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1 Introduction
One of the most interesting questions in the theory of functional analysis concerning the
Ulam stability problemof functional equations is as follows:When is it true that amapping
satisfying a functional equation approximately must be close to an exact solution of the
given functional equation?
The first stability problem concerning group homomorphisms was raised by Ulam [] in

 and affirmatively solved byHyers []. The result of Hyers was generalized by Aoki []
for approximate additive mappings and by ThM Rassias [] for approximate linear map-
pings by allowing the differenceCauchy equation ‖f (x +x)– f (x)– f (x)‖ to be controlled
by ε(‖x‖p + ‖x‖p). In , a generalization of the ThM Rassias’ theorem was obtained
by Gǎvruta [], who replaced ε(‖x‖p + ‖x‖p) by a general control function ϕ(x,x).
Quadratic functional equations were used to characterize inner product spaces [].

A square norm on an inner product space satisfies the parallelogram equality ‖x + x‖ +
‖x – x‖ = (‖x‖ + ‖x‖). The functional equation

f (x + y) + f (x – y) = f (x) + f (y) (.)

is related to a symmetric bi-additivemapping [, ]. It is natural that this equation is called
a quadratic functional equation, and every solution of the quadratic equation (.) is said
to be a quadratic mapping.
It was shown by ThM Rassias [] that the norm defined over a real vector space X is

induced by an inner product if and only if for a fixed integer n≥ 

n∑
i=

∥∥∥∥∥xi – 
n

n∑
j=

xj

∥∥∥∥∥


=
n∑
i=

‖xi‖ – n

∥∥∥∥∥ 
n

n∑
i=

xi

∥∥∥∥∥


for all x, . . . ,xn ∈ X.
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LetK be a field. A non-Archimedean absolute value onK is a function | · | :K →R such
that for any a,b ∈K we have

(i) |a| ≥  and equality holds if and only if a = ,
(ii) |ab| = |a||b|,
(iii) |a + b| ≤ max{|a|, |b|}.

The condition (iii) is called the strict triangle inequality. By (ii), we have || = | – | = .
Thus, by induction, it follows from (iii) that |n| ≤  for each integer n. We always assume
in addition that | | is non-trivial, i.e., that there is an a ∈K such that |a| �= , .
Let X be a linear space over a scalar field K with a non-Archimedean non-trivial valua-

tion | · |. A function ‖ · ‖ : X →R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:
(NA) ‖x‖ =  if and only if x = ;
(NA) ‖rx‖ = |r|‖x‖ for all r ∈K and x ∈ X ;
(NA) the strong triangle inequality (ultra-metric); namely,

‖x + y‖ ≤ max
{‖x‖,‖y‖} (x, y ∈ X).

Then (X,‖ · ‖) is called a non-Archimedean space.
Thanks to the inequality

‖xm – xl‖ ≤ max
{‖xj+ – xj‖ : l ≤ j ≤ m – 

}
(m > l)

a sequence {xm} is Cauchy in X if and only if {xm+ – xm} converges to zero in a
non-Archimedean space. By a complete non-Archimedean space, we mean a non-
Archimedean space in which every Cauchy sequence is convergent.
In , Hensel [] introduced a normed space, which does not have the Archimedean

property.
During the last three decades, the theory of non-Archimedean spaces has gained the

interest of physicists for their research in particular in problems coming from quan-
tum physics, p-adic strings, and superstrings []. Although many results in the classical
normed space theory have a non-Archimedean counterpart, but their proofs are essen-
tially different and require an entirely new kind of intuition [–].
The main objective of this paper is to prove the Hyers-Ulam stability of the following

functional equation related to inner product spaces:

n∑
i=

f

(
xi –


n

n∑
j=

xj

)
=

n∑
i=

f (xi) – nf

(

n

n∑
i=

xi

)
(.)

