RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

A functional equation related to inner product spaces in non-Archimedean \mathcal{L} -random normed spaces

Javad Vahidi¹, Choonkil Park^{2*} and Reza Saadati^{1*}

^{*}Correspondence: baak@hanyang.ac.kr; rsaadati@eml.cc ¹Department of Mathematics, Iran University of Science and Technology, Tehran, Iran ²Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea

Abstract

In this paper, we prove the stability of a functional equation related to inner product spaces in non-Archimedean \mathcal{L} -random normed spaces. **MSC:** Primary 46S10; 39B52; 47S10; 26E30; 12J25

Keywords: non-Archimedean spaces; additive and quadratic functional equation; Hyers-Ulam stability; \mathcal{L} -random normed spaces

1 Introduction

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability problem of functional equations is as follows: When is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation?

The first stability problem concerning group homomorphisms was raised by Ulam [1] in 1940 and affirmatively solved by Hyers [2]. The result of Hyers was generalized by Aoki [3] for approximate additive mappings and by ThM Rassias [4] for approximate linear mappings by allowing the difference Cauchy equation $||f(x_1+x_2)-f(x_1)-f(x_2)||$ to be controlled by $\varepsilon(||x_1||^p + ||x_2||^p)$. In 1994, a generalization of the ThM Rassias' theorem was obtained by Gǎvruta [5], who replaced $\varepsilon(||x_1||^p + ||x_2||^p)$ by a general control function $\varphi(x_1, x_2)$.

Quadratic functional equations were used to characterize inner product spaces [6]. A square norm on an inner product space satisfies the parallelogram equality $||x_1 + x_2||^2 + ||x_1 - x_2||^2 = 2(||x_1||^2 + ||x_1||^2)$. The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is related to a symmetric bi-additive mapping [7, 8]. It is natural that this equation is called a *quadratic functional equation*, and every solution of the quadratic equation (1.1) is said to be a *quadratic mapping*.

It was shown by ThM Rassias [9] that the norm defined over a real vector space *X* is induced by an inner product if and only if for a fixed integer $n \ge 2$

$$\sum_{i=1}^{n} \left\| x_i - \frac{1}{n} \sum_{j=1}^{n} x_j \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2 - n \left\| \frac{1}{n} \sum_{i=1}^{n} x_i \right\|^2$$

for all $x_1, \ldots, x_n \in X$.

© 2012 Vahidi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function $|\cdot|: \mathbb{K} \to \mathbb{R}$ such that for any $a, b \in \mathbb{K}$ we have

- (i) $|a| \ge 0$ and equality holds if and only if a = 0,
- (ii) |ab| = |a||b|,
- (iii) $|a+b| \le \max\{|a|, |b|\}.$

The condition (iii) is called the strict triangle inequality. By (ii), we have |1| = |-1| = 1. Thus, by induction, it follows from (iii) that $|n| \le 1$ for each integer *n*. We always assume in addition that || is non-trivial, *i.e.*, that there is an $a_0 \in \mathbb{K}$ such that $|a_0| \ne 0, 1$.

Let *X* be a linear space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$. A function $||\cdot|| : X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

- (NA1) ||x|| = 0 if and only if x = 0;
- (NA2) ||rx|| = |r|||x|| for all $r \in \mathbb{K}$ and $x \in X$;

(NA3) the strong triangle inequality (ultra-metric); namely,

$$||x + y|| \le \max\{||x||, ||y||\} \quad (x, y \in X).$$

Then $(X, \|\cdot\|)$ is called a non-Archimedean space.

Thanks to the inequality

$$\|x_m - x_l\| \le \max\{\|x_{j+1} - x_j\| : l \le j \le m - 1\} \quad (m > l)$$

a sequence $\{x_m\}$ is Cauchy in X if and only if $\{x_{m+1} - x_m\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space, we mean a non-Archimedean space in which every Cauchy sequence is convergent.

In 1897, Hensel [10] introduced a normed space, which does not have the Archimedean property.

During the last three decades, the theory of non-Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p-adic strings, and superstrings [11]. Although many results in the classical normed space theory have a non-Archimedean counterpart, but their proofs are essentially different and require an entirely new kind of intuition [12–16].

The main objective of this paper is to prove the Hyers-Ulam stability of the following functional equation related to inner product spaces:

$$\sum_{i=1}^{n} f\left(x_{i} - \frac{1}{n} \sum_{j=1}^{n} x_{j}\right) = \sum_{i=1}^{n} f(x_{i}) - nf\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)$$
(1.2)

 $(n \in \mathbb{N}, n \ge 2)$ in non-Archimedean normed spaces. Interesting new results concerning functional equations related to inner product spaces have recently been obtained by Najati and ThM Rassias [18] as well as for the fuzzy stability of a functional equation related to inner product spaces by Park [19] and Gordji and Khodaei [20]. During the last decades, several stability problems for various functional equations have been investigated by many mathematicians; [21–56].

2 Preliminaries

The theory of random normed spaces (RN-spaces) is important as a generalization of the deterministic result of linear normed spaces and also in the study of random operator equations. The RN-spaces may also provide us the appropriate tools to study the geometry of nuclear physics and have important applications in quantum particle physics. The Hyers-Ulam stability of different functional equations in RN-spaces and fuzzy normed spaces has been recently studied by Alsina [57], Mirmostafaee, Mirzavaziri, and Moslehian [58, 59], Miheț and Radu [60], Miheț, Saadati, and Vaezpour [61, 62], Baktash *et al.* [63], Najati [64], and Saadati *et al.* [65].

Let $\mathcal{L} = (L, \geq_L)$ be a complete lattice, that is, a partially ordered set in which every nonempty subset admits supremum and infimum and $0_{\mathcal{L}} = \inf L$, $1_{\mathcal{L}} = \sup L$. The space of latticetic random distribution functions, denoted by Δ_L^+ , is defined as the set of all mappings $F : \mathbb{R} \cup \{-\infty, +\infty\} \to L$ such that F is left continuous, non-decreasing on \mathbb{R} and $F(0) = 0_{\mathcal{L}}$, $F(+\infty) = 1_{\mathcal{L}}$.

The subspace $D_L^+ \subseteq \Delta_L^+$ is defined as $D_L^+ = \{F \in \Delta_L^+ : l^-F(+\infty) = 1_{\mathcal{L}}\}$, where $l^-f(x)$ denotes the left limit of the function f at the point x. The space Δ_L^+ is partially ordered by the usual point-wise ordering of functions, that is, $F \ge G$ if and only if $F(t) \ge_L G(t)$ for all t in \mathbb{R} . The maximal element for Δ_L^+ in this order is the distribution function given by

$$\varepsilon_0(t) = \begin{cases} 0_{\mathcal{L}}, & \text{if } t \leq 0, \\ 1_{\mathcal{L}}, & \text{if } t > 0. \end{cases}$$

Definition 2.1 [66] A *triangular norm* (*t*-norm) on *L* is a mapping $\mathcal{T} : (L)^2 \longrightarrow L$ satisfying the following conditions:

- (1) $(\forall x \in L)(\mathcal{T}(x, 1_{\mathcal{L}}) = x)$ (: boundary condition);
- (2) $(\forall (x, y) \in (L)^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x))$ (: commutativity);
- (3) $(\forall (x, y, z) \in (L)^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z))$ (: associativity);
- (4) $(\forall (x, x', y, y') \in (L)^4) (x \leq_L x' \text{ and } y \leq_L y' \Longrightarrow \mathcal{T}(x, y) \leq_L \mathcal{T}(x', y'))$ (: monotonicity).

