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Abstract

In this paper, we prove the Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x)

+ f (2y) + f (−2y) − 4f (y) − 4f (−y)

in random normed spaces.
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1. Introduction
The stability problem of functional equations originated from a question of Ulam [1] in

1940, concerning the stability of group homomorphisms. Let (G1, ·) be a group and let

(G2, *, d) be a metric group with the metric d(· , ·). Given ε > 0, does there exist a δ >

0 such that if a mapping h : G1 ® G2 satisfies the inequality d(h(x·y), h(x) * h(y)) < δ

for all x, y Î G1, then there exists a homomorphism H : G1 ® G2 with d(h(x), H(x)) <

ε for all x Î G1? In the other words, under what condition does there exists a homo-

morphism near an approximate homomorphism? The concept of stability for func-

tional equation arises when we replace the functional equation by an inequality which

acts as a perturbation of the equation. Hyers [2] gave a first affirmative answer to the

question of Ulam for Banach spaces. Let f : E ® E’ be a mapping between Banach

spaces such that

‖ f (x + y) − f (x) − f (y) ‖ ≤ δ

for all x, y Î E and some δ > 0. Then, there exists a unique additive mapping T : E

® E’ such that

||f (x) − T(x)|| ≤ δ

for all x Î E. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î E, then T is

ℝ-linear. In 1978, Th.M. Rassias [3] provided a generalization of the Hyers’ theorem

that allows the Cauchy difference to be unbounded. In 1991, Gajda [4] answered the

question for the case p > 1, which was raised by Th.M. Rassias (see [5-11]).
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On the other hand, in 1982-1998, J.M. Rassias generalized the Hyers’ stability result

by presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.1. ([12-18]). Assume that there exist constants Θ ≥ 0 and p1, p2 Î ℝ such

that p = p1 + p2 ≠ 1, and f : E ® E’ is a mapping from a normed space E into a

Banach space E’ such that the inequality

||f (x + y) − f (x) − f (y)|| ≤ ε||x||p1 ||y||p2

for all x, y Î E. Then, there exists a unique additive mapping T : E ® E’ such that

||f (x) − L(x)|| ≤ �

2 − 2p
||x||p

for all × Î E.

The control function ||x||p · ||y||q + ||x||p+q + ||y||p+q was introduced by Rassias [19]

and was used in several papers (see [20-25]).

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1:1)

is related to a symmetric bi-additive mapping. It is natural that this equation is called

a quadratic functional equation. In particular, every solution of the quadratic functional

equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f

between real vector spaces is quadratic if and only if there exists a unique symmetric

bi-additive mapping B such that f(x) = B(x, x) for all x (see [5,26]). The bi-additive

mapping B is given by

B(x, y) =
1
4
(f (x + y) − f (x − y)).

The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was

proved by Skof for mappings f : A ® B, where A is a normed space and B is a Banach

space (see [27]). Cholewa [28] noticed that the theorem of Skof is still true if relevant

domain A is replaced by an abelian group. In [29], Czerwik proved the Hyers-Ulam

stability of the functional equation (1.1). Grabiec [30] has generalized these results

mentioned above.

In [31], Jun and Kim considered the following cubic functional equation:

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (1:2)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.2),

which is called a cubic functional equation and every solution of the cubic functional

equation is said to be a cubic mapping.

In [32], Park and Bae considered the following quartic functional equation

f (x + 2y) + f (x − 2y) = 4[f (x + y) + f (x − y) + 6f (y)]− 6f (x). (1:3)

In fact, they proved that a mapping f between two real vector spaces X and Y is a

solution of (1:3) if and only if there exists a unique symmetric multi-additive mapping

M : X4 ® Y such that f(x) = M(x, x, x, x) for all x. It is easy to show that the function

f(x) = x4 satisfies the functional equation (1.3), which is called a quartic functional

equation (see also [33]). In addition, Kim [34] has obtained the Hyers-Ulam stability

for a mixed type of quartic and quadratic functional equation.
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It should be noticed that in all these papers, the triangle inequality is expressed by

using the strongest triangular norm TM .