(n ∈ N, n ≥ ) in non-Archimedean normed spaces. Interesting new results concerning
functional equations related to inner product spaces have recently been obtained byNajati
and ThM Rassias [] as well as for the fuzzy stability of a functional equation related to
inner product spaces by Park [] and Gordji and Khodaei []. During the last decades,
several stability problems for various functional equations have been investigated bymany
mathematicians; [–].
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2 Preliminaries
The theory of random normed spaces (RN-spaces) is important as a generalization of the
deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us the appropriate tools to study the geome-
try of nuclear physics and have important applications in quantum particle physics. The
Hyers-Ulam stability of different functional equations in RN-spaces and fuzzy normed
spaces has been recently studied by Alsina [], Mirmostafaee, Mirzavaziri, and Mosle-
hian [, ], Miheţ and Radu [], Miheţ, Saadati, and Vaezpour [, ], Baktash et al.
[], Najati [], and Saadati et al. [].
Let L = (L,≥L) be a complete lattice, that is, a partially ordered set in which every non-

empty subset admits supremum and infimum and L = infL, L = supL. The space of lat-
ticetic random distribution functions, denoted by �+

L , is defined as the set of all mappings
F :R∪{–∞, +∞} → L such that F is left continuous, non-decreasing on R and F() = L,
F(+∞) = L.
The subspaceD+

L ⊆ �+
L is defined asD+

L = {F ∈ �+
L : l–F(+∞) = L}, where l–f (x) denotes

the left limit of the function f at the point x. The space �+
L is partially ordered by the usual

point-wise ordering of functions, that is, F ≥ G if and only if F(t) ≥L G(t) for all t in R.
The maximal element for �+

L in this order is the distribution function given by

ε(t) =

⎧⎨
⎩L, if t ≤ ,

L, if t > .

Definition . [] A triangular norm (t-norm) on L is a mapping T : (L) –→ L satisfy-
ing the following conditions:
() (∀x ∈ L)(T (x, L) = x) (: boundary condition);
() (∀(x, y) ∈ (L))(T (x, y) = T (y,x)) (: commutativity);
() (∀(x, y, z) ∈ (L))(T (x,T (y, z)) = T (T (x, y), z)) (: associativity);
() (∀(x,x′, y, y′) ∈ (L))(x≤L x′ and y ≤L y′ =⇒ T (x, y) ≤L T (x′, y′)) (: monotonicity).

Let {xn} be a sequence in L converging to x ∈ L (equipped the order topology). The t-
norm T is called a continuous t-norm if

lim
n→∞T (xn, y) = T (x, y),

for any y ∈ L.
A t-norm T can be extended (by associativity) in a unique way to an n-array operation

taking for (x, . . . ,xn) ∈ Ln the value T (x, . . . ,xn) defined by

T 
i=xi = , T n

i=xi = T
(
T n–
i= xi,xn

)
= T (x, . . . ,xn).

The t-norm T can also be extended to a countable operation taking, for any sequence
{xn} in L, the value

T ∞
i=xi = lim

n→∞T n
i=xi. (.)

The limit on the right side of (.) exists since the sequence (T n
i=xi)n∈N is non-increasing

and bounded from below.

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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Note that we put T = T whenever L = [, ]. If T is a t-norm then, for all x ∈ [, ] and
n ∈N ∪ {}, x(n)T is defined by  if n =  and T(x(n–)T ,x) if n ≥ . A t-norm T is said to be of
Hadžić-type (we denote by T ∈ H) if the family (x(n)T )n∈N is equi-continuous at x =  (see
[]).

Definition . [] A continuous t-norm T on L = [, ] is said to be continuous t-
representable if there exist a continuous t-norm ∗ and a continuous t-co-norm � on [, ]
such that, for all x = (x,x), y = (y, y) ∈ L,

T (x, y) = (x ∗ y,x � y).

For example,

T (a,b) =
(
ab,min{a + b, }

)
and

M(a,b) =
(
min{a,b},max{a,b}

)
for all a = (a,a), b = (b,b) ∈ [, ] are continuous t-representable.
Define the mapping T∧ from L to L by

T∧(x, y) =min(x, y) =

⎧⎨
⎩x, if y≥L x,

y, if x≥L y.