Let $\{x_n\}$ be a sequence in *L* converging to $x \in L$ (equipped the order topology). The *t*-norm \mathcal{T} is called a *continuous t-norm* if

$$\lim_{n\to\infty}\mathcal{T}(x_n,y)=\mathcal{T}(x,y),$$

for any $y \in L$.

A *t*-norm \mathcal{T} can be extended (by associativity) in a unique way to an *n*-array operation taking for $(x_1, \ldots, x_n) \in L^n$ the value $\mathcal{T}(x_1, \ldots, x_n)$ defined by

$$\mathcal{T}_{i=1}^0 x_i = 1, \qquad \mathcal{T}_{i=1}^n x_i = \mathcal{T}\left(\mathcal{T}_{i=1}^{n-1} x_i, x_n\right) = \mathcal{T}(x_1, \ldots, x_n).$$

The *t*-norm \mathcal{T} can also be extended to a countable operation taking, for any sequence $\{x_n\}$ in *L*, the value

$$\mathcal{T}_{i=1}^{\infty} x_i = \lim_{n \to \infty} \mathcal{T}_{i=1}^n x_i.$$
(2.1)

The limit on the right side of (2.1) exists since the sequence $(\mathcal{T}_{i=1}^n x_i)_{n \in \mathbb{N}}$ is non-increasing and bounded from below.

Note that we put $\mathcal{T} = T$ whenever L = [0,1]. If T is a t-norm then, for all $x \in [0,1]$ and $n \in N \cup \{0\}, x_T^{(n)}$ is defined by 1 if n = 0 and $T(x_T^{(n-1)}, x)$ if $n \ge 1$. A t-norm T is said to be *of Hadžić-type* (we denote by $T \in \mathcal{H}$) if the family $(x_T^{(n)})_{n \in N}$ is equi-continuous at x = 1 (see [67]).

Definition 2.2 [66] A continuous *t*-norm \mathcal{T} on $L = [0,1]^2$ is said to be *continuous trepresentable* if there exist a continuous *t*-norm \ast and a continuous *t*-co-norm \diamond on [0,1] such that, for all $x = (x_1, x_2), y = (y_1, y_2) \in L$,

$$\mathcal{T}(x,y) = (x_1 * y_1, x_2 \diamond y_2).$$

For example,

$$\mathcal{T}(a,b) = (a_1b_1, \min\{a_2 + b_2, 1\})$$

and

$$\mathbf{M}(a,b) = (\min\{a_1, b_1\}, \max\{a_2, b_2\})$$

for all $a = (a_1, a_2)$, $b = (b_1, b_2) \in [0, 1]^2$ are continuous *t*-representable.

Define the mapping \mathcal{T}_{\wedge} from L^2 to L by

 $\mathcal{T}_{\wedge}(x,y) = \min(x,y) = \begin{cases} x, & \text{if } y \geq_L x, \\ y, & \text{if } x \geq_L y. \end{cases}$

Recall (see [67, 68]) that, if $\{x_n\}$ is a given sequence in *L*, then $(\mathcal{T}_{\wedge})_{i=1}^n x_i$ is defined recurrently by $(\mathcal{T}_{\wedge})_{i=1}^1 x_i = x_1$ and $(\mathcal{T}_{\wedge})_{i=1}^n x_i = \mathcal{T}_{\wedge}((\mathcal{T}_{\wedge})_{i=1}^{n-1} x_i, x_n)$ for all $n \ge 2$.

A *negation* on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$ for all $x \in L$, then \mathcal{N} is called an *involutive negation*. In the following, \mathcal{L} is endowed with a (fixed) negation \mathcal{N} .

Definition 2.3 A *latticetic random normed space* is a triple $(X, \mu, \mathcal{T}_{\wedge})$, where X is a vector space and μ is a mapping from X into D_L^+ satisfying the following conditions:

- (LRN1) $\mu_x(t) = \varepsilon_0(t)$ for all t > 0 if and only if x = 0;
- (LRN2) $\mu_{\alpha x}(t) = \mu_x(\frac{t}{|\alpha|})$ for all x in X, $\alpha \neq 0$ and $t \ge 0$;
- (LRN3) $\mu_{x+y}(t+s) \ge_L \mathcal{T}_{\wedge}(\mu_x(t), \mu_y(s))$ for all $x, y \in X$ and $t, s \ge 0$.

We note that, from (LPN2), it follows that $\mu_{-x}(t) = \mu_x(t)$ for all $x \in X$ and $t \ge 0$.

Example 2.4 Let $L = [0,1] \times [0,1]$ and an operation \leq_L be defined by

$$L = \{(a_1, a_2) : (a_1, a_2) \in [0, 1] \times [0, 1] \text{ and } a_1 + a_2 \le 1\},\$$
$$(a_1, a_2) \le_L (b_1, b_2) \iff a_1 \le b_1, \qquad a_2 \ge b_2, \quad \forall a = (a_1, a_2), b = (b_1, b_2) \in L.$$

Then (L, \leq_L) is a complete lattice (see [66]). In this complete lattice, we denote its units by $0_L = (0,1)$ and $1_L = (1,0)$. Let $(X, \|\cdot\|)$ be a normed space. Let $\mathcal{T}(a,b) =$

 $(\min\{a_1, b_1\}, \max\{a_2, b_2\})$ for all $a = (a_1, a_2), b = (b_1, b_2) \in [0, 1] \times [0, 1]$ and μ be a mapping defined by

$$\mu_x(t) = \left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right), \quad \forall t \in \mathbb{R}^+.$$

Then (*X*, μ , T) is a latticetic random normed space.

If $(X, \mu, \mathcal{T}_{\wedge})$ is a latticetic random normed space, then we have

$$\mathcal{V} = \left\{ V(\varepsilon, \lambda) : \varepsilon >_L 0_{\mathcal{L}}, \lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\} \right\}$$

is a complete system of neighborhoods of null vector for a linear topology on *X* generated by the norm *F*, where

$$V(\varepsilon,\lambda) = \{x \in X : F_x(\varepsilon) >_L \mathcal{N}(\lambda)\}.$$

Definition 2.5 Let $(X, \mu, \mathcal{T}_{\wedge})$ be a latticetic random normed space.

- (1) A sequence $\{x_n\}$ in X is said to be *convergent* to a point $x \in X$ if, for any t > 0 and $\varepsilon \in L \setminus \{0_L\}$, there exists a positive integer N such that $\mu_{x_n-x}(t) >_L \mathcal{N}(\varepsilon)$ for all $n \ge N$.
- (2) A sequence $\{x_n\}$ in *X* is called a *Cauchy sequence* if, for any t > 0 and $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$, there exists a positive integer *N* such that $\mu_{x_n-x_m}(t) >_L \mathcal{N}(\varepsilon)$ for all $n \ge m \ge N$.
- (3) A latticetic random normed space $(X, \mu, \mathcal{T}_{\wedge})$ is said to be *complete* if every Cauchy sequence in X is convergent to a point in X.