The aim of this paper is to investigate the Hyers-Ulam stability of the additive-quad-

ratic-cubic-quartic functional equation

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x)

+ f (2y) + f (−2y) − 4f (y) − 4f (−y)
(1:4)

in random normed spaces in the sense of Sherstnev under arbitrary continuous t-

norms.

In the sequel, we adopt the usual terminology, notations and conventions of the the-

ory of random normed spaces, as in [35-37]. Throughout this paper, Δ+ is the space of

distribution functions, that is, the space of all mappings F : ℝ ∪ {-∞, ∞} ® [0, 1] such

that F is left-continuous and non-decreasing on ℝ, F(0) = 0 and F(+ ∞) = 1. D+ is a

subset of Δ+ consisting of all functions F Î Δ+ for which l- F(+ ∞) = 1, where l- f (x)

denotes the left limit of the function f at the point x, that is, l−f (x) = limt→x− f (t). The

space Δ+ is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G

if and only if F(t) ≤ G(t) for all t in ℝ. The maximal element for Δ+ in this order is the

distribution function ε0 given by

ε0(t) =
{
0, if t ≤ 0,
1, if t > 0.

Definition 1.2. [36]A mapping T : [0, 1] × [0, 1] ® [0, 1] is a continuous triangular

norm (briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a Î [0, 1];

(d) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d Î [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) = min(a, b)

and TL(a, b) = max(a+b -1, 0) (the Lukasiewicz t-norm). Recall (see [38,39]) that if T is

a t-norm and {xn} is a given sequence of numbers in [0, 1], then Tn
i=1xi is defined recur-

rently by T1
i=1xi = x1 and Tn

i=1xi = T(Tn−1
i=1 xi, xn) for n ≥ 2. T∞

i=nxi is defined as T∞
i=1xn+i−1. It

is known [39] that for the Lukasiewicz t-norm, the following implication holds:

lim
n→∞(TL)∞i=1xn+i−1 = 1 ⇔

∞∑
n=1

(1 − xn) < ∞

Definition 1.3. [37]A random normed space (briefly, RN-space) is a triple (X, μ, T),

where × is a vector space, T is a continuous t-norm, and μ is a mapping from × into D
+ such that the following conditions hold:

(RN1) μx (t) = ε0(t) for all t > 0 if and only if × = 0;

(RN2) μαx(t) = μx( t
|α| )for all × Î X, a ≠ 0;

(RN3) μx+y(t + s) ≥ T (μx(t), μy(s)) for all x, y Î X and all t, s ≥ 0.

Every normed space (X, ||·||) defines a random normed space (X, μ, TM),

where

μx(t) =
t

t + ||x||
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for all t > 0, and TM is the minimum t-norm. This space is called the induced ran-

dom normed space.

Definition 1.4. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in × is said to be convergent to × in × if, for every ε > 0 and l >

0, there exists a positive integer N such that μxn−x(ε) > 1 − λwhenever n ≥ N.

(2) A sequence {xn} in × is called a Cauchy sequence if, for every ε > 0 and l > 0,

there exists a positive integer N such that μxn−xm
(ε) > 1 − λwhenever n ≥ m ≥ N.

(3) An RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence

in × is convergent to a point in X.

Theorem 1.5. [36]If (X, μ, T) is an RN-space and {xn} is a sequence such that xn ®
x, then limn→∞ μxn(t) = μx(t)almost everywhere.

Recently, Eshaghi Gordji et al. establish the stability of cubic, quadratic and additive-

quadratic functional equations in RN-spaces (see [40-42]).

One can easily show that an odd mapping f : X ® Y satisfies (1.4) if and only if the

odd mapping f : X ® Y is an additive-cubic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x).

It was shown in [[43], Lemma 2.2] that g(x) := f (2x) - 8f (x) and h(x) := f (2x) - 2f (x)

are additive and cubic, respectively, and that f (x) = 1
6h(x) − 1

6g(x).

One can easily show that an even mapping f : X ® Y satisfies (1.4) if and only if the

even mapping f : X ® Y is a quadratic-quartic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x) + 2f (2y) − 8f (y).

