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Albuminuria, Cerebrovascular 
Disease and Cortical Atrophy: 
among Cognitively Normal Elderly 
Individuals
Eun Bin Cho1,2,3, Hee-Young Shin4, Sang Eon Park5, Phillip Chun6,7, Hye Ryoun Jang8, 
Jin-ju Yang9, Hee Jin Kim1,2, Yeo Jin Kim1,2, Na-Yeon Jung10, Jin San Lee1,2, Juyoun Lee1,2, 
Young Kyoung Jang1,2, Eun Young Jang1,2, Mira Kang4, Jong-Min Lee9, Changsoo Kim11,12, 
 Ju-Hong Min1,2, Seungho Ryu13, Duk L. Na1,2 & Sang Won Seo1,2,14,15

We tested the hypothesis that decreased glomerular filtration rate and albuminuria have different roles 
in brain structure alterations. We enrolled 1,215 cognitively normal individuals, all of whom underwent 
high-resolution T1-weighted volumetric magnetic resonance imaging scans. The cerebral small vessel 
disease burdens were assessed with white matter hyperintensities (WMH), lacunes, and microbleeds. 
Subjects were considered to have an abnormally elevated urine albumin creatinine ratio if the value 
was ≥17 mg/g for men and ≥25 mg/g for women. Albuminuria, but not estimated glomerular filtration 
rate (eGFR), was associated with increased WMH burdens (p = 0.002). The data was analyzed after 
adjusting for age, sex, education, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic 
heart disease, stroke, total cholesterol level, body mass index, status of smoking and alcohol drinking, 
and intracranial volume. Albuminuria was also associated with cortical thinning, predominantly in the 
frontal and occipital regions (both p < 0.01) in multiple linear regression analysis. However, eGFR was 
not associated with cortical thickness. Furthermore, path analysis for cortical thickness showed that 
albuminuria was associated with frontal thinning partially mediated by WMH burdens. The assessment 
of albuminuria is needed to improve our ability to identify individuals with high risk for cognitive 
impairments, and further institute appropriate preventive measures.

There is increasing evidence that even in earlier stages, chronic kidney disease (CKD) is associated with the 
increased risk of cognitive impairments or development of dementia1,2. A strong candidate mechanism for 
their associations might be related to the hemodynamic similarities between the vascular beds of the kidney 
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and the brain. In fact, some studies have shown that individuals with CKD have more cerebral small vessel dis-
ease (CSVD) burdens including white matter hyperintensities (WMH) and lacunes3–6. However, independent of 
CSVD, several studies also revealed the link between CKD and brain atrophy suggesting other potential mecha-
nisms, such as neurodegenerative hypothesis7,8.

Consistent with other chronic medical conditions which gradually developed over time, the recent guide-
lines for the definition and classification of CKD made it gain recognition as a worldwide public health prob-
lem which is emphasized for prevention, early detection, and management. The early stages of CKD are defined 
based on the combination of decreased kidney function, quantified as glomerular filtration rate (GFR), and the 
degree of glomerular damage, most often represented by albuminuria9. In addition to the core role of GFR in the 
pathophysiological complications, albuminuria may also be an early sign of glomerular disease leading to CKD. 
Previous studies have shown that albuminuria and reduced estimated GFR (eGFR) are independent risk factors 
for cardiovascular events or earlier mortality, suggesting that albuminuria and reduced eGFR may be markers of 
different pathologic processes10,11. Therefore, the pattern of association with CSVD or brain atrophy might differ 
between decreased eGFR and albuminuria.

In the present study, we examined the associations between CKD, represented by eGFR or albuminuria, and 
increased CSVD burdens or cortical thinning in a large sample of cognitively normal individuals. Cortical thick-
ness is an important biomarker for predicting cognitive impairment in cognitively normal individuals, since cor-
tical thinning precedes the onset of cognitive decline12–14. Therefore, our study objective was to test how decreased 
eGFR and albuminuria had different roles in brain structure alteration including CSVD and cortical thinning. We 
hypothesized that albuminuria has a more direct association with brain structure alteration than decreased eGFR 
does because albuminuria is associated with endothelial dysfunction which might have a critical role in chang-
ing brain structures15,16. To test our hypotheses, we investigated the effects of decreased GFR or albuminuria on 
CSVD or cortical thickness. Second, we also evaluated the relationships between CKD markers, CSVD burdens, 
and cortical thickness using path analyses.