Recall (see [, ]) that, if {xn} is a given sequence in L, then (T∧)ni=xi is defined recur-
rently by (T∧)i=xi = x and (T∧)ni=xi = T∧((T∧)n–i= xi,xn) for all n≥ .
A negation on L is any decreasing mapping N : L → L satisfying N (L) = L and

N (L) = L. If N (N (x)) = x for all x ∈ L, then N is called an involutive negation. In the
following, L is endowed with a (fixed) negationN .

Definition . A latticetic random normed space is a triple (X,μ,T∧), where X is a vector
space and μ is a mapping from X into D+

L satisfying the following conditions:
(LRN) μx(t) = ε(t) for all t >  if and only if x = ;
(LRN) μαx(t) = μx( t

|α| ) for all x in X , α �=  and t ≥ ;
(LRN) μx+y(t + s) ≥L T∧(μx(t),μy(s)) for all x, y ∈ X and t, s ≥ .

We note that, from (LPN), it follows that μ–x(t) = μx(t) for all x ∈ X and t ≥ .

Example . Let L = [, ]× [, ] and an operation ≤L be defined by

L =
{
(a,a) : (a,a) ∈ [, ]× [, ] and a + a ≤ 

}
,

(a,a) ≤L (b,b) ⇐⇒ a ≤ b, a ≥ b, ∀a = (a,a),b = (b,b) ∈ L.

Then (L,≤L) is a complete lattice (see []). In this complete lattice, we denote its
units by L = (, ) and L = (, ). Let (X,‖ · ‖) be a normed space. Let T (a,b) =

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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(min{a,b},max{a,b}) for all a = (a,a), b = (b,b) ∈ [, ] × [, ] and μ be a map-
ping defined by

μx(t) =
(

t
t + ‖x‖ ,

‖x‖
t + ‖x‖

)
, ∀t ∈R

+.

Then (X,μ,T ) is a latticetic random normed space.

If (X,μ,T∧) is a latticetic random normed space, then we have

V =
{
V (ε,λ) : ε >L L,λ ∈ L \ {L, L}}

is a complete system of neighborhoods of null vector for a linear topology on X generated
by the norm F , where

V (ε,λ) =
{
x ∈ X : Fx(ε) >L N (λ)

}
.

Definition . Let (X,μ,T∧) be a latticetic random normed space.
() A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any t >  and

ε ∈ L \ {L}, there exists a positive integer N such that μxn–x(t) >L N (ε) for all
n≥ N .

() A sequence {xn} in X is called a Cauchy sequence if, for any t >  and ε ∈ L \ {L},
there exists a positive integer N such that μxn–xm (t) >L N (ε) for all n≥ m ≥ N .

() A latticetic random normed space (X,μ,T∧) is said to be complete if every Cauchy
sequence in X is convergent to a point in X .

Theorem . If (X,μ,T∧) is a latticetic random normed space and {xn} is a sequence such
that xn → x, then limn→∞ μxn (t) = μx(t).

Proof The proof is the same as in classical random normed spaces (see []). �

Lemma . Let (X,μ,T∧) be a latticetic random normed space and x ∈ X. If

μx(t) = C, ∀t > ,

then C = L and x = .

Proof Let μx(t) = C for all t > . Since Ran(μ) ⊆ D+
L , we have C = L and, by (LRN), we

conclude that x = . �

3 Hyers-Ulam stability in non-Archimedean latticetic random spaces
In the rest of this paper, unless otherwise explicitly stated, we will assume that G is an
additive group and that X is a complete non-Archimedean latticetic random space. For
convenience, we use the following abbreviation for a given mapping f :G → X:

�f (x, . . . ,xn) =
n∑
i=

f

(
xi –


n

n∑
j=

xj

)
–

n∑
i=

f (xi) + nf

(

n

n∑
i=

xi

)

for all x, . . . ,xn ∈G, where n≥  is a fixed integer.

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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Lemma. [] Let V andV be real vector spaces. If an oddmapping f : V → V satisfies
the functional equation (.), then f is additive.

Let K be a non-Archimedean field, X a vector space over K and (Y ,μ,T∧) a non-
Archimedean complete LRN-space overK. In the following theorem, we prove the Hyers-
Ulam stability of the functional equation (.) in non-Archimedean latticetic random
spaces for an odd mapping case.