It was shown in [[44], Lemma 2.1] that g (x) := f (2x) -16f (x) and h (x) := f (2x) -4f

(x) are quadratic and quartic, respectively, and that f (x) = 1
12h(x) − 1

12g(x)

Lemma 1.6. Each mapping f : X ® Y satisfying (1.4) can be realized as the sum of an

additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping.

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of

the additive-quadratic-cubic-quartic functional equation (1.4) in RN-spaces for an odd

case. In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic-cubic-

quartic functional equation (1.4) in RN-spaces for an even case.

Throughout this paper, assume that X is a real vector space and that (X, μ, T) is a

complete RN-space.

2.Hyers-Ulam stability of the functional equation (1.4): an odd mapping Case
For a given mapping f : X ® Y , we define

Df (x, y) : = f (x + 2y) + f (x − 2y) − 4f (x + y) − 4f (x − y) + 6f (x)

− f (2y) − f (−2y) + 4f (y) + 4f (−y)

for all x, y Î X.

In this section, we prove the Hyers-Ulam stability of the functional equation Df (x, y)

= 0 in complete RN-spaces: an odd mapping case.

Theorem 2.1. Let f : X ® Y be an odd mapping for which there is a r : X 2 ® D+ (r
(x, y) is denoted by r x, y) such that

μDf (x,y)(t) ≥ ρx,y(t) (2:1)
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for all x, y Î X and all t > 0. If

lim
n→∞ T∞

k=1(T(ρ2k+n−1x,2k+n−1x(2
n−3t),ρ2k+nx,2k+n−1x(2

n−1t))) = 1 (2:2)

and

lim
n→∞ ρ2nx,2ny(2nt) = 1 (2:3)

for all x, y Î X and all t > 0, then there exist a unique additive mapping A : X ® Y

and a unique cubic mapping C : X ® Y such that

μf (2x)−8f (x)−A(x)(t)

≥ T∞
k=1

(
T

(
ρ2k−1x,2k−1x

(
t
8

)
,ρ2kx,2k−1x

(
t
2

)))
,

(2:4)

μf (2x)−2f (x)−C(x)(t)

≥ T∞
k=1

(
T

(
ρ2k−1x,2k−1x

(
t
8

)
,ρ2kx,2k−1x

(
t
2

)))
(2:5)

for all × Î X and all t > 0.

Proof. Putting x = y in (2.1), we get

μf (3y)−4f (2y)+5f (y)(t) ≥ ρy,y(t) (2:6)

for all y Î X and all t > 0. Replacing x by 2y in (2.1), we get

μf (4y)−4f (3y)+6f (2y)−4f (y)(t) ≥ ρ2y,y(t) (2:7)

for all y Î X and all t > 0. It follows from (2.6) and (2.7) that

μf (4x)−10f (2x)+16f (x)(t)

= μ(4f (3x)−16f (2x)+20f (x))+(f (4x)−4f (3x)+6f (2x)−4f (x))(t)

≥ T
(

μ4f (3x)−16f (2x)+20f (x)

(
t
2

)
,μf (4x)−4f (3x)+6f (2x)−4f (x)

(
t
2

))

≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))
(2:8)

for all x Î X and all t > 0. Let g : X ® Y be a mapping defined by g(x) := f (2x) - 8f

(x). Then we conclude that

μg(2x)−2g(x)(t) ≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))

for all x Î X and all t > 0. Thus, we have

μ g(2x)
2 −g(x)

(t) ≥ T
(

ρx,x

(
t
4

)
,ρ2x,x (t)

)

for all x Î X and all t > 0. Hence,

μ g(2k+1x)
2k+1 − g(2kx)

2k
(t) ≥ T(ρ2kx,2kx(2

k−2t),ρ2k+1x,2kx(2
kt))
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for all x Î X, all t > 0 and all k Î N: From 1 > 1
2 + 1

22 + · · · + 1
2n, it follows that

μ g(2nx)
2n −g(x)

(t) ≥ Tn
k=1

(
μ g(2kx)

2k − g(2k−1x)
2k−1

(
t
2k

))

≥ Tn
k=1

(
T

(
ρ2k−1x,2k−1x

(
t

8

)
,ρ2kx,2k−1x

(
t

2

))) (2:9)

for all x Î X and all t > 0. In order to prove the convergence of the sequence { g(2nx)2n },
replacing x with 2mx in (2.9), we obtain that

μ g(2n+mx)
2n+m − g(2mx)

2m
(t)

≥ Tn
k=1(T(ρ2k+m−1x,2k+m−1x(2

m−3t),ρ2k+mx,2k+m−1x(2
m−1t))).