Theorem 2.6 If $(X, \mu, \mathcal{T}_{\wedge})$ is a latticetic random normed space and $\{x_n\}$ is a sequence such that $x_n \to x$, then $\lim_{n\to\infty} \mu_{x_n}(t) = \mu_x(t)$.

Proof The proof is the same as in classical random normed spaces (see [17]). \Box

Lemma 2.7 Let $(X, \mu, \mathcal{T}_{\wedge})$ be a latticetic random normed space and $x \in X$. If

$$\mu_x(t)=C,\quad\forall t>0,$$

then $C = 1_{\mathcal{L}}$ and x = 0.

Proof Let $\mu_x(t) = C$ for all t > 0. Since $\operatorname{Ran}(\mu) \subseteq D_L^+$, we have $C = 1_{\mathcal{L}}$ and, by (LRN1), we conclude that x = 0.

3 Hyers-Ulam stability in non-Archimedean latticetic random spaces

In the rest of this paper, unless otherwise explicitly stated, we will assume that *G* is an additive group and that *X* is a complete non-Archimedean latticetic random space. For convenience, we use the following abbreviation for a given mapping $f : G \rightarrow X$:

$$\Delta f(x_1,...,x_n) = \sum_{i=1}^n f\left(x_i - \frac{1}{n}\sum_{j=1}^n x_j\right) - \sum_{i=1}^n f(x_i) + nf\left(\frac{1}{n}\sum_{i=1}^n x_i\right)$$

for all $x_1, \ldots, x_n \in G$, where $n \ge 2$ is a fixed integer.

Lemma 3.1 [18] Let V_1 and V_2 be real vector spaces. If an odd mapping $f: V_1 \rightarrow V_2$ satisfies the functional equation (1.2), then f is additive.

Let \mathcal{K} be a non-Archimedean field, \mathcal{X} a vector space over \mathcal{K} and $(\mathcal{Y}, \mu, \mathcal{T}_{\wedge})$ a non-Archimedean complete *LRN*-space over \mathcal{K} . In the following theorem, we prove the Hyers-Ulam stability of the functional equation (1.2) in non-Archimedean latticetic random spaces for an odd mapping case.

Theorem 3.2 Let \mathcal{K} be a non-Archimedean field and $(\mathcal{X}, \mu, \mathcal{T}_{\wedge})$ a non-Archimedean complete LRN-space over \mathcal{K} . Let $\varphi : G^n \to D_L^+$ be a distribution function such that

$$\lim_{m \to \infty} \varphi_{2^m x_1, 2^m x_2, \dots, 2^m x_n} (|2|^m t) = 1_{\mathcal{L}} = \lim_{m \to \infty} \Phi_{2^{m-1} x} (|2|^m t)$$
(3.1)

for all $x, x_1, x_2, \ldots, x_n \in G$, and

$$\tilde{\varphi}_x(t) = \lim_{m \to \infty} \min\left\{ \Phi_{2^k x}(|2|^k t) : 0 \le k < m \right\}$$
(3.2)

exists for all $x \in G$ *, where*

$$\Phi_{x}(t) := \min\left\{\varphi_{2x,0,\dots,0}(t), \min\left\{\varphi_{x,x,0,\dots,0}\left(\frac{|2|t}{n}\right), \varphi_{x,-x,\dots,-x}(|2|t), \varphi(-x,x,\dots,x)\right\}\right\}$$
(3.3)

for all $x \in G$. Suppose that an odd mapping $f : G \to X$ satisfies the inequality

$$\mu_{\Delta f(x_1,\dots,x_n)}(t) \ge_L \varphi_{x_1,x_2,\dots,x_n}(t)$$
(3.4)

for all $x_1, x_2, ..., x_n \in G$ and t > 0. Then there exists an additive mapping $A : G \to X$ such that

$$\mu_{f(x)-A(x)}(t) \ge_L \tilde{\varphi}_x(|2|t) \tag{3.5}$$

for all $x \in G$ and t > 0, and if

$$\lim_{\ell \to \infty} \lim_{m \to \infty} \min\left\{ \Phi_{2^{k_x}}(|2|^k t) : \ell \le k < m + \ell \right\} = 1_{\mathcal{L}}$$
(3.6)

then A is a unique additive mapping satisfying (3.5).

Proof Letting $x_1 = nx_1$, $x_i = nx'_1$ (i = 2, ..., n) in (3.4) and using the oddness of f, we obtain that

$$\mu_{nf(x_1+(n-1)x_1')+f((n-1)(x_1-x_1'))-(n-1)f(x_1-x_1')-f(nx_1)-(n-1)f(nx_1')}(t) \ge_L \varphi_{nx_1,nx_1',\dots,nx_1'}(t)$$
(3.7)

for all $x_1, x'_1 \in G$ and t > 0. Interchanging x_1 with x'_1 in (3.7) and using the oddness of f, we get

$$\mu_{nf((n-1)x_1+x_1')-f((n-1)(x_1-x_1'))+(n-1)f(x_1-x_1')-(n-1)f(nx_1)-f(nx_1')}(t)$$

$$\geq_L \varphi_{nx_1',nx_1,\dots,nx_1}(t)$$
(3.8)

for all $x_1, x'_1 \in G$ and t > 0. It follows from (3.7) and (3.8) that

 $\mu_{nf(x_1+(n-1)x_1')-nf((n-1)x_1+x_1')+2f((n-1)(x_1-x_1'))-2(n-1)f(x_1-x_1')+(n-2)f(nx_1)-(n-2)f(nx_1')}(t)$

$$\geq_{L} \min \{ \varphi_{nx_{1}, nx_{1}', \dots, nx_{1}'}(t), \varphi_{nx_{1}', nx_{1}, \dots, nx_{1}}(t) \}$$
(3.9)

for all $x_1, x'_1 \in G$ and t > 0. Setting $x_1 = nx_1, x_2 = -nx'_1, x_i = 0$ (i = 3, ..., n) in (3.4) and using the oddness of *f*, we get

$$\mu_{f((n-1)x_1+x_1')-f(x_1+(n-1)x_1')+2f(x_1-x_1')-f(nx_1)+f(nx_1')}(t)$$

$$\geq_L \varphi_{nx_1,-nx_1',0,\dots,0}(t)$$
(3.10)

for all $x_1, x'_1 \in G$ and t > 0. It follows from (3.9) and (3.10) that

$$\mu_{f((n-1)(x_1-x_1'))+f(x_1-x_1')-f(nx_1)+f(nx_1')}(t)$$

$$\geq_L \min\left\{\varphi_{nx_1,-nx_1',0,\dots,0}\left(\frac{|2|}{n}\right),\varphi_{nx_1,nx_1',\dots,nx_1'}\left(\frac{|2|}{n}\right),\varphi_{nx_1',nx_1,\dots,nx_1}\left(\frac{|2|}{n}\right)\right\}$$

