
tors in terms of matricially normed spaces [] implies that quotients, mapping spaces,
and various tensor products of operator spaces may again be regarded as operator spaces.
Owing in part to this result, the theory of operator spaces is having an increasingly signif-
icant effect on operator algebra theory (see []).
The proof given in [] appealed to the theory of ordered operator spaces []. Effros

and Ruan [] showed that one can give a purely metric proof of this important theorem
by using a technique of Pisier [] and Haagerup [] (as modified in []).
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave the first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized
by Aoki [] for additive mappings and by Rassias [] for linear mappings by considering
an unboundedCauchy difference. A generalization of the Rassias theoremwas obtained by
Găvruta [] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach.
In [], Gilányi showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f
(
xy–

)∥∥ ≤ ∥∥f (xy)∥∥, (.)

then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (xy) + f
(
xy–

)
.

See also []. Gilányi [] and Fechner [] proved the Hyers-Ulam stability of the func-
tional inequality (.).
Park et al. [] proved the Hyers-Ulam stability of the following functional inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥,∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥, (.)

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥. (.)

Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d
satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
We recall a fundamental result in fixed point theory.
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Theorem . [, ] Let (X,d) be a complete generalized metric space and let J : X →
X be a strictly contractive mapping with a Lipschitz constant α < . Then, for each given
element x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) < ∞};
() d(y, y∗) ≤ 

–α
d(y, Jy) for all y ∈ Y .

In , Isac and Rassias [] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By
using fixed pointmethods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [–]).
Throughout this paper, let (X,‖ · ‖n) be a matrix normed space, (Y ,‖ · ‖n) be a matrix

Banach space and let n be a fixed positive integer. Let (X,Nn) be a matrix fuzzy normed
space and let (Y ,Nn) be a matrix fuzzy Banach space.
In Section , we prove the Hyers-Ulam stability of the Cauchy additive functional in-

equality (.) in fuzzy normed spaces by using the fixed point method.
In Section , we prove the Hyers-Ulam stability of the Cauchy additive functional equa-

tion in matrix fuzzy normed spaces by using the fixed point method.
In Section , we prove theHyers-Ulam stability of theCauchy-Jensen additive functional

inequality (.) in fuzzy normed spaces by using the fixed point method.
In Section , we prove the Hyers-Ulam stability of the Cauchy additive functional in-

equality (.) in matrix normed spaces by using the direct method and by using the fixed
point method.

2 Hyers-Ulam stability of the Cauchy functional inequality in fuzzy normed
spaces

We need the following lemma to prove the main results.

Lemma. [, ] Let (Y ,N) be a fuzzy normed vector space. Let f : X → Y be amapping
such that

N
(
f (x) + f (y) + f (z), t

) ≥ N
(
f

(
x + y


+ z
)
,
t


)

for all x, y, z ∈ X and all t > . Then f is Cauchy additive, i.e., f (x + y) = f (x) + f (y) for all
x, y ∈ X.

In this section, using the fixed point method, we prove the Hyers-Ulam stability of the
Cauchy additive functional inequality (.) in fuzzy Banach spaces.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ L

ϕ(x, y, z)

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

N
(
f (x) + f (y) + f (z), t

)
≥ min

{
N

(
f (x + y + z),

t


)
,

t
t + ϕ(x, y, z)

}
(.)

for all x, y, z ∈ X and all t > . Then A(x) := N- limn→∞ nf ( x
n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N
(
f (x) –A(x), t

) ≥ ( – L)t
( – L)t + Lϕ(x,x, –x)

(.)

for all x ∈ X and all t > .

Proof Since f is odd, f () = . So, N(f (), t ) = . Letting y = x and replacing z by –x in
(.), we get

N
(
f (x) – f (x), t

) ≥ t
t + ϕ(x,x, –x)

(.)

for all x ∈ X.
Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf

{
μ ∈R+ :N

(
g(x) – h(x),μt

) ≥ t
t + ϕ(x,x, –x)

,∀x ∈ X,∀t > 
}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete. (See the proof of [,
Lemma .].)
Now we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

N
(
g(x) – h(x), εt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(
g

(
x


)
– h

(
x


)
,Lεt

)

= N
(
g
(
x


)
– h

(
x


)
,
L

εt

)
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≥
Lt


Lt
 + ϕ( x ,

x
 , –x)

≥
Lt


Lt
 + L

ϕ(x,x, –x)

=
t

t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S.
It follows from (.) that

N
(
f (x) – f

(
x


)
,
L

t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(f , Jf )≤ L
 .