(2:10)

Since the right-hand side of the inequality (2.10) tends to 1 as m and n tend to infi-

nity, the sequence { g(2nx)2n } is a Cauchy sequence. Thus, we may define

A(x) = limn→∞
g(2nx)
2n

for all x Î X.

Now, we show that A is an additive mapping. Replacing x and y with 2nx and 2ny in

(2.1), respectively, we get

μDf (2nx,2ny)
2n

(t) ≥ ρ2nx,2ny(2nt).

Taking the limit as n ® ∞, we find that A : X ® Y satisfies (1.4) for all x, y Î X.

Since f : X ® Y is odd, A : X ® Y is odd. By [[43], Lemma 2.2], the mapping A : X ®
Y is additive. Letting the limit as n ® ∞ in (2.9), we get (2.4).

Next, we prove the uniqueness of the additive mapping A : X ® Y subject to (2.4).

Let us assume that there exists another additive mapping L : X ® Y which satisfies

(2.4). Since A(2nx) = 2nA(x), L(2nx) = 2nL(x) for all x Î X and all n Î N, from (2.4), it

follows that

μA(x)−L(x)(2t) = μA(2nx)−L(2nx)(2
n+1t)

≥ T(μA(2nx)−g(2nx)(2
nt),μg(2nx)−L(2nx)(2

nt))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2

n−3t),ρ2n+kx,2n+k−1x(2
n−1t))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2

n−3t),ρ2n+kx,2n+k−1x(2
n−1t)))

(2:11)

for all x Î X and all t > 0. Letting n ® ∞ in (2.11), we conclude that A = L.

Let h : X ® Y be a mapping defined by h(x) := f (2x) -2f (x). Then, we conclude that

μh(2x)−8h(x)(t) ≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))

for all x Î X and all t > 0. Thus, we have

μ h(2x)
8 −h(x)

(t) ≥ T(ρx,x(t),ρ2x,x(4t))

for all x Î X and all t > 0. Hence,

μ h(2k+1x)
8k+1 − h(2kx)

8k
(t) ≥ T(ρ2kx,2kx(8

kt),ρ2k+1x,2kx(4 · 8kt))
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for all x Î X, all t > 0 and all k Î N: From 1 > 1
8 + 1

82 + · · · + 1
8n, it follows that

μ h(2nx)
8n −h(x)

(t) ≥ Tn
k=1

(
μ h(2kx)

8k − h(2k−1x)
8k−1

(
t
8k

))

≥ Tn
k=1

(
T

(
ρ2k−1x,2k−1x

(
t

8

)
,ρ2kx,2k−1x

(
t

2

))) (2:12)

for all x Î X and all t > 0. In order to prove the convergence of the sequence { h(2nx)8n },
replacing x with 2mx in (2.12), we obtain that

μ h(2n+mx)
8n+m − h(2mx)

8m
(t)

≥ Tn
k=1(T(ρ2k+m−1x,2k+m−1x(8

m−1t),ρ2k+mx,2k+m−1x(4 · 8m−1t))).
(2:13)

Since the right-hand side of the inequality (2.13) tends to 1 as m and n tend to infi-

nity, the sequence { h(2nx)8n } is a Cauchy sequence. Thus, we may define

C(x) = limn→∞
h(2nx)
8n

for all x Î X.

Now, we show that C is a cubic mapping. Replacing x and y with 2nx and 2ny in

(2.1), respectively, we get

μDf (2nx,2ny)
8n

(t) ≥ ρ2nx,2ny(8nt) ≥ ρ2nx,2ny(2nt).

Taking the limit as n ® ∞, we find that C : X ® Y satisfies (1.4) for all x, y Î X.