$$(3.11)$$

for all $x_1, x'_1 \in G$ and t > 0. Putting $x_1 = n(x_1 - x'_1)$, $x_i = 0$ (i = 2, ..., n) in (3.4), we obtain

$$\mu_{f(n(x_1-x_1'))-f((n-1)(x_1-x_1'))-f((x_1-x_1'))}(t) \ge_L \varphi_{n(x_1-x_1'),0,\dots,0}(t)$$
(3.12)

for all $x_1, x'_1 \in G$ and t > 0. It follows from (3.11) and (3.12) that

$$\mu_{f(n(x_{1}-x_{1}'))-f(nx_{1})+f(nx_{1}')}(t) \geq_{L} \min\left\{\varphi_{n(x_{1}-x_{1}'),0,\dots,0}(t),\varphi_{nx_{1},-nx_{1}',0,\dots,0}\left(\frac{|2|}{n}t\right),\\\min\left\{\varphi_{nx_{1},nx_{1}',\dots,nx_{1}'}\left(\frac{|2|}{n}t\right),\varphi_{nx_{1}',nx_{1},\dots,nx_{1}}\left(\frac{|2|}{n}t\right)\right\}\right\}$$
(3.13)

for all $x_1, x'_1 \in G$ and t > 0. Replacing x_1 and x'_1 by $\frac{x}{n}$ and $\frac{-x}{n}$ in (3.13), respectively, we obtain

$$\mu_{f(2x)-2f(x)}(t) \ge_L \min\left\{\varphi_{2x,0,\dots,0}(t), \min\left\{\varphi_{x,x,0,\dots,0}\left(\frac{|2|}{n}t\right), \varphi_{x,-x,\dots,-x}(t), \varphi_{-x,x,\dots,x}(t)\right\}\right\}$$

for all $x \in G$ and t > 0. Hence,

$$\mu_{\frac{f(2x)}{2} - f(x)}(t) \ge_L \Phi_x(|2|t) \tag{3.14}$$

for all $x \in G$ and t > 0. Replacing x by $2^{m-1}x$ in (3.14), we have

$$\mu_{\frac{f(2^{m-1}x)}{2^{m-1}} - \frac{f(2^mx)}{2^m}}(t) \ge_L \Phi_{2^{m-1}x}(|2|^m t)$$
(3.15)

for all $x \in G$ and t > 0. It follows from (3.1) and (3.15) that the sequence $\{\frac{f(2^m x)}{2^m}\}$ is Cauchy. Since X is complete, we conclude that $\{\frac{f(2^m x)}{2^m}\}$ is convergent. So one can define the mapping $A: G \to X$ by $A(x) := \lim_{m \to \infty} \frac{f(2^m x)}{2^m}$ for all $x \in G$. It follows from (3.14) and (3.15) that

$$\mu_{f(x) - \frac{f(2^m x)}{2^m}}(t) \ge_L \min\left\{\Phi_{2^k x}(|2|^{k+1}t) : 0 \le k < m\right\}$$
(3.16)

for all $m \in \mathbb{N}$ and all $x \in G$ and t > 0. By taking *m* to approach infinity in (3.16) and using (3.2), one gets (3.5). By (3.1) and (3.4), we obtain

$$\mu_{\Delta A(x_1, x_2, \dots, x_n)}(t) = \lim_{m \to \infty} \mu_{\Delta f(2^m x_1, 2^m x_2, \dots, 2^m x_n)} (|2|^m t)$$
$$\geq_L \lim_{m \to \infty} \varphi_{2^m x_1, 2^m x_2, \dots, 2^m x_n} (|2|^m t) = 1_{\mathcal{L}}$$

for all $x_1, x_2, ..., x_n \in G$ and t > 0. Thus the mapping *A* satisfies (1.2). By Lemma 3.1, *A* is additive.

If A' is another additive mapping satisfying (3.5), then

$$\begin{split} \mu_{A(x)-A'(x)}(t) &= \lim_{\ell \to \infty} \mu_{A(2^{\ell}x)-A'(2^{\ell}x)} (|2|^{\ell} t) \\ &\geq_{L} \lim_{\ell \to \infty} \min \{ \mu_{A(2^{\ell}x)-f(2^{\ell}x)} (|2|^{\ell} t), \mu_{f(2^{\ell}x)-Q'(2^{\ell}x)} (|2|^{\ell} t) \} \\ &\geq_{L} \lim_{\ell \to \infty} \lim_{m \to \infty} \min \{ \tilde{\varphi}_{2^{k}x} (|2|^{k+1}) : \ell \leq k < m + \ell \} = 0 \end{split}$$

for all $x \in G$, thus, A = A'.

Corollary 3.3 Let $\rho : [0, \infty) \rightarrow [0, \infty)$ be a function satisfying

(*i*) $\rho(|2|t) \le \rho(|2|)\rho(t)$ for all $t \ge 0$, (*ii*) $\rho(|2|) < |2|$.

Let $\varepsilon > 0$ and let $(G, \mu, \mathcal{T}_{\wedge})$ be an LRN-space in which $L = D^+$. Suppose that an odd mapping $f : G \to X$ satisfies the inequality

$$\mu_{\Delta f(x_1,\dots,x_n)}(t) \ge_L \frac{t}{t + \varepsilon \sum_{i=1}^n \rho(\|x_i\|)}$$

for all $x_1, \ldots, x_n \in G$ and t > 0. Then there exists a unique additive mapping $A : G \to X$ such that

$$\mu_{f(x)-A(x)}(t) \ge_L \frac{t}{t + \frac{2n}{|2|^2} \varepsilon \rho(||x||)}$$

for all $x \in G$ and t > 0.

Proof Defining $\varphi: G^n \to D^+$ by $\varphi_{x_1,\dots,x_n}(t) := \frac{t}{t+\varepsilon \sum_{i=1}^n \rho(||x_i||)}$, we have

$$\lim_{m \to \infty} \varphi_{2^m x_1, \dots, 2^m x_n} \left(|2|^m t \right) \ge_L \lim_{m \to \infty} \varphi_{x_1, \dots, x_n} \left(\left(\frac{|2|}{\rho(|2|)} \right)^m \right) = 1_{\mathcal{L}}$$

for all $x_1, \ldots, x_n \in G$ and t > 0. So, we have

$$\tilde{\varphi}_x(t) := \lim_{m \to \infty} \min\left\{ \Phi_{2^k x} \left(|2|^k \right) : 0 \le k < m \right\} = \Phi_x(t)$$

and

$$\lim_{\ell \to \infty} \lim_{m \to \infty} \min \left\{ \Phi_{2^{k}x} \left(|2|^{k} \right) : \ell \le k < m + \ell \right\} = \lim_{\ell \to \infty} \Phi_{2^{\ell}x} \left(|2|^{\ell} \right) = 1_{\mathcal{L}}$$

$$\Phi_x(t) = \min\left\{\frac{t}{t + \varepsilon\rho(\|2x\|)}, \frac{t}{t + \frac{1}{|2|}2n\varepsilon\rho(\|x\|)}\right\} = \frac{|2|t}{|2|t + 2n\varepsilon\rho(\|x\|)}.$$

Applying Theorem 3.2, we conclude that

$$\mu_{f(x)-A(x)}(t) \ge_L \tilde{\varphi}_x(|2|t) = \Phi_x(|2|t) = \frac{t}{t + \frac{2n}{|2|^2}\varepsilon\rho(||x||)}$$

for all $x \in G$ and t > 0.