By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x


)
=


A(x) (.)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

N
(
f (x) –A(x),μt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X;
() d(Jnf ,A) →  as n→ ∞. This implies the equality

N- lim
n→∞nf

(
x
n

)
= A(x)

for all x ∈ X;
() d(f ,A) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A) ≤ L
 – L

.

This implies that the inequality (.) holds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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By (.),

N
(
n

(
f
(

x
n

)
+ f

(
y
n

)
+ f

(
z
n

))
, nt

)

≥ min

{
N

(
nf

(
x + y + z

n

)
, n–t

)
,

t
t + ϕ( x

n ,
y
n ,

z
n )

}

for all x, y, z ∈ X, all t > , and all n ∈N. So,

N
(
n

(
f
(

x
n

)
+ f

(
y
n

)
+ f

(
z
n

))
, t

)

≥ min

{
N

(
nf

(
x + y + z

n

)
,
t


)
,

t
n

t
n +

Ln
n ϕ(x, y, z)

}

for all x, y, z ∈ X, all t > , and all n ∈N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,y,z)

=  for all x, y, z ∈ X and

all t > ,

N
(
A(x) +A(y) +A(z), t

) ≥ N
(
A(x + y + z),

t


)

for all x, y, z ∈ X and all t > . By [, Lemma .], the mapping A : X → Y is a Cauchy
additive, as desired. �

Corollary . Let θ ≥  and let p be a real number with p > . Let X be a normed vector
space with the norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N
(
f (x) + f (y) + f (z), t

) ≥ min

{
N

(
f (x + y + z),

t


)
,

t
t + θ (‖x‖p + ‖y‖p + ‖z‖p)

}
(.)

for all x, y, z ∈ X and all t > . Then A(x) := N- limn→∞ nf ( x
n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N
(
f (x) –A(x), t

) ≥ (p – )t
(p – )t + ( + p)θ‖x‖p

for all x ∈ X and all t > .

Proof The proof follows from Theorem . by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = –p, and we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ Lϕ

(
x

,
y

,
z


)

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then A(x) :=
N- limn→∞ 

n f (
nx) exists for each x ∈ X and defines an additive mapping A : X → Y

such that

N
(
f (x) –A(x), t

) ≥ ( – L)t
( – L)t + ϕ(x,x, –x)

(.)

for all x ∈ X and all t > .

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

N
(
g(x) – h(x), εt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(


g(x) –



h(x),Lεt

)

= N
(
g(x) – h(x), Lεt

)
≥ Lt

Lt + ϕ(x, x, –x)
≥ Lt

Lt + Lϕ(x,x, –x)

=
t

t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S.
It follows from (.) that

N
(
f (x) –



f (x),



t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(f , Jf )≤ 
 .

By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

N
(
f (x) –A(x),μt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X;
() d(Jnf ,A) →  as n→ ∞. This implies the equality

N- lim
n→∞


n

f
(
nx

)
= A(x)

for all x ∈ X;
() d(f ,A) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A) ≤ 
 – L

.

This implies that the inequality (.) holds.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let θ ≥  and let p be a real number with  < p < . Let X be a normed
vector space with the norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (.). Then
A(x) :=N- limn→∞ 

n f (
nx) exists for each x ∈ X and defines an additive mapping A : X →

Y such that

N
(
f (x) –A(x), t

) ≥ ( – p)t
( – p)t + ( + p)θ‖x‖p

for all x ∈ X and all t > .

Proof The proof follows from Theorem . by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = p–, and we get the desired result. �

3 Hyers-Ulam stability of the Cauchy additive functional equation inmatrix
fuzzy normed spaces

Using a fixed point method, we prove the Hyers-Ulam stability of the Cauchy additive
functional equation in matrix fuzzy normed spaces.
We will use the following notations:
Mn(X) is the set of all n× n-matrices in X ;
ej ∈M,n(R) is that jth component is  and the other components are zero;
Eij ∈Mn(R) is that (i, j)-component is  and the other components are zero;
Eij ⊗ x ∈Mn(X) is that (i, j)-component is x and the other components are zero.

Lemma . Let (X, {Nn}) be a matrix fuzzy normed space.
() Nn(Ekl ⊗ x, t) =N(x, t) for all t >  and x ∈ X .

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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() For all [xij] ∈Mn(X) and t =
∑n

i,j= tij,

N(xkl, t) ≥ Nn
(
[xij], t

) ≥ min
{
N(xij, tij) : i, j = , , . . . ,n

}
,

N(xkl, t) ≥ Nn
(
[xij], t

) ≥ min

{
N

(
xij,

t
n

)
: i, j = , , . . . ,n

}
.

() limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn], x = [xij] ∈Mk(X).