Since f : X ® Y is odd, C : X ® Y is odd. By [[43], Lemma 2.2], the mapping C : X ®
Y is cubic. Letting the limit as n ® ∞ in (2.12), we get (2.5).

Finally, we prove the uniqueness of the cubic mapping C : X ® Y subject to (2.5).

Let us assume that there exists another cubic mapping L : X ® Y which satisfies (2.5).

Since C(2nx) = 8nC(x), L(2nx) = 8nL(x) for all x Î X and all n Î N, from (2.5), it fol-

lows that

μC(x)−L(x)(2t)

= μC(2nx)−L(2nx)(2 · 8nt)
≥ T(μC(2nx)−h(2nx)(8

nt),μh(2nx)−L(2nx)(8
nt))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(8

n−1t),ρ2n+kx,2n+k−1x(4 · 8n−1t))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(8

n−1t),ρ2n+kx,2n+k−1x(4 · 8n−1t)))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2

n−3t),ρ2n+kx,2n+k−1x))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2

n−3t),ρ2n+kx,2n+k−1x(2
n−1t)))

(2:14)

for all x Î X and all t > 0. Letting n ® ∞ in (2.14), we conclude that C = L, as

desired. □
Similarly, one can obtain the following result.

Theorem 2.2. Let f : X ® Y be an odd mapping for which there is a r : X2 ® D+ (r
(x, y) is denoted by rx, y) satisfying (2.1). If

lim
n→∞ T∞

k=1

(
T

(
ρ x
2k+n ,

x
2k+n

(
t

8n+2k

)
,ρ x

2k+n−1 ,
x

2k+n

(
4t

8n+2k

)))
= 1
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and

lim
n→∞ ρ x

2n ,
y
2n

(
t
8n

)
= 1

for all x, y Î X and all t > 0, then there exist a unique additive mapping A : X ® Y

and a unique cubic mapping C : X ® Y such that

μf (2x)−8f (x)−A(x)(t) ≥ T∞
k=1

(
T

(
ρ x
2k ,

x
2k

(
t

22k+1

)
,ρ x

2k−1 ,
x
2k

(
t

22k−1

)))
,

μf (2x)−2f (x)−C(x)(t) ≥ T∞
k=1

(
T

(
ρ x
2k ,

x
2k

(
t

82k

)
,ρ x

2k−1 ,
x
2k

(
4t
82k

)))

for all × Î X and all t > 0.

3. Hyers-ulam stability of the functional equation (1.4): an even mapping
case
In this section, we prove the Hyers-Ulam stability of the functional equation D f (x, y)

= 0 in complete RN-spaces: an even mapping case.

Theorem 3.1. Let f : X ® Y be an even mapping for which there is a r : X2 ® D+ (r
(x, y) is denoted by rx, y) satisfying f (0) = 0 and (2.1). If

lim
n→∞ T∞

k=1(T(ρ2k+n−1x,2k+n−1x(2 · 4n−2t),ρ2k+nx,2k+n−1x(2 · 4n−1t))) = 1 (3:1)

and

lim
n→∞ ρ2nx,2ny(4nt) = 1 (3:2)

for all x, y Î X and all t > 0, then there exist a unique quadratic mapping P : X ® Y

and a unique quartic mapping Q : X ® Y such that

μf (2x)−16f (x)−P(x)(t)

≥ T∞
k=1

(
T

(
ρ2k−1x,2k−1x

(
t
8

)
,ρ2kx,2k−1x

(
t
2

)))
,

(3:3)

μf (2x)−4f (x)−Q(x)(t)

≥ T∞
k=1

(
T

(
ρ2k−1x,2k−1x

(
t
8

)
,ρ2kx,2k−1x

(
t
2

)))
(3:4)

for all × Î X and all t > 0.