Lemma 3.4 [18] Let V_1 and V_2 be real vector spaces. If an even mapping $f: V_1 \rightarrow V_2$ satisfies the functional equation (1.2), then f is quadratic.

In the following theorem, we prove the Hyers-Ulam stability of the functional equation (1.2) in non-Archimedean LRN-spaces for an even mapping case.

Theorem 3.5 Let $\varphi : G^n \to D^+_L$ be a function such that

$$\lim_{m \to \infty} \varphi_{2^m x_1, 2^m x_2, \dots, 2^m x_n} (|2|^{2^m} t) = 1_{\mathcal{L}} = \lim_{m \to \infty} \tilde{\varphi'}_{2^{m-1} x} (|2|^{2^m} t)$$
(3.17)

for all $x, x_1, x_2, ..., x_n \in G$, t > 0 and

$$\tilde{\varphi'}_{x}(t) = \lim_{m \to \infty} \min\left\{\tilde{\varphi'}_{2^{k}x}\left(|2|^{2k}t\right) : 0 \le k < m\right\}$$
(3.18)

exists for all $x \in G$ *and* t > 0 *where*

$$\tilde{\varphi'}_{x}(t) := \min \{ \varphi_{nx,nx,0,\dots,0} (|2n-2|t), \varphi_{nx,0,\dots,0} (|n-1|t), \\ \varphi_{x,(n-1)x,0,\dots,0} (|n-1|t), \Psi_{x} (|n-1|t) \}$$
(3.19)

and

$$\Psi_{x}(t) := \min\left\{n\varphi_{nx,0,\dots,0}\left(\frac{|2|}{n}t\right), \varphi_{nx,0,\dots,0}\left(|2|t\right), \varphi_{0,nx,\dots,nx}\left(|2|t\right)\right\}$$
(3.20)

for all $x \in G$ and t > 0. Suppose that an even mapping $f : G \to X$ with f(0) = 0 satisfies the inequality (3.4) for all $x_1, x_2, ..., x_n \in G$ and t > 0. Then there exists a quadratic mapping $Q: G \to X$ such that

$$\mu_{f(x)-Q(x)}(t) \ge_L \tilde{\varphi'}_x(|2|^2 t) \tag{3.21}$$

for all $x \in G$, t > 0 and if

$$\lim_{\ell \to \infty} \lim_{m \to \infty} \min\left\{ \tilde{\varphi'}_{2^{k}x} \left(|2|^{2k} t \right) : \ell \le k < m + \ell \right\} = 1_{\mathcal{L}}$$
(3.22)

then Q is a unique quadratic mapping satisfying (3.21).

Proof Replacing x_1 by nx_1 , and x_i by nx_2 (i = 2, ..., n) in (3.4) and using the evenness of f, we obtain

$$\mu_{nf(x_{1}+(n-1)x_{2})+f((n-1)(x_{1}-x_{2}))+(n-1)f(x_{1}-x_{2})-f(nx_{1})-(n-1)f(nx_{2})}(t)$$

$$\geq_{L} \varphi_{nx_{1},nx_{2},\dots,nx_{2}}(t)$$
(3.23)

for all $x_1, x_2 \in G$ and t > 0. Interchanging x_1 with x_2 in (3.23) and using the evenness of f, we obtain

$$\mu_{nf((n-1)x_1+x_2)+f((n-1)(x_1-x_2))+(n-1)f(x_1-x_2)-(n-1)f(nx_1)-f(nx_2)}(t)$$

$$\geq_L \varphi_{nx_2,nx_1,\dots,nx_1}(t)$$
(3.24)

for all $x_1, x_2 \in G$ and t > 0. It follows from (3.23) and (3.24) that

$$\mu_{nf((n-1)x_1+x_2)+nf(x_1+(n-1)x_2)+2f((n-1)(x_1-x_2))+2(n-1)f(x_1-x_2)-nf(nx_1)-nf(nx_2)}(t)$$

$$\geq_L \min\{\varphi_{nx_1,nx_2,\dots,nx_2}(t),\varphi_{nx_2,nx_1,\dots,nx_1}(t)\}$$
(3.25)

for all $x_1, x_2 \in G$ and t > 0. Setting $x_1 = nx_1, x_2 = -nx_2, x_i = 0$ (i = 3, ..., n) in (3.4) and using the evenness of f, we obtain

$$\mu_{f((n-1)x_1+x_2)+f(x_1+(n-1)x_2)+2(n-1)f(x_1-x_2)-f(nx_1)-f(nx_2)}(t)$$

$$\geq_L \varphi_{nx_1,-nx_2,0,\dots,0}(t)$$
(3.26)

for all $x_1, x_2 \in G$ and t > 0. So, it follows from (3.25) and (3.26) that

$$\mu_{f((n-1)(x_1-x_2))-(n-1)^2 f(x_1-x_2)}(t) \\ \ge_L \min\left\{\varphi_{nx_1,-nx_2,0,\dots,0}\left(\frac{|2|}{n}\right),\varphi_{nx_1,nx_2,\dots,nx_2}(|2|t),\varphi_{nx_2,nx_1,\dots,nx_1}(|2|t)\right\}$$
(3.27)

for all $x_1, x_2 \in G$ and t > 0. Setting $x_1 = x, x_2 = 0$ in (3.27), we obtain

$$\mu_{f((n-1)x)-(n-1)^{2}f(x)}(t) \\ \geq_{L} \min\left\{\varphi_{nx,0,\dots,0}\left(\frac{|2|}{n}t\right),\varphi_{nx,0,\dots,0}\left(|2|t\right),\varphi_{0,nx,\dots,nx}\left(|2|t\right)\right\}$$
(3.28)

for all $x \in G$ and t > 0. Putting $x_1 = nx$, $x_i = 0$ (i = 2, ..., n) in (3.4), one obtains

$$\mu_{f(nx)-f((n-1)x)-(2n-1)f(x)}(t) \ge_L \varphi_{nx,0,\dots,0}(t)$$
(3.29)

for all $x \in G$ and t > 0. It follows from (3.28) and (3.29) that

$$\mu_{f(nx)-n^{2}f(x)}(t) \geq_{L} \min\left\{\varphi_{nx,0,\dots,0}(t),\varphi_{nx,0,\dots,0}\left(\frac{|2|}{n}t\right), \\ \varphi_{nx,0,\dots,0}\left(|2|t\right),\varphi_{0,nx,\dots,nx}\left(|2|t\right)\right\}$$
(3.30)

for all $x \in G$ and t > 0. Letting $x_2 = -(n-1)x_1$ and replacing x_1 by $\frac{x}{n}$ in (3.26), we get