Proof () Since Ekl ⊗ x = e∗
kxel and ‖e∗

k‖ = ‖el‖ = , Nn(Ekl ⊗ x, t) ≥ N(x, t). Since ek(Ekl ⊗
x)e∗

l = x, Nn(Ekl ⊗ x, t) ≤ N(x, t). So, N(Ekl ⊗ x, t) =N(x, t).
() N(xkl, t) =N(ek[xij]e∗

l , t) ≥ Nn([xij], t
‖ek‖·‖el‖ ) =Nn([xij], t).

Nn
(
[xij], t

)
=Nn

( n∑
i,j=

Eij ⊗ xij, t

)
≥ min

{
Nn(Eij ⊗ xij, tij) : i, j = , , . . . ,n

}

=min
{
N(xij, tij) : i, j = , , . . . ,n

}
,

where t =
∑n

i,j= tij. So, Nn([xij], t) ≥ min{N(xij, t
n ) : i, j = , , . . . ,n}.

() By N(xkl, t) ≥ Nn([xij], t)≥ min{N(xij, t
n ) : i, j = , , . . . ,n}, we obtain the result. �

For a mapping f : X → Y , define Df : X → Y and Dfn :Mn(X) →Mn(Y ) by

Df (a,b) = f (a + b) – f (a) – f (b),

Dfn
(
[xij], [yij]

)
:= fn

(
[xij + yij]

)
– fn

(
[xij]

)
– fn

(
[yij]

)
for all a,b ∈ X and all x = [xij], y = [yij] ∈ Mn(X).

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(a,b)≤ α


ϕ(a, b) (.)

for all a,b ∈ X. Let f : X → Y be a mapping satisfying

Nn
(
Dfn

(
[xij], [yij]

)
, t

) ≥ t
t +

∑n
i,j= ϕ(xij, yij)

(.)

for all t >  and x = [xij], y = [yij] ∈ Mn(X). Then A(a) := N- liml→∞ lf ( al ) exists for each
a ∈ X and defines an additive mapping A : X → Y such that

N
(
fn

(
[xij]

)
–An

(
[xij]

)
, t

) ≥ ( – α)t
( – α)t + nα

∑n
i,j= ϕ(xij,xij)

(.)

for all t >  and x = [xij] ∈Mn(X).

Proof Let n = . Then (.) is equivalent to

N
(
f (a + b) – f (a) – f (b), t

) ≥ t
t + ϕ(a,b)

(.)

for all t >  and a,b ∈ X.
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Letting b = a in (.), we get

N
(
f (a) – f (a), t

) ≥ t
t + ϕ(a,a)

(.)

and so

N
(
f (a) – f

(
a


)
, t

)
≥ t

t + ϕ( a ,
a
 )

≥ t
t + α

ϕ(a,a)
(.)

for all t >  and a ∈ X.
Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf

{
μ ∈R+ :N

(
g(a) – h(a),μt

) ≥ t
t + ϕ(a,a)

,∀a ∈ X,∀t > 
}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see the proof of [,
Lemma .]).
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

N
(
g(a) – h(a), εt

) ≥ t
t + ϕ(a,a)

for all a ∈ X and t > . Hence

N
(
Jg(a) – Jh(a),αεt

)
= N

(
g

(
a


)
– h

(
a


)
,αεt

)

= N
(
g
(
a


)
– h

(
a


)
,
α


εt

)

≥
αt


αt
 + ϕ( a ,

a
 )

≥
αt


αt
 + α

ϕ(a,a)
=

t
t + ϕ(a,a)

for all a ∈ X and t > . So, d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g,h)

for all g,h ∈ S.
It follows from (.) that d(f , Jf ) ≤ α

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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() A is a fixed point of J , i.e.,

A
(
a


)
=


A(a)

for all a ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

() d(J lf ,A) →  as l → ∞. This implies the equality

N- lim
l→∞

lf
(
a
l

)
= A(a)

for all a ∈ X.
() d(f ,A) ≤ 

–α
d(f , Jf ), which implies the inequality

d(f ,A) ≤ α

 – α
. (.)

By (.),

N
(
lf

(
a + b
l

)
– lf

(
a
l

)
– lf

(
b
l

)
, lt

)
≥ t

t + ϕ( al ,
b
l )

for all a,b ∈ X and t > . So,

N
(
lf

(
a + b
l

)
– lf

(
a
l

)
– lf

(
b
l

)
, t

)
≥

t
l

t
l +

αl

l ϕ(a,b)

for all a,b ∈ X and t > . Since liml→∞
t
l

t
l
+ αl
l

ϕ(a,b)
=  for all a,b ∈ X and t > ,

N
(
A(a + b) –A(a) –A(b), t

)
= 

for all a,b ∈ X and t > . Thus A(a + b) – A(a) – A(b) = . So, the mapping A : X → Y is
additive.
By Lemma . and (.),