Theorem . LetK be a non-Archimedean field and (X ,μ,T∧) a non-Archimedean com-
plete LRN-space over K. Let ϕ :Gn →D+

L be a distribution function such that

lim
m→∞ϕmx,mx,...,mxn

(||mt) = L = lim
m→∞�m–x

(||mt) (.)

for all x,x,x, . . . ,xn ∈G, and

ϕ̃x(t) = lim
m→∞min

{
�kx

(||kt) :  ≤ k <m
}

(.)

exists for all x ∈G, where

�x(t) :=min

{
ϕx,,...,(t),min

{
ϕx,x,,...,

( ||t
n

)
,ϕx,–x,...,–x

(||t),ϕ(–x,x, . . . ,x)}}
(.)

for all x ∈ G. Suppose that an odd mapping f :G → X satisfies the inequality

μ�f (x,...,xn)(t)≥L ϕx,x,...,xn (t) (.)

for all x,x, . . . ,xn ∈ G and t > . Then there exists an additive mapping A : G → X such
that

μf (x)–A(x)(t)≥L ϕ̃x
(||t) (.)

for all x ∈ G and t > , and if

lim
	→∞

lim
m→∞min

{
�kx

(||kt) : 	 ≤ k <m + 	
}
= L (.)

then A is a unique additive mapping satisfying (.).

Proof Letting x = nx, xi = nx′
 (i = , . . . ,n) in (.) and using the oddness of f , we obtain

that

μnf (x+(n–)x′
)+f ((n–)(x–x

′
))–(n–)f (x–x

′
)–f (nx)–(n–)f (nx

′
)(t) ≥L ϕnx,nx′

,...,nx
′

(t) (.)

for all x,x′
 ∈G and t > . Interchanging x with x′

 in (.) and using the oddness of f , we
get

μnf ((n–)x+x′
)–f ((n–)(x–x

′
))+(n–)f (x–x

′
)–(n–)f (nx)–f (nx

′
)(t)

≥L ϕnx′
,nx,...,nx (t) (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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for all x,x′
 ∈G and t > . It follows from (.) and (.) that

μnf (x+(n–)x′
)–nf ((n–)x+x

′
)+f ((n–)(x–x

′
))–(n–)f (x–x

′
)+(n–)f (nx)–(n–)f (nx

′
)(t)

≥L min
{
ϕnx,nx′

,...,nx
′

(t),ϕnx′

,nx,...,nx (t)
}

(.)

for all x,x′
 ∈G and t > . Setting x = nx, x = –nx′

, xi =  (i = , . . . ,n) in (.) and using
the oddness of f , we get

μf ((n–)x+x′
)–f (x+(n–)x

′
)+f (x–x

′
)–f (nx)+f (nx

′
)(t)

≥L ϕnx,–nx′
,,...,(t) (.)

for all x,x′
 ∈G and t > . It follows from (.) and (.) that

μf ((n–)(x–x′
))+f (x–x

′
)–f (nx)+f (nx

′
)(t)

≥L min

{
ϕnx,–nx′

,,...,

( ||
n

)
,ϕnx,nx′

,...,nx
′


( ||
n

)
,ϕnx′

,nx,...,nx

( ||
n

)}
(.)

for all x,x′
 ∈G and t > . Putting x = n(x – x′

), xi =  (i = , . . . ,n) in (.), we obtain

μf (n(x–x′
))–f ((n–)(x–x

′
))–f ((x–x

′
))(t) ≥L ϕn(x–x′

),,...,(t) (.)

for all x,x′
 ∈G and t > . It follows from (.) and (.) that

μf (n(x–x′
))–f (nx)+f (nx

′
)(t) ≥L min

{
ϕn(x–x′

),,...,(t),ϕnx,–nx′
,,...,

( ||
n
t
)
,

min

{
ϕnx,nx′

,...,nx
′


( ||
n
t
)
,ϕnx′

,nx,...,nx

( ||
n
t
)}}

(.)