$$\mu_{f((n-1)x)-f((n-2)x)-(2n-3)f(x)}(t) \ge_L \varphi_{x,(n-1)x,0,\dots,0}(t)$$
(3.31)

for all $x \in G$ and t > 0. It follows from (3.28) and (3.31) that

$$\mu_{f((n-2)x)-(n-2)^{2}f(x)}(t) \geq_{L} \min\left\{\varphi_{x,(n-1)x,0,\dots,0}(t),\varphi_{nx,0,\dots,0}\left(\frac{|2|}{n}t\right), \\ \varphi_{nx,0,\dots,0}\left(|2|t\right),\varphi_{0,nx,\dots,nx}\left(|2|t\right)\right\}$$
(3.32)

for all $x \in G$ and t > 0. It follows from (3.30) and (3.32) that

$$\mu_{f(nx)-f((n-2)x)-4(n-1)f(x)}(t) \ge_L \min\{\varphi_{nx,0,\dots,0}(t), \varphi_{x,(n-1)x,0,\dots,0}(t), \Psi_x(t)\}$$
(3.33)

for all $x \in G$ and t > 0. Setting $x_1 = x_2 = nx$, $x_i = 0$ (i = 3, ..., n) in (3.4), we obtain

$$\mu_{f((n-2)x)+(n-1)f(2x)-f(nx)}(t) \ge_L \varphi_{nx,nx,0,\dots,0}(|2|t)$$
(3.34)

for all $x \in G$ and t > 0. It follows from (3.33) and (3.34) that

$$\mu_{f(2x)-4f(x)}(t) \\ \ge_{L} \min\{\varphi_{nx,nx,0,\dots,0}(|2n-2|t),\varphi_{nx,0,\dots,0}(|n-1|t), \\ \varphi_{x,(n-1)x,0,\dots,0}(|n-1|t),\Psi_{x}(|n-1|t)\}$$
(3.35)

for all $x \in G$ and t > 0. Thus,

$$\mu_{f(x)-\frac{f(2x)}{2^2}}(t) \ge_L \tilde{\varphi'}_x(|2|^2 t)$$
(3.36)

for all $x \in G$ and t > 0. Replacing x by $2^{m-1}x$ in (3.36), we have

$$\mu_{\frac{f(2^{m-1}x)}{2^{2(m-1)}} - \frac{f(2^mx)}{2^{2m}}}(t) \ge_L \tilde{\varphi'}_{2^{m-1}x}(|2|^{2m}t)$$
(3.37)

for all $x \in G$ and t > 0. It follows from (3.17) and (3.37) that the sequence $\{\frac{f(2^m x)}{2^{2m}}\}$ is Cauchy. Since X is complete, we conclude that $\{\frac{f(2^m x)}{2^{2m}}\}$ is convergent. So, one can define the mapping $Q: G \to X$ by $Q(x) := \lim_{m \to \infty} \frac{f(2^m x)}{2^{2m}}$ for all $x \in G$. By using induction, it follows from (3.36) and (3.37) that

$$\mu_{f(x) - \frac{f(2^m x)}{2^{2m}}}(t) \ge_L \min\{\tilde{\varphi'}_{2^k x}(|2|^{2k+2}t) : 0 \le k < m\}$$
(3.38)

for all $n \in \mathbb{N}$ and all $x \in G$ and t > 0. By taking *m* to approach infinity in (3.38) and using (3.18), one gets (3.21).

The rest of proof is similar to the proof of Theorem 3.2. \Box

Corollary 3.6 Let $\eta : [0, \infty) \to [0, \infty)$ be a function satisfying

(i) $\eta(|l|t) \leq \eta(|l|)\eta(t)$ for all $t \geq 0$, (ii) $\eta(|l|) < |l|^2$ for $l \in \{2, n - 1, n\}$. Let $\varepsilon > 0$ and let $(G, \mu, \mathcal{T}_{\wedge})$ be a LRN-space in which $L = D^+$. Suppose that an even mapping $f : G \to X$ with f(0) = 0 satisfies the inequality

$$\mu_{\Delta f(x_1,...,x_n)}(t) \geq \frac{t}{t + \varepsilon \sum_{i=1}^n \eta(\|x_i\|)}$$

for all $x_1, \ldots, x_n \in G$ and t > 0. Then there exists a unique quadratic mapping $Q : G \to X$ such that

$$\mu_{f(x)-Q(x)}(t) \geq \begin{cases} \frac{t}{t+\frac{2}{|2|^2}\varepsilon\eta(||x||)}, & \text{if } n=2;\\ \frac{t}{t+\frac{n}{|2|^3|n-1|}}\varepsilon\eta(||nx||)}, & \text{if } n>2, \end{cases}$$

for all $x \in G$ and t > 0.

Proof Defining $\varphi: G^n \to D^+$ by $\varphi_{x_1,\dots,x_n}(t) := \frac{t}{t+\varepsilon \sum_{i=1}^n \eta(\|x_i\|)}$, we have

$$\lim_{m\to\infty}\varphi_{2^mx_1,\dots,2^mx_n}\left(|2|^{2^m}t\right)\geq \lim_{m\to\infty}\varphi_{x_1,\dots,x_n}\left(\left(\frac{|2|^2}{\eta(|2|)}\right)^m\right)=1_{\mathcal{L}}$$

for all $x_1, \ldots, x_n \in G$ and t > 0. We have

$$\tilde{\varphi'}_{x}(t) \coloneqq \lim_{m \to \infty} \min\left\{\tilde{\varphi'}_{2^{k}x}\left(|2|^{2k}t\right) : 0 \le k < m\right\}$$

and

$$\lim_{\ell \to \infty} \lim_{m \to \infty} \min \left\{ \tilde{\varphi'}_{2^k x} \left(|2|^{2^k} t \right) : \ell \le k < m + \ell \right\} = \lim_{\ell \to \infty} \tilde{\varphi'}_{2^\ell x} \left(|2|^{2^\ell} t \right) = 0$$

for all $x \in G$ and t > 0. It follows from (3.20) that

$$\begin{split} \Psi_x(t) &= \min\left\{\frac{|2|t}{|2|t+2n\varepsilon\eta(\|nx\|)}, \frac{|2|t}{|2|t+2\varepsilon\eta(\|nx\|)}, \frac{|2|t}{|2|t+2(n-1)\varepsilon\eta(\|nx\|)}\right\} \\ &= \frac{|2|t}{|2|t+n\varepsilon\eta(\|nx\|)}. \end{split}$$

Hence, by using (3.19), we obtain

$$\begin{split} \tilde{\varphi'}_{x}(t) &= \min\left\{\frac{|2n-2|t|}{|2n-2|t+2\varepsilon\eta(\|nx\|)}, \frac{|n-1|t|}{|n-1|t+\varepsilon\eta(\|nx\|)}, \\ &\frac{|2n-2|t|}{|2n-2|t+n\varepsilon\eta(\|nx\|)}, \frac{|n-1|t|}{|n-1|t+\varepsilon(\eta(\|x\|)+\eta(\|(n-1)x\|)))}\right\} \\ &= \left\{\frac{t}{t+2\varepsilon\eta(\|x\|)}, \quad \text{if } n=2; \\ &\frac{|2||n-1|t|}{|2||n-1|t+n\varepsilon\eta(\|nx\|)}, \quad \text{if } n>2, \end{aligned} \right.$$

for all $x \in G$ and t > 0. Applying Theorem 3.5, we conclude the required result.