Nn
(
fn

(
[xij]

)
–An

(
[xij]

)
, t

) ≥ min

{
N

(
f (xij) –A(xij),

t
n

)
: i, j = , , . . . ,n

}

≥ min

{
( – α)t

( – α)t + nαϕ(xij,xij)
: i, j = , , . . . ,n

}

≥ ( – α)t
( – α)t + nα

∑n
i,j= ϕ(xij,xij)

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �
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Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
satisfying

Nn
(
Dfn

(
[xij], [yij]

)
, t

) ≥ t
t +

∑n
i,j= θ (‖xij‖r + ‖yij‖r) (.)

for all t >  and x = [xij], y = [yij] ∈ Mn(X). Then A(a) := N- liml→∞ lf ( al ) exists for each
a ∈ X and defines an additive mapping A : X → Y such that

N
(
fn

(
[xij]

)
–An

(
[xij]

)
, t

) ≥ ( – r)t
( – r)t + n · r ∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b) = θ (‖a‖r + ‖b‖r) for all
a,b ∈ X. Then we can choose α = r–, and we get the desired result. �

Theorem . Let f : X → Y be a mapping satisfying (.) for which there exists a function
ϕ : X → [,∞) such that there exists an α <  with

ϕ(a,b)≤ αϕ

(
a

,
b


)

for all a,b ∈ X. Then A(a) :=N- liml→∞ 
l f (

la) exists for each a ∈ X and defines an addi-
tive mapping A : X → Y such that

N
(
fn

(
[xij]

)
–An

(
[xij]

)
, t

) ≥ ( – α)t
( – α)t + n

∑n
i,j= ϕ(xij,xij)

for all t >  and x = [xij] ∈Mn(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
It follows from (.) that d(f , Jf ) ≤ 

 . So,

d(f ,A) ≤ 
 – α

.

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > . Let f : X → Y be a mapping
satisfying (.).ThenA(a) :=N- liml→∞ lf ( al ) exists for each a ∈ X anddefines an additive

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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mapping A : X → Y such that

N
(
fn

(
[xij]

)
–An

(
[xij]

)
, t

) ≥ (r – )t
(r – )t + n · r ∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b) = θ (‖a‖r + ‖b‖r) for all
a,b ∈ X. Then we can choose α = –r , and we get the desired result. �

4 Fuzzy stability of the Cauchy-Jensen additive functional inequality (1.3) in
fuzzy normed spaces

In this section, using the fixed point method, we prove the generalized Hyers-Ulam sta-
bility of the Cauchy-Jensen additive functional inequality (.) in fuzzy Banach spaces.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ L

ϕ(x, y, z)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

N
(
f (x) + f (y) + f (z), t

) ≥ min

{
N

(
f

(
x + y


+ z
)
,
t


)
,

t
t + ϕ(x, y, z)

}
(.)

for all x, y, z ∈ X and all t > . Then A(x) := N- limn→∞ nf ( x
n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N
(
f (x) –A(x), t

) ≥ ( – L)t
( – L)t + Lϕ(x,x, –x)

(.)

for all x ∈ X and all t > .

Proof Letting y = x = –z in (.), we get

N
(
f (x) – f (x), t

) ≥ t
t + ϕ(x,x, –x)

(.)

for all x ∈ X.
Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf

{
μ ∈R+ :N

(
g(x) – h(x),μt

) ≥ t
t + ϕ(x,x, –x)

,∀x ∈ X,∀t > 
}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete. (See the proof of [,
Lemma .].)

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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Now we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

N
(
g(x) – h(x), εt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(
g

(
x


)
– h

(
x


)
,Lεt

)

= N
(
g
(
x


)
– h

(
x


)
,
L

εt

)

≥
Lt


Lt
 + ϕ( x ,

x
 , –

x
 )

≥
Lt


Lt
 + L

ϕ(x,x, –x)

=
t

t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S.
It follows from (.) that

N
(
f (x) – f

(
x


)
,
L

t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(f , Jf )≤ L
 .

By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x


)
=


A(x) (.)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

N
(
f (x) –A(x),μt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X;

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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() d(Jnf ,A) →  as n→ ∞. This implies the equality

N- lim
n→∞nf

(
x
n

)
= A(x)

for all x ∈ X;
() d(f ,A) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A) ≤ L
 – L

.

This implies that the inequality (.) holds.
The rest of proof is similar to the proof of Theorem .. �

Corollary . Let θ ≥  and let p be a real number with p > . Let X be a normed vector
space with the norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N
(
f (x) + f (y) + f (z), t

)
≥ min

{
N

(
f
(
x + y


+ z
)
,
t


)
,

t
t + θ (‖x‖p + ‖y‖p + ‖z‖p)

}
(.)

for all x, y, z ∈ X and all t > . Then A(x) := N- limn→∞ nf ( x
n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N
(
f (x) –A(x), t

) ≥ (p – )t
(p – )t + θ‖x‖p

for all x ∈ X and all t > .