for all x,x′
 ∈G and t > . Replacing x and x′

 by
x
n and

–x
n in (.), respectively, we obtain

μf (x)–f (x)(t) ≥L min

{
ϕx,,...,(t),min

{
ϕx,x,,...,

( ||
n
t
)
,ϕx,–x,...,–x(t),ϕ–x,x,...,x(t)

}}

for all x ∈G and t > . Hence,

μ f (x)
 –f (x)(t)≥L �x

(||t) (.)

for all x ∈G and t > . Replacing x by m–x in (.), we have

μ f (m–x)
m– – f (mx)

m
(t) ≥L �m–x

(||mt) (.)

for all x ∈G and t > . It follows from (.) and (.) that the sequence { f (mx)
m } is Cauchy.

SinceX is complete, we conclude that { f (mx)
m } is convergent. So one can define themapping

A :G → X by A(x) := limm→∞ f (mx)
m for all x ∈G. It follows from (.) and (.) that

μf (x)– f (mx)
m

(t) ≥L min
{
�kx

(||k+t) : ≤ k <m
}

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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for all m ∈ N and all x ∈ G and t > . By taking m to approach infinity in (.) and using
(.), one gets (.). By (.) and (.), we obtain

μ�A(x,x,...,xn)(t) = lim
m→∞μ�f (mx,mx,...,mxn)

(||mt)
≥L lim

m→∞ϕmx,mx,...,mxn
(||mt) = L

for all x,x, . . . ,xn ∈ G and t > . Thus the mapping A satisfies (.). By Lemma ., A is
additive.
If A′ is another additive mapping satisfying (.), then

μA(x)–A′(x)(t) = lim
	→∞μA(	x)–A′(	x)

(||	t)
≥L lim

	→∞
min

{
μA(	x)–f (	x)

(||	t),μf (	x)–Q′(	x)
(||	t)}

≥L lim
	→∞ lim

m→∞min
{
ϕ̃kx

(||k+) : 	 ≤ k <m + 	
}
= 

for all x ∈G, thus, A = A′. �

Corollary . Let ρ : [,∞)→ [,∞) be a function satisfying
(i) ρ(||t)≤ ρ(||)ρ(t) for all t ≥ ,
(ii) ρ(||) < ||.
Let ε >  and let (G,μ,T∧) be an LRN-space in which L =D+. Suppose that an odd map-

ping f :G → X satisfies the inequality

μ�f (x,...,xn)(t)≥L
t

t + ε
∑n

i= ρ(‖xi‖)

for all x, . . . ,xn ∈G and t > . Then there exists a unique additive mapping A :G → X such
that

μf (x)–A(x)(t)≥L
t

t + n
|| ερ(‖x‖)

for all x ∈ G and t > .

Proof Defining ϕ :Gn → D+ by ϕx,...,xn (t) :=
t

t+ε
∑n

i= ρ(‖xi‖) , we have

lim
m→∞ϕmx,...,mxn

(||mt) ≥L lim
m→∞ϕx,...,xn

(( ||
ρ(||)

)m)
= L

for all x, . . . ,xn ∈G and t > . So, we have

ϕ̃x(t) := lim
m→∞min

{
�kx

(||k) : ≤ k <m
}
= �x(t)

and

lim
	→∞ lim

m→∞min
{
�kx

(||k) : 	 ≤ k <m + 	
}
= lim

	→∞�	x
(||	) = L

http://www.journalofinequalitiesandapplications.com/content/2012/1/168
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for all x ∈G and t > . It follows from (.) that

�x(t) =min

{
t

t + ερ(‖x‖) ,
t

t + 
||nερ(‖x‖)

}
=

||t
||t + nερ(‖x‖) .

Applying Theorem ., we conclude that

μf (x)–A(x)(t)≥L ϕ̃x
(||t) = �x

(||t) = t
t + n

|| ερ(‖x‖)

for all x ∈G and t > . �

Lemma . [] Let V and V be real vector spaces. If an even mapping f : V → V sat-
isfies the functional equation (.), then f is quadratic.