Proof. Putting x = y in (2.1), we get

μf (3y)−6f (2y)+15f (y)(t) ≥ ρy,y(t) (3:5)

for all y Î X and all t > 0. Replacing x by 2y in (2.1), we get

μf (4y)−4f (3y)+4f (2y)+4f (y)(t) ≥ ρ2y,y(t) (3:6)
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for all y Î X and all t > 0. It follows from (3.5) and (3.6) that

μf (4x)−20f (2x)+64f (x)(t)

= μ(4f (3x)−24f (2x)+60f (x))+(f (4x)−4f (3x)+4f (2x)+4f (x))(t)

≥ T
(

μ4f (3x)−24f (2x)+60f (x)

(
t
2

)
,μf (4x)−4f (3x)+4f (2x)+4f (x)

(
t
2

))

≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))
(3:7)

for all x Î X and all t > 0. Let g : X ® Y be a mapping defined by g(x) := f (2x) - 16 f

(x). Then we conclude that

μg(2x)−4g(x)(t) ≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))

for all x Î X and all t > 0. Thus, we have

μ g(2x)
4 −g(x)

(t) ≥ T
(

ρx,x

(
t
2

)
,ρ2x,x (2t)

)

for all x Î X and all t > 0. Hence,

μ g(2k+1x)
4k+1 − g(2kx)

4k
(t) ≥ T(ρ2kx,2kx(2 · 4k−1t),ρ2k+1x,2kx(2 · 4kt))

for all x Î X, all t > 0 and all k Î N. From 1 > 1
4 + 1

42 + · · · + 1
4n, it follows that

μ g(2nx)
4n −g(x)

(t) ≥ Tn
k=1

(
μ g(2kx)

4k − g(2k−1x)
4k−1

(
t
4k

))

≥ Tn
k=1

(
T

(
ρ2k−1x,2k−1x

(
t

8

)
,ρ2kx,2k−1x

(
t

2

))) (3:8)

for all x Î X and all t > 0. In order to prove the convergence of the sequence { g(2nx)4n },
replacing x with 2mx in (3.8), we obtain that

μ g(2n+mx)
4n+m − g(2mx)

4m
(t)

≥ Tn
k=1(T(ρ2k+m−1x,2k+m−1x(2 · 4m−2t),ρ2k+mx,2k+m−1x(2 · 4m−1t))).

(3:9)

Since the right-hand side of the inequality (3.9) tends to 1 as m and n tend to infi-

nity, the sequence { g(2nx)4n } is a Cauchy sequence. Thus, we may define

P(x) = limn→∞
g(2nx)
4n

for all x Î X.

Now, we show that P is a quadratic mapping. Replacing x and y with 2nx and 2ny in

(2.1), respectively, we get

μDf (2nx,2ny)
4n

(t) ≥ ρ2nx,2ny(4nt).

Taking the limit as n ® ∞, we find that P : X ® Y satisfies (1.4) for all x, y Î X.

Since f : X ® Y is even, P : X ® Y is even. By [[44], Lemma 2.1], the mapping P : X

® Y is quadratic. Letting the limit as n ® ∞ in (3.8), we get (3.3).

Next, we prove the uniqueness of the quadratic mapping P : X ® Y subject to (3.3).

Let us assume that there exists another quadratic mapping L : X ® Y, which satisfies
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(3.3). Since P(2nx) = 4nP(x), L(2nx) = 4nL(x) for all x Î X and all n Î N, from (3.3), it

follows that

μP(x)−L(x)(2t) = μP(2nx)−L(2nx)(2 · 4nt)
≥ T(μP(2nx)−g(2nx)(4

nt),μg(2nx)−L(2nx)(4
nt))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 4n−2t),ρ2n+kx,2n+k−1x(2 · 4n−1t))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 4n−2t),ρ2n+kx,2n+k−1x(2 · 4n−1t))))

(3:10)

for all x Î X and all t > 0. Letting n ® ∞ in (3.10), we conclude that P = L.