Proof The proof follows from Theorem . by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = –p, and we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ Lϕ

(
x

,
y

,
z


)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then A(x) :=
N- limn→∞ 

n f (
nx) exists for each x ∈ X and defines an additive mapping A : X → Y

such that

N
(
f (x) –A(x), t

) ≥ ( – L)t
( – L)t + ϕ(x,x, –x)

(.)

for all x ∈ X and all t > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

N
(
g(x) – h(x), εt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(


g(x) –



h(x),Lεt

)

= N
(
g(x) – h(x), Lεt

)
≥ Lt

Lt + ϕ(x, x, –x)
≥ Lt

Lt + Lϕ(x,x, –x)

=
t

t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S.
It follows from (.) that

N
(
f (x) –



f (x),



t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So, d(f , Jf )≤ 
 .

By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

N
(
f (x) –A(x),μt

) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X;

http://www.journalofinequalitiesandapplications.com/content/2013/1/224
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() d(Jnf ,A) →  as n→ ∞. This implies the equality

N- lim
n→∞


n

f
(
nx

)
= A(x)

for all x ∈ X;
() d(f ,A) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A) ≤ 
 – L

.

This implies that the inequality (.) holds.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let θ ≥  and let p be a real number with  < p < . Let X be a normed
vector space with the norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (.). Then
A(x) :=N- limn→∞ 

n f (
nx) exists for each x ∈ X and defines an additive mapping A : X →

Y such that

N
(
f (x) –A(x), t

) ≥ ( – p)t
( – p)t + θ‖x‖p

for all x ∈ X and all t > .

Proof The proof follows from Theorem . by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = p–, and we get the desired result. �

5 Hyers-Ulam stability of the additive functional inequality (1.2) in matrix
normed spaces

In this section, we prove theHyers-Ulam stability of the additive functional inequality (.)
in matrix normed spaces by using the direct method and by using the fixed point method.

Lemma . Let (X, {‖ · ‖n}) be a matrix normed space.
() ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X ;
() ‖xkl‖ ≤ ‖[xij]‖n ≤ ∑n

i,j= ‖xij‖ for [xij] ∈Mn(X);
() limn→∞ xn = x if and only if limn→∞ xnij = xij for xn = [xnij],x = [xij] ∈Mk(X).

Proof () Since Ekl ⊗x = e∗
kxel and ‖e∗

k‖ = ‖el‖ = , ‖Ekl ⊗x‖n ≤ ‖x‖. Since ek(Ekl ⊗x)e∗
l = x,

‖x‖ ≤ ‖Ekl ⊗ x‖n. So, ‖Ekl ⊗ x‖n = ‖x‖.
() Since ekxe∗

l = xkl and ‖ek‖ = ‖e∗
l ‖ = , ‖xkl‖ ≤ ‖[xij]‖n.

Since [xij] =
∑n

i,j= Eij ⊗ xij,

∥∥[xij]∥∥n =

∥∥∥∥∥
n∑

i,j=

Eij ⊗ xij

∥∥∥∥∥
n

≤
n∑

i,j=

‖Eij ⊗ xij‖n =
n∑

i,j=

‖xij‖.
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() By (), we have

‖xnkl – xkl‖ ≤ ∥∥[xnij – xij]
∥∥
n =

∥∥[xnij] – [xij]
∥∥
n ≤

n∑
i,j=

‖xnij – xij‖.

So, we get the result. �

We need the following result.

Lemma . [, Proposition .] Let f : X → Y be a mapping such that

∥∥f (a) + f (b) + f (c)
∥∥ ≤ ∥∥f (a + b + c)

∥∥
for all a,b, c ∈ X. Then f : X → Y is additive.

Theorem . Let f : X → Y be a mapping and let φ : X → [,∞) be a function such that

�(a,b, c) :=



∞∑
l=


l

φ
(
la, lb, lc

)
< +∞, (.)

∥∥fn([xij]) + fn
(
[yij]

)
+ fn

(
[zij]

)∥∥
n

≤ ∥∥fn([xij] + [yij] + [zij]
)∥∥

n +
n∑

i,j=

φ(xij, yij, zij) (.)

for all a,b, c ∈ X and all x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then there exists a unique
additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

�(xij,xij, –xij) (.)

for all x = [xij] ∈Mn(X).