Now, we are ready to prove the main theorem concerning the Hyers-Ulam stability problem for the functional equation (1.2) in non-Archimedean spaces.

Theorem 3.8 Let $\varphi : G^n \to D_L^+$ be a function satisfying (3.1) for all $x, x_1, x_2, \dots, x_n \in G$, and $\tilde{\varphi}_x(t)$ and $\tilde{\varphi'}_x(t)$ exist for all $x \in G$ and t > 0, where $\tilde{\varphi}_x(t)$ and $\tilde{\varphi'}_x(t)$ are defined as in Theorems 3.2 and 3.5. Suppose that a mapping $f : G \to X$ with f(0) = 0 satisfies the inequality (3.4) for all $x_1, x_2, \dots, x_n \in G$. Then there exist an additive mapping $A : G \to X$ and a quadratic mapping $Q : G \to X$ such that

$$\mu_{f(x)-A(x)-Q(x)}(t) \ge_{L} \min\left\{\tilde{\varphi}_{x}(|2|^{2}t), \tilde{\varphi}_{-x}(|2|^{2}t), \tilde{\varphi'}_{x}(|2|t), \frac{1}{|2|}\tilde{\varphi'}_{-x}(|2|t)\right\}$$
(3.39)

for all $x \in G$ and t > 0. If

$$\lim_{\ell \to \infty} \lim_{m \to \infty} \min \left\{ \varphi_{2^{k}x} \left(|2|^{k} t \right) : \ell \leq k < m + \ell \right\}$$
$$= \mathbf{1}_{\mathcal{L}} = \lim_{\ell \to \infty} \lim_{m \to \infty} \min \left\{ \tilde{\varphi'}_{2^{k}x} \left(|2|^{2k} t \right) : \ell \leq k < m + \ell \right\}$$

then A is a unique additive mapping and Q is a unique quadratic mapping satisfying (3.39).

Proof Let $f_e(x) = \frac{1}{2}(f(x) + f(-x))$ for all $x \in G$. Then

$$\begin{split} \left\| \Delta f_e(x_1, \dots, x_n) \right\| &= \left\| \frac{1}{2} \left(\Delta f(x_1, \dots, x_n) + \Delta f(-x_1, \dots, -x_n) \right) \right\| \\ &\leq \frac{1}{|2|} \max \left\{ \varphi(x_1, \dots, x_n), \varphi(-x_1, \dots, -x_n) \right\} \end{split}$$

for all $x_1, x_2, ..., x_n \in G$ and t > 0. By Theorem 3.5, there exists a quadratic mapping $Q : G \to X$ such that

$$\mu_{f_e(x)-Q(x)}(t) \ge_L \min\{\tilde{\varphi'}_x(|2|^3 t), \tilde{\varphi'}_{-x}(|2|^3 t)\}$$
(3.40)

for all $x \in G$ and t > 0. Also, let $f_o(x) = \frac{1}{2}(f(x) - f(-x))$ for all $x \in G$. By Theorem 3.2, there exists an additive mapping $A : G \to X$ such that

$$\mu_{f_o(x)-A(x)}(t) \ge_L \min\left\{\tilde{\varphi}_x\left(|2|^2 t\right), \tilde{\varphi}_{-x}\left(|2|^2 t\right)\right\}$$
(3.41)

for all $x \in G$ and t > 0. Hence (3.39) follows from (3.40) and (3.41). The rest of proof is trivial.

Corollary 3.9 Let $\gamma : [0, \infty) \to [0, \infty)$ be a function satisfying (i) $\gamma(|l|t) \le \gamma(|l|)\gamma(t)$ for all $t \ge 0$, (ii) $\gamma(|l|) < |l|^2$ for $l \in \{2, n - 1, n\}$.
$$\mu_{\Delta f(x_1,\dots,x_n)}(t) \geq \frac{t}{t + \varepsilon \sum_{i=1}^n \gamma(\|x_i\|)}$$

for all $x_1, ..., x_n \in G$, t > 0 and f(0) = 0. Then there exist a unique additive mapping $A : G \to X$ and a unique quadratic mapping $Q : G \to X$ such that

$$\mu_{f(x)-A(x)-Q(x)}(t) \ge \frac{|2|^3 t}{|2|^3 t + 2n\varepsilon\gamma(||x||)}$$

for all $x \in G$ and t > 0.

Proof The result follows from Corollaries 3.6 and 3.3.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Received: 6 April 2012 Accepted: 18 July 2012 Published: 31 July 2012

References

- 1. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
- 2. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
- 3. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
- 4. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
- 5. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184**, 431-436 (1994)
- 6. Amir, D: Characterizations of Inner Product Spaces. Birkhäuser, Basel (1986)
- 7. Aczel, J, Dhombres, J: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)
- 8. Kannappan, PI: Quadratic functional equation and inner product spaces. Results Math. 27, 368-372 (1995)
- 9. Rassias, ThM: New characterization of inner product spaces. Bull. Sci. Math. 108, 95-99 (1984)
- 10. Hensel, K: Uber eine neue Begrundung der Theorie der algebraischen Zahlen. Jahresber. Dtsch. Math.-Ver. 6, 83-88 (1897)
- 11. Khrennikov, A: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic, Dordrecht (1997)
- 12. Moslehian, MS, Rassias, ThM: Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discrete Math. 1, 325-334 (2007)
- 13. Narici, L, Beckenstein, E: Strange terrain-non-Archimedean spaces. Am. Math. Mon. 88, 667-676 (1981)
- 14. Gordji, ME, Savadkouhi, MB: Stability of cubic and quartic functional equations in non-Archimedean spaces. Acta Appl. Math. **110**, 1321-1329 (2010)
- 15. Gordji, ME, Savadkouhi, MB: Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 23, 1198-1202 (2010)
- Gordji, ME, Khodaei, H, Khodabakhsh, R: General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72, 69-84 (2010)
- 17. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North Holand, New York (1983)
- Najati, A, Rassias, ThM: Stability of a mixed functional equation in several variables on Banach modules. Nonlinear Anal. 72, 1755-1767 (2010)
- 19. Park, C: Fuzzy stability of a functional equation associated with inner product spaces. Fuzzy Sets Syst. 160, 1632-1642 (2009)
- 20. Gordji, ME, Khodaei, H: The fixed point method for fuzzy approximation of a functional equation associated with inner product spaces. Discrete Dyn. Nat. Soc. **2010**, Article ID 140767 (2010)
- Adam, M, Czerwik, S: On the stability of the quadratic functional equation in topological spaces. Banach J. Math. Anal. 1, 245-251 (2007)
- 22. Ebadian, A, Ghobadipour, N, Gordji, ME: A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C^{*}-ternary algebras. J. Math. Phys. **51**, Article ID 103508 (2010)
- 23. Ebadian, A, Najati, A, Gordji, ME: On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups. Results Math. **58**, 39-53 (2010)
- 24. Gordji, ME: Stability of a functional equation deriving from quartic and additive functions. Bull. Korean Math. Soc. 47, 491-502 (2010)