Let h : X ® Y be a mapping defined by h(x) := f (2x) -4f (x). Then, we conclude that

μh(2x)−16h(x)(t) ≥ T
(

ρx,x

(
t
8

)
,ρ2x,x

(
t
2

))

for all x Î X and all t > 0. Thus, we have

μ h(2x)
16 −h(x)

(t) ≥ T(ρx,x(2t),ρ2x,x(8t))

for all x Î X and all t > 0. Hence,

μ h(2k+1x)
16k+1

− h(2kx)
16k

(t) ≥ T(ρ2kx,2kx(2 · 16kt),ρ2k+1x,2kx(8 · 16kt))

for all x Î X, all t > 0 and all k Î N. From 1 > 1
16 + 1

162
+ · · · + 1

16n, it follows that

μ h(2nx)
16n −h(x)

(t) ≥ Tn
k=1

(
μ h(2kx)

16k
− h(2k−1x)

16k−1

(
t

16k

))

≥ Tn
k=1

(
T

(
ρ2k−1x,2k−1x

(
t
8

)
,ρ2kx,2k−1x

(
t
2

))) (3:11)

for all x Î X and all t > 0. In order to prove the convergence of the sequence { h(2nx)16n },
replacing x with 2mx in (3.11), we obtain that

μ h(2n+mx)
16n+m − h(2mx)

16m
(t)

≥ Tn
k=1(T(ρ2k+m−1x,2k+m−1x(2 · 16m−1t),ρ2k+mx,2k+m−1x(8 · 16m−1t))).

(3:12)

Since the right-hand side of the inequality (3.12) tends to 1 as m and n tend to infi-

nity, the sequence { h(2nx)16n } is a Cauchy sequence. Thus, we may define

Q(x) = limn→∞
h(2nx)
16n

x Î X.

Now, we show that Q is a quartic mapping. Replacing x and y with 2nx and 2ny in

(2.1), respectively, we get

μDf (2nx,2ny)
16n

(t) ≥ ρ2nx,2ny(16nt) ≥ ρ2nx,2ny(4nt).

Taking the limit as n ® ∞, we find that Q : X ® Y satisfies (1.4) for all x, y Î X.

Since f : X ® Y is even, Q : X ® Y is even. By [[44], Lemma 2.1], the mapping Q : X

® Y is quartic. Letting the limit as n ® ∞ in (3.11), we get (3.4).

Finally, we prove the uniqueness of the quartic mapping Q : X ® Y subject to (3.4).

Let us assume that there exists another quartic mapping L : X ® Y , which satisfies

(3.4). Since Q(2nx) = 16nQ(x), L(2nx) = 16nL(x) for all x Î X and all n Î N, from (3.4),
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it follows that

μQ(x)−L(x)(2t) = μQ(2nx)−L(2nx)(2 · 16nt)
≥ T(μQ(2nx)−h(2nx)(16

nt),μh(2nx)−L(2nx)(16
nt))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 16n−1t),ρ2n+kx,2n+k−1x(8 · 16n−1t))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 16n−1t),ρ2n+kx,2n+k−1x(8 · 16n−1t)))

≥ T(T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 4n−2t),ρ2n+kx,2n+k−1x(2 · 4n−1t))),

T∞
k=1(T(ρ2n+k−1x,2n+k−1x(2 · 4n−2t),ρ2n+kx,2n+k−1x(2 · 4n−1t))))

(3:13)

for all x Î X and all t > 0. Letting n ® ∞ in (3.13), we conclude that Q = L, as

desired. □
Similarly, one can obtain the following result.

Theorem 3.2. Let f : X ® Y be an even mapping for which there is a r : X2 ® D+ (r
(x, y) is denoted by r x, y) satisfying f (0) = 0 and (2.1). If

lim
n→∞ T∞

k=1

(
T

(
ρ x
2k+n ,

x
2k+n

(
2t

16n+2k

)
,ρ x

2k+n−1 ,
x

2k+n

(
8t

16n+2k

)))
= 1

and

lim
n→∞ ρ x

2n ,
y
2n
(

t
16n

) = 1

for all x, y Î X and all t > 0, then there exist a unique quadratic mapping P : X ® Y

and a unique quartic mapping Q : X ® Y such that

μf (2x)−16f (x)−P(x)(t) ≥ T∞
k=1

(
T

(
ρ x
2k ,

x
2k

(
2t

42k+1

)
,ρ x

2k−1 ,
x
2k

(
2t
42k

)))
,

μf (2x)−4f (x)−Q(x)(t) ≥ T∞
k=1

(
T

(
ρ x
2k ,

x
2k

(
2t

162k

)
,ρ x

2k−1 ,
x
2k

(
8t

162k

)))

for all × Î X and all t > 0.
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