Proof When n = , (.) is equivalent to

∥∥f (a) + f (b) + f (c)
∥∥ ≤ ∥∥f (a + b + c)

∥∥ + φ(a,b, c)

for all a,b, c ∈ X. By the same reasoning as in the proof of [, Theorem .], one can show
that there is a unique additive mapping A : X → Y such that

∥∥f (a) –A(a)
∥∥ ≤ �(a,a, –a)

for all a ∈ X. The mapping A : X → Y is given by

A(a) = lim
l→∞


l
f
(
la

)
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for all a ∈ X. By Lemma .,

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

∥∥f (xij) –A(xij)
∥∥ ≤

n∑
i,j=

�(xij,xij, –xij)

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
such that

∥∥fn([xij]) + fn
(
[yij]

)
+ fn

(
[zij]

)∥∥
n ≤ ∥∥fn([xij] + [yij] + [zij]

)∥∥
n

+
n∑

i,j=

θ
(‖xij‖r + ‖yij‖r + ‖zij‖r

)
(.)

for all x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then there exists a unique additive mapping A :
X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

 + r

 – r
θ‖xij‖r

for all x = [xij] ∈Mn(X).

Proof Letting φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) in Theorem ., we obtain the result. �

Theorem . Let f : X → Y be a mapping and let φ : X → [,∞) be a function satisfying
(.) and

�(a,b, c) :=



∞∑
l=

lφ
(
a
l
,
b
l
,
c
l

)
< +∞, (.)

for all a,b, c ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

�(xij,xij, –xij)

for all x = [xij] ∈Mn(X).

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > . Let f : X → Y be a mapping
satisfying (.). Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

r + 
r – 

θ‖xij‖r

for all x = [xij] ∈Mn(X).
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Proof Letting φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) in Theorem ., we obtain the result. �

We need the following result.

Lemma. [] If E is an L∞-matrix normed space, then ‖[xij]‖n ≤ ‖[‖xij‖]‖n for all [xij] ∈
Mn(E).

Theorem . Let Y be an L∞-normed Banach space. Let f : X → Y be a mapping and let
φ : X → [,∞) be a function satisfying (.) and

∥∥fn([xij]) + fn
(
[yij]

)
+ fn

(
[zij]

)∥∥
n ≤ ∥∥fn([xij] + [yij] + [zij]

)∥∥
n +

∥∥[
φ(xij, yij, zij)

]∥∥
n (.)

for all x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then there exists a unique additive mapping A :
X → Y such that

∥∥[
f (xij) –A(xij)

]∥∥
n ≤ ∥∥[

�(xij,xij, –xij)
]∥∥

n (.)

for all x = [xij] ∈Mn(X). Here � is given in Theorem ..

Proof By the same reasoning as in the proof of Theorem ., there exists a unique additive
mapping A : X → Y such that

∥∥f (a) –A(a)
∥∥ ≤ �(a,a, –a)

for all a ∈ X. The mapping A : X → Y is given by

A(a) = lim
l→∞


l
f
(
la

)

for all a ∈ X.
It is easy to show that if  ≤ aij ≤ bij for all i, j, then

∥∥[aij]∥∥n ≤ ∥∥[bij]∥∥n. (.)

By Lemma . and (.),

∥∥[
f (xij) –A(xij)

]∥∥
n ≤ ∥∥[∥∥f (xij) –A(xij)

∥∥]∥∥
n ≤ ∥∥[

�(xij,xij, –xij)
]∥∥

n

for all x = [xij] ∈Mn(X). So, we obtain the inequality (.). �

Corollary . Let Y be an L∞-normed Banach space. Let r, θ be positive real numbers
with r < . Let f : X → Y be a mapping such that

∥∥fn([xij]) + fn
(
[yij]

)
+ fn

(
[zij]

)∥∥
n ≤ ∥∥fn([xij] + [yij] + [zij]

)∥∥
n

+
∥∥[

θ
(‖xij‖r + ‖yij‖r + ‖zij‖r

)]∥∥
n (.)
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for all x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then there exists a unique additive mapping A :
X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

∥∥∥∥
[
 – r

 – r
θ‖xij‖r

]∥∥∥∥
n

for all x = [xij] ∈Mn(X).

Proof Letting φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) in Theorem ., we obtain the result. �

Theorem . Let Y be an L∞-normed Banach space. Let f : X → Y be amapping and let
φ : X → [,∞) be a function satisfying (.) and (.). Then there exists a unique additive
mapping A : X → Y such that

∥∥[
f (xij) –A(xij)

]∥∥
n ≤ ∥∥[

�(xij,xij, –xij)
]∥∥

n

for all x = [xij] ∈Mn(X). Here � is given in Theorem ..