- 25. Gordji, ME: Stability of an additive-quadratic functional equation of two variables in *F*-spaces. J. Nonlinear Sci. Appl **2**, 251-259 (2009)
- Gordji, ME, Ghaemi, MB, Kaboli Gharetapeh, S, Shams, S, Ebadian, A: On the stability of J^{*}-derivations. J. Geom. Phys. 60, 454-459 (2010)
- 27. Gordji, ME, Najati, A: Approximately J^{*}-homomorphisms: A fixed point approach. J. Geom. Phys. **60**, 809-814 (2010)
- Gordji, ME, Savadkouhi, MB: On approximate cubic homomorphisms. Adv. Differ. Equ. 2009, Article ID 618463 (2009)
 Gordji, ME, Ghaemi, MB, Majani, H, Park, C: Generalized Ulam-Hyers stability of Jensen functional equation in Šerstnev PN-spaces. J. Inequal. Appl. 2010, Article ID 868193 (2010)
- Farokhzad, R, Hosseinioun, SAR: Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach. Int. J. Nonlinear Anal. Appl. 1, 42-53 (2010)
- 31. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)
- 32. Găvruta, P, Găvruta, L: A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 1, 11-18 (2010)
- Gordji, ME, Kaboli Gharetapeh, S, Park, C, Zolfaghri, S: Stability of an additive-cubic-quartic functional equation. Adv. Differ. Equ. 2009, 395693 (2009)
- Gordji, ME, Kaboli Gharetapeh, S, Rassias, JM, Zolfaghari, S: Solution and stability of a mixed type additive, quadratic and cubic functional equation. Adv. Differ. Equ. 2009, Article ID 826130 (2009)
- 35. Gordji, ME, Savadkouhi, MB: Stability of a mixed type cubic and quartic functional equations in random normed spaces. J. Inequal. Appl. **2009**, Article ID 527462 (2009)
- Gordji, ME, Abbaszadeh, S, Park, C: On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces. J. Inequal. Appl. 2009, Article ID 153084 (2009)
- Gordji, ME, Savadkouhi, MB, Park, C: Quadratic-quartic functional equations in RN-spaces. J. Inequal. Appl. 2009, Article ID 868423 (2009)
- Gordji, ME, Savadkouhi, MB: Approximation of generalized homomorphisms in quasi-Banach algebras. Analele Univ. Ovidius Constata. Math. Series 17, 203-214 (2009)
- Gordji, ME, Savadkouhi, MB, Bidkham, M: Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces. J. Comput. Anal. Appl. 12, 454-462 (2010)
- 40. Adam, M: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl 4, 50-59 (2011)
- 41. Kim, GH: Stability of the Lobacevski equation. J. Nonlinear Sci. Appl 4, 11-18 (2011)
- 42. Khodaei, H, Rassias, ThM: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 1, 22-41 (2010)
- Rassias, MJ: J. M. Rassias product-sum stability of an Euler-Lagrange functional equation. J. Nonlinear Sci. Appl. 3, 265-271 (2010)
- 44. Mohiuddine, SA: Stability of Jensen functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 42, 2989-2996 (2009)
- Mursaleen, M, Mohiuddine, SA: On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 42, 2997-3005 (2009)
- Park, C: Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C*-algebras. J. Comput. Appl. Math. 180, 279-291 (2005)
- Mohiuddine, SA, Sevli, H. Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed spaces. J. Comput. Appl. Math. 235, 2137-2146 (2011)
- 48. Saadati, R, Cho, Y, Vahidi, J: The stability of the quartic functional equation in various spaces. Comput. Math. Appl. 60, 1994-2002 (2010)
- 49. Park, C: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Banach J. Math. Anal. 1, 23-32 (2007)
- Jang, SJ, Park, C, Kenary, HA: Fixed points and fuzzy stability of functional equations related to inner product. J. Nonlinear Anal. Appl. 2012, Article ID jnaa-00109 (2012). doi:10.5899/2012/jnaa-00109
- 51. Park, C, Rassias, ThM: Isomorphisms in unital C^{*}-algebras. Int. J. Nonlinear Anal. Appl. 1, 1-10 (2010)
- 52. Park, C, Rassias, ThM: Isometric additive mappings in generalized quasi-Banach spaces. Banach J. Math. Anal. 2, 59-69 (2008)
- 53. Saadati, R, Park, C: Non-Archimedean L-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 60, 2488-2496 (2010)
- 54. Cho, Y, Park, C, Saadati, R: Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 23(10), 1238-1242 (2010)
- 55. Park, C, Gordji, ME, Najati, A: Generalized Hyers-Ulam stability of an AQCQ-functional equation in non-Archimedean Banach spaces. J. Nonlinear Sci. Appl. **3**(4), 272-281 (2010)
- Shakeri, S, Saadati, R, Park, C: Stability of the quadratic functional equation in non-Archimedean *L*-fuzzy normed spaces. Int. J. Nonlinear Anal. Appl. 1, 72-83 (2010)
- Alsina, C: On the stability of a functional equation arising in probabilistic normed spaces. In: General Inequalities, vol. 5, Oberwolfach, 1986, Birkhäuser, Basel, pp. 263-271. (1987)
- 58. Mirmostafaee, AK, Moslehian, MS: Fuzzy approximately cubic mappings. Inform. Sci. 178, 3791-3798 (2008)
- 59. Mirzavaziri, M, Moslehian, MS: A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc. 37, 361-376 (2006)
- 60. Miheţ, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. **343**, 567-572 (2008)
- 61. Miheţ, D, Saadati, R, Vaezpour, SM: The stability of the quartic functional equation in random normed spaces. Acta Appl. Math. **110**, 797-803 (2010)
- 62. Miheţ, D, Saadati, R, Vaezpour, SM: The stability of an additive functional equation in Menger probabilistic φ-normed spaces. Math. Slovaca **61**(5), 817-826 (2011)
- 63. Baktash, E, Cho, Y, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J. Inequal. Appl. 2008, Article ID 902187 (2008)
- 64. Najati, A: Fuzzy stability of a generalized quadratic functional equation. Commun. Korean Math. Soc. 25, 405-417 (2010)

- 65. Saadati, R, Vaezpour, SM, Cho, Y: A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces". J. Inequal. Appl. **2009**, Article ID 214530 (2009)
- 66. Deschrijver, G, Kerre, EE: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 23, 227-235 (2003)
- 67. Hadžić, O, Pap, E: Fixed Point Theory in PM-Spaces. Kluwer Academic, Dordrecht (2001)
- 68. Hadžić, O, Pap, E, Budincević, M: Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika **38**, 363-381 (2002)

doi:10.1186/1029-242X-2012-168

Cite this article as: Vahidi et al.: A functional equation related to inner product spaces in non-Archimedean \mathcal{L} -random normed spaces. Journal of Inequalities and Applications 2012 2012:168.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com