In the following theorem, we prove the Hyers-Ulam stability of the functional equation
(.) in non-Archimedean LRN-spaces for an even mapping case.

Theorem . Let ϕ :Gn →D+
L be a function such that

lim
m→∞ϕmx,mx,...,mxn

(||mt) = L = lim
m→∞ ϕ̃′

m–x
(||mt) (.)

for all x,x,x, . . . ,xn ∈G, t >  and

ϕ̃′
x(t) = lim

m→∞min
{
ϕ̃′

kx
(||kt) : ≤ k <m

}
(.)

exists for all x ∈G and t >  where

ϕ̃′
x(t) := min

{
ϕnx,nx,,...,

(|n – |t),ϕnx,,...,
(|n – |t),

ϕx,(n–)x,,...,
(|n – |t),�x

(|n – |t)} (.)

and

�x(t) :=min

{
nϕnx,,...,

( ||
n
t
)
,ϕnx,,...,

(||t),ϕ,nx,...,nx
(||t)} (.)

for all x ∈ G and t > . Suppose that an even mapping f :G → X with f () =  satisfies the
inequality (.) for all x,x, . . . ,xn ∈ G and t > . Then there exists a quadratic mapping
Q :G → X such that

μf (x)–Q(x)(t)≥L ϕ̃′
x
(||t) (.)

for all x ∈ G, t >  and if

lim
	→∞

lim
m→∞min

{
ϕ̃′

kx
(||kt) : 	 ≤ k <m + 	

}
= L (.)

then Q is a unique quadratic mapping satisfying (.).
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Proof Replacing x by nx, and xi by nx (i = , . . . ,n) in (.) and using the evenness of f ,
we obtain

μnf (x+(n–)x)+f ((n–)(x–x))+(n–)f (x–x)–f (nx)–(n–)f (nx)(t)

≥L ϕnx,nx,...,nx (t) (.)

for all x,x ∈ G and t > . Interchanging x with x in (.) and using the evenness of f ,
we obtain

μnf ((n–)x+x)+f ((n–)(x–x))+(n–)f (x–x)–(n–)f (nx)–f (nx)(t)

≥L ϕnx,nx,...,nx (t) (.)

for all x,x ∈G and t > . It follows from (.) and (.) that

μnf ((n–)x+x)+nf (x+(n–)x)+f ((n–)(x–x))+(n–)f (x–x)–nf (nx)–nf (nx)(t)

≥L min
{
ϕnx,nx,...,nx (t),ϕnx,nx,...,nx (t)

}
(.)

for all x,x ∈ G and t > . Setting x = nx, x = –nx, xi =  (i = , . . . ,n) in (.) and using
the evenness of f , we obtain

μf ((n–)x+x)+f (x+(n–)x)+(n–)f (x–x)–f (nx)–f (nx)(t)

≥L ϕnx,–nx,,...,(t) (.)

for all x,x ∈G and t > . So, it follows from (.) and (.) that

μf ((n–)(x–x))–(n–)f (x–x)(t)

≥L min

{
ϕnx,–nx,,...,

( ||
n

)
,ϕnx,nx,...,nx

(||t),ϕnx,nx,...,nx
(||t)} (.)

for all x,x ∈G and t > . Setting x = x, x =  in (.), we obtain

μf ((n–)x)–(n–)f (x)(t)

≥L min

{
ϕnx,,...,

( ||
n
t
)
,ϕnx,,...,

(||t),ϕ,nx,...,nx
(||t)} (.)

for all x ∈G and t > . Putting x = nx, xi =  (i = , . . . ,n) in (.), one obtains

μf (nx)–f ((n–)x)–(n–)f (x)(t) ≥L ϕnx,,...,(t) (.)

for all x ∈G and t > . It follows from (.) and (.) that

μf (nx)–nf (x)(t) ≥L min

{
ϕnx,,...,(t),ϕnx,,...,

( ||
n
t
)
,

ϕnx,,...,
(||t),ϕ,nx,...,nx

(||t)} (.)
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for all x ∈G and t > . Letting x = –(n – )x and replacing x by x
n in (.), we get