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let Y be an L∞-normed Banach space. Let r, θ be positive real numbers
with r > . Let f : X → Y be a mapping satisfying (.). Then there exists a unique additive
mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

∥∥∥∥
[
r + 
r – 

θ‖xij‖r
]∥∥∥∥

n

for all x = [xij] ∈Mn(X).

Proof Letting φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) in Theorem ., we obtain the result. �

Theorem . Let φ : X → [,∞) be a function such that there exists an α <  with

φ(a,b, c)≤ αφ

(
a

,
b

,
c


)
(.)

for all a,b, c ∈ X. Let f : X → Y be a mapping satisfying (.). Then there exists a unique
additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=


 – α

φ(xij,xij, –xij) (.)

for all x = [xij] ∈Mn(X).

Proof When n = , (.) is equivalent to

∥∥f (a) + f (b) + f (c)
∥∥ ≤ ∥∥f (a + b + c)

∥∥ + φ(a,b, c) (.)
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for all a,b, c ∈ X. It follows from (.) that

∥∥f (a) – f (a)
∥∥ ≤ φ(a,a, –a) (.)

for all a ∈ X. So,

∥∥∥∥f (a) – 

f (a)

∥∥∥∥ ≤ 

φ(a,a, –a) (.)

for all a ∈ X.
Consider the set

S := {h : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf
{
μ ∈R+ :

∥∥g(a) – h(a)
∥∥ ≤ μφ(a,a, –a),∀a ∈ X

}
,

where, as usual, inf{} = +∞. It is easy to show that (S,d) is complete (see []).
Now we consider the linear mapping J : S → S such that

Jg(a) :=


g(a)

for all a ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

∥∥g(a) – h(a)
∥∥ ≤ φ(a,a, –a)

for all a ∈ X. Hence

∥∥Jg(a) – Jh(a)
∥∥ =

∥∥∥∥ g(a) – 

h(a)

∥∥∥∥ ≤ αφ(a,a, –a)

for all a ∈ X. So, d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g,h)

for all g,h ∈ S.
It follows from (.) that d(f , Jf ) ≤ 

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(a) = A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(h, g) <∞}

.
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This implies thatA is a uniquemapping satisfying (.) such that there exists aμ ∈ (,∞)
satisfying

∥∥f (a) –A(a)
∥∥ ≤ μφ(a,a, –a)

for all a ∈ X;
() d(J lf ,A) →  as l → ∞. This implies the equality

lim
l→∞


l
f
(
la

)
= A(a)

for all a ∈ X;
() d(f ,A) ≤ 

–α
d(f , Jf ), which implies the inequality

d(f ,A) ≤ 
 – α

.

So,

∥∥f (a) –A(a)
∥∥ ≤ 

 – α
φ(a,a, –a) (.)

for all a ∈ X.
It follows from (.) and (.) that

lim
l→∞


l

∥∥f (la) + f
(
lb

)
+ f

(
lc

)∥∥
≤ lim

l→∞

(

l

∥∥f (l(a + b + c)
)∥∥ +


l

φ
(
la, lb, lc

))
(.)

for all a,b, c ∈ X.
It follows from (.) that

∥∥A(a) +A(b) +A(c)
∥∥ ≤ ∥∥A(a + b + c)

∥∥
for all a,b, c ∈ X. By Lemma ., A : X → Y is additive.
By Lemma . and (.),

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

∥∥f (xij) –A(xij)
∥∥ ≤

n∑
i,j=


 – α

φ(xij,xij, –xij)

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
satisfying (.). Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

 + r

 – r
θ‖xij‖r

for all x = [xij] ∈Mn(X).
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Proof The proof follows from Theorem . by taking φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = r–, and we get the desired result. �

Theorem. Let f : X → Y be amapping satisfying (.) for which there exists a function
φ : X → [,∞) such that there exists an α <  with

φ(a,b, c)≤ α


φ(a, b, c) (.)

for all a,b, c ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

α

 – α
φ(xij,xij, –xij)

for all x = [xij] ∈Mn(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
It follows from (.) that

∥∥∥∥f (a) – f
(
a


)∥∥∥∥ ≤ φ

(
a

,
a

,–a

)
≤ α


φ(a,a, –a)

for all a ∈ X. Thus d(f , Jf ) ≤ α
 . So,

d(f ,A) ≤ α

 – α
.

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > . Let f : X → Y be a mapping
satisfying (.). Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

n∑
i,j=

r + 
r – 

θ‖xij‖r

for all x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = –r , and we get the desired result. �

From now on, assume that Y is an L∞-normed Banach space.
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Theorem. Let f : X → Y be amapping and let φ : X → [,∞) be a function satisfying
(.) and (.). Then there exists a unique additive mapping A : X → Y such that

∥∥[
f (xij) –A(xij)

]∥∥
n ≤

∥∥∥∥
[


 – α

φ(xij,xij, –xij)
]∥∥∥∥

n
(.)

for all x = [xij] ∈Mn(X).