Materials and Methods
The methods were carried out in accordance with the approved guidelines.

Participants. A total of 1,589 participants were enrolled in this study. They visited the Samsung Medical 
Health Promotion Center between September 2008 and March 2013 for disease-preventive medical check-ups 
including dementia and underwent detailed medical examinations including estimated GFR (eGFR) and urine 
albumin to creatinine ratio (UACR). As a part of the comprehensive exam, participants could opt for a neuro-
logical and neurocognitive screening package that included a brain magnetic resonance imaging (MRI). Out 
of them, we excluded the following number of participants from this study: 21 participants who were under 45 
years of age; 154 participants with significant cognitive impairment defined by scores below the 16th percentile 
in age-, gender-, and education-matched norms according to the Mini-Mental Status Exam (MMSE) or through 
an interview conducted by a qualified neurologist; and 171 participants with missing data on demographics. We 
also excluded 28 participants with unreliable analyses of cortical thickness due to head motion, blurring of MRI, 
inadequate registration to a standardized stereotaxic space, misclassification of tissue type, and inexact surface 
extraction. Finally, a total of 1215 participants were included in this study.

This study was approved by the Institutional Review Board of Samsung Medical Center. The requirement for 
participant’s consent was waived since we used retrospective de-identified data collected during health exam 
visits.

Baseline assessment. The examinations were conducted by trained personnel according to standard pro-
tocol. The typical health screening program practiced at our center includes height, weight, a complete blood 
cell count, basic chemistry, serologic test, blood coagulation test, thyroid function test, assay for tumor mark-
ers, stool/urine analysis, abdominal ultrasonography, gastrofiberscopy, chest radiography, pulmonary function 
test, and electrocardiography. All have been previously described17. Quality-control procedures were performed 
in accordance with the Korean Association of Laboratory Quality Control. Medical information was gathered 
through questionnaires, which included the questions on physician diagnosed diseases, medication history, cig-
arette smoking and alcohol consumption. We categorized educational attainment into three groups: 0–9 years, 
10–14 years (high school graduate to college graduate), and 15 or more years. Diabetes mellitus was defined as a 
history of taking diabetes medication or a fasting blood sugar level ≥ 126 mg/dl. Hypertension was defined as a 
history of hypertension medication use, systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure 
(DBP) ≥ 90 mmHg measured by an electronic sphygmomanometer after participants were in a relaxed state for 
more than five minutes. Participants were classified as non-smokers, ex-smokers, or current smokers. Alcohol 
consumption was used to categorize subjects as non-drinkers or current drinkers.

Kidney function was evaluated by eGFR using the simplified Modification of Diet in Renal Disease Study 
equation that is defined as the eGFR (ml/min/1.73 m2) = 86.3 ×  (serum creatinine)−1.154 ×  age−0.203, from which 
the result is multiplied by 0.742 for females18. Serum creatinine was measured using a modified kinetic Jaffe reac-
tion. And, UACR was measured by a spot collection of morning urine, of which was obtained during a fasting 
state. Subjects were considered to have an abnormally elevated UACR (above microalbuminuria level) if the value 
was ≥ 17 mg/g for men and ≥ 25 mg/g for women19,20.

Acquisition of MRI data. All participants underwent a 3D volumetric brain MRI scan. An Achieva 
3.0-Tesla MRI scanner (Philips, Best, the Netherlands) was used to acquire 3D T1 Turbo Field Echo (TFE) MRI 
data using a sagittal slice thickness of 1.0 mm, overcontiguous slices with 50% overlap and no gap, a repetition 
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time of 9.9 ms, an echo time of 4.6 ms, a flip angle of 8°, and a matrix size of 240 ×  240 pixels reconstructed to 
480 ×  480 over a field of view of 240 mm. Radiologists inspected all MRI data for evidence of brain tumors of 
any kind, major infarctions (except lacunar infarctions), and hemorrhages (observed as low intensity areas in 
T2-weighted images).

WMH visual rating scale. Whitematter hyperintensities (WMH) visual rating scale was modified using 
the Fezekas scale. On this scale, periventricular WMH (PWMH) were classified as P1 (cap and band <5 mm), 
P2