μf ((n–)x)–f ((n–)x)–(n–)f (x)(t) ≥L ϕx,(n–)x,,...,(t) (.)

for all x ∈G and t > . It follows from (.) and (.) that

μf ((n–)x)–(n–)f (x)(t) ≥L min

{
ϕx,(n–)x,,...,(t),ϕnx,,...,

( ||
n
t
)
,

ϕnx,,...,
(||t),ϕ,nx,...,nx

(||t)} (.)

for all x ∈G and t > . It follows from (.) and (.) that

μf (nx)–f ((n–)x)–(n–)f (x)(t) ≥L min
{
ϕnx,,...,(t),ϕx,(n–)x,,...,(t),�x(t)

}
(.)

for all x ∈G and t > . Setting x = x = nx, xi =  (i = , . . . ,n) in (.), we obtain

μf ((n–)x)+(n–)f (x)–f (nx)(t)≥L ϕnx,nx,,...,
(||t) (.)

for all x ∈G and t > . It follows from (.) and (.) that

μf (x)–f (x)(t)

≥L min
{
ϕnx,nx,,...,

(|n – |t),ϕnx,,...,
(|n – |t),

ϕx,(n–)x,,...,
(|n – |t),�x

(|n – |t)} (.)

for all x ∈G and t > . Thus,

μf (x)– f (x)


(t)≥L ϕ̃′
x
(||t) (.)

for all x ∈G and t > . Replacing x by m–x in (.), we have

μ f (m–x)
(m–) –

f (mx)
m

(t) ≥L ϕ̃′
m–x

(||mt) (.)

for all x ∈G and t > . It follows from (.) and (.) that the sequence { f (mx)
m } is Cauchy.

Since X is complete, we conclude that { f (mx)
m } is convergent. So, one can define the map-

ping Q :G → X by Q(x) := limm→∞ f (mx)
m for all x ∈G. By using induction, it follows from

(.) and (.) that

μf (x)– f (mx)
m

(t) ≥L min
{
ϕ̃′

kx
(||k+t) :  ≤ k <m

}
(.)

for all n ∈ N and all x ∈ G and t > . By taking m to approach infinity in (.) and using
(.), one gets (.).
The rest of proof is similar to the proof of Theorem .. �
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Corollary . Let η : [,∞) → [,∞) be a function satisfying
(i) η(|l|t)≤ η(|l|)η(t) for all t ≥ ,
(ii) η(|l|) < |l| for l ∈ {,n – ,n}.
Let ε >  and let (G,μ,T∧) be a LRN-space in which L =D+. Suppose that an even map-

ping f :G → X with f () =  satisfies the inequality

μ�f (x,...,xn)(t)≥
t

t + ε
∑n

i= η(‖xi‖)

for all x, . . . ,xn ∈ G and t > . Then there exists a unique quadratic mapping Q : G → X
such that

μf (x)–Q(x)(t)≥

⎧⎪⎨
⎪⎩

t
t+ 

|| εη(‖x‖) , if n = ;

t
t+ n

|||n–| εη(‖nx‖)
, if n > ,

for all x ∈ G and t > .

Proof Defining ϕ :Gn → D+ by ϕx,...,xn (t) :=
t

t+ε
∑n

i= η(‖xi‖) , we have

lim
m→∞ϕmx,...,mxn

(||mt) ≥ lim
m→∞ϕx,...,xn

(( ||
η(||)

)m)
= L

for all x, . . . ,xn ∈G and t > . We have

ϕ̃′
x(t) := lim

m→∞min
{
ϕ̃′

kx
(||kt) :  ≤ k <m

}
and

lim
	→∞

lim
m→∞min

{
ϕ̃′

kx
(||kt) : 	 ≤ k <m + 	

}
= lim

	→∞
ϕ̃′

	x
(||	t) = 

for all x ∈G and t > . It follows from (.) that

�x(t) = min

{ ||t
||t + nεη(‖nx‖) ,

||t
||t + εη(‖nx‖) ,

||t
||t + (n – )εη(‖nx‖)

}

=
||t

||t + nεη(‖nx‖) .