Proof By the same reasoning as in the proof of Theorem., there exists a unique additive
mapping A : X → Y such that

∥∥f (a) –A(a)
∥∥ ≤ 

 – α
φ(a,a, –a)

for all a ∈ X.
By Lemma . and (.),

∥∥[
f (xij) –A(xij)

]∥∥
n ≤ ∥∥[∥∥f (xij) –A(xij)

∥∥]∥∥
n ≤

∥∥∥∥
[


 – α

φ(xij,xij)
]∥∥∥∥

n

for all x = [xij] ∈Mn(X). So, we obtain the inequality (.). �

Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
satisfying (.). Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

∥∥∥∥
[
 – r

 – r
θ‖xij‖r

]∥∥∥∥
n

for all x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = r–, and we get the desired result. �

Theorem. Let f : X → Y be amapping and let φ : X → [,∞) be a function satisfying
(.) and (.). Then there exists a unique additive mapping A : X → Y such that

∥∥[
f (xij) –A(xij)

]∥∥
n ≤

∥∥∥∥
[

α

 – α
φ(xij,xij, –xij)

]∥∥∥∥
n

for all x = [xij] ∈Mn(X).

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > . Let f : X → Y be a mapping
satisfying (.). Then there exists a unique additive mapping A : X → Y such that

∥∥fn([xij]) –An
(
[xij]

)∥∥
n ≤

∥∥∥∥
[
 + 
r – 

θ‖xij‖r
]∥∥∥∥

n

for all x = [xij] ∈Mn(X).
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Proof The proof follows from Theorem . by taking φ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = –r , and we get the desired result. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the
sequence alignment, and read and approved the final manuscript.

Author details
1Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea.
2Department of Mathematics, Daejin University, Kyeonggi, 487-711, Korea. 3Department of Mathematics, University of
Seoul, Seoul, 130-743, Korea.

Acknowledgements
CP was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by
the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299) and DYS was supported by the Basic
Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,
Science and Technology (NRF-2010-0021792).

Received: 26 October 2012 Accepted: 22 April 2013 Published: 6 May 2013

References
1. Katsaras, AK: Fuzzy topological vector spaces II. Fuzzy Sets Syst. 12, 143-154 (1984)
2. Felbin, C: Finite dimensional fuzzy normed linear spaces. Fuzzy Sets Syst. 48, 239-248 (1992)
3. Krishna, SV, Sarma, KKM: Separation of fuzzy normed linear spaces. Fuzzy Sets Syst. 63, 207-217 (1994)
4. Xiao, JZ, Zhu, XH: Fuzzy normed spaces of operators and its completeness. Fuzzy Sets Syst. 133, 389-399 (2003)
5. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11, 687-705 (2003)
6. Cheng, SC, Mordeson, JM: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86,

429-436 (1994)
7. Kramosil, I, Michalek, J: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326-334 (1975)
8. Bag, T, Samanta, SK: Fuzzy bounded linear operators. Fuzzy Sets Syst. 151, 513-547 (2005)
9. Mirmostafaee, AK, Moslehian, MS: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 159, 720-729 (2008)
10. Mirmostafaee, AK, Mirzavaziri, M, Moslehian, MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst.

159, 730-738 (2008)
11. Mirmostafaee, AK, Moslehian, MS: Fuzzy approximately cubic mappings. Inf. Sci. 178, 3791-3798 (2008)
12. Ruan, ZJ: Subspaces of C∗-algebras. J. Funct. Anal. 76, 217-230 (1988)
13. Effros, E, Ruan, ZJ: On approximation properties for operator spaces. Int. J. Math. 1, 163-187 (1990)
14. Choi, MD Effros, E: Injectivity and operator spaces. J. Funct. Anal. 24, 156-209 (1977)
15. Effros, E, Ruan, ZJ: On the abstract characterization of operator spaces. Proc. Am. Math. Soc. 119, 579-584 (1993)
16. Pisier, G: Grothendieck’s theorem for non-commutative C∗-algebras with an appendix on Grothendieck’s constants.

J. Funct. Anal. 29, 397-415 (1978)
17. Haagerup, U: Decomp. of completely bounded maps. Preprint
18. Effros, E: On multilinear completely bounded module maps. In: Operator Algebras and Mathematical Physics (Iowa

City, Iowa, 1985). Contemp. Math., vol. 62, pp. 479-501. Am. Math. Soc., Providence (1987)
19. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
20. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
21. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
22. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
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