Hence, by using (.), we obtain

ϕ̃′
x(t) = min

{ |n – |t
|n – |t + εη(‖nx‖) ,

|n – |t
|n – |t + εη(‖nx‖) ,

|n – |t
|n – |t + nεη(‖nx‖) ,

|n – |t
|n – |t + ε(η(‖x‖) + η(‖(n – )x‖))

}

=

⎧⎨
⎩

t
t+εη(‖x‖) , if n = ;

|||n–|t
|||n–|t+nεη(‖nx‖) , if n > ,

for all x ∈G and t > . Applying Theorem ., we conclude the required result. �
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Lemma . [] Let V and V be real vector spaces. A mapping f : V → V satisfies (.)
if and only if there exist a symmetric bi-additivemapping B : V×V → V and an additive
mapping A : V → V such that f (x) = B(x,x) +A(x) for all x ∈ V.

Now,we are ready to prove themain theorem concerning theHyers-Ulam stability prob-
lem for the functional equation (.) in non-Archimedean spaces.

Theorem . Let ϕ : Gn → D+
L be a function satisfying (.) for all x,x,x, . . . ,xn ∈ G,

and ϕ̃x(t) and ϕ̃′
x(t) exist for all x ∈ G and t > , where ϕ̃x(t) and ϕ̃′

x(t) are defined as
in Theorems . and .. Suppose that a mapping f : G → X with f () =  satisfies the
inequality (.) for all x,x, . . . ,xn ∈ G. Then there exist an additive mapping A : G → X
and a quadratic mapping Q :G → X such that

μf (x)–A(x)–Q(x)(t)≥L min

{
ϕ̃x

(||t), ϕ̃–x
(||t), ϕ̃′

x
(||t), 

|| ϕ̃
′
–x

(||t)} (.)

for all x ∈ G and t > . If

lim
	→∞

lim
m→∞min

{
ϕkx

(||kt) : 	 ≤ k <m + 	
}

= L = lim
	→∞ lim

m→∞min
{
ϕ̃′

kx
(||kt) : 	 ≤ k <m + 	

}

then A is a unique additivemapping andQ is a unique quadraticmapping satisfying (.).

Proof Let fe(x) = 
 (f (x) + f (–x)) for all x ∈G. Then

∥∥�fe(x, . . . ,xn)
∥∥ =

∥∥∥∥ 
(
�f (x, . . . ,xn) +�f (–x, . . . , –xn)

)∥∥∥∥
≤ 

|| max
{
ϕ(x, . . . ,xn),ϕ(–x, . . . , –xn)

}

for all x,x, . . . ,xn ∈ G and t > . By Theorem ., there exists a quadratic mapping Q :
G → X such that

μfe(x)–Q(x)(t)≥L min
{
ϕ̃′

x
(||t), ϕ̃′

–x
(||t)} (.)

for all x ∈ G and t > . Also, let fo(x) = 
 (f (x) – f (–x)) for all x ∈ G. By Theorem ., there

exists an additive mapping A :G → X such that

μfo(x)–A(x)(t) ≥L min
{
ϕ̃x

(||t), ϕ̃–x
(||t)} (.)

for all x ∈G and t > . Hence (.) follows from (.) and (.).
The rest of proof is trivial. �

Corollary . Let γ : [,∞)→ [,∞) be a function satisfying
(i) γ (|l|t)≤ γ (|l|)γ (t) for all t ≥ ,
(ii) γ (|l|) < |l| for l ∈ {,n – ,n}.
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Let ε > , (G,μ,T∧) be an LRN-space in which L =D+ and let f :G → X satisfy

μ�f (x,...,xn)(t)≥
t

t + ε
∑n

i= γ (‖xi‖)

for all x, . . . ,xn ∈ G, t >  and f () = . Then there exist a unique additive mapping A :
G → X and a unique quadratic mapping Q :G → X such that

μf (x)–A(x)–Q(x)(t)≥ ||t
||t + nεγ (‖x‖)

for all x ∈ G and t > .

Proof The result follows from Corollaries . and .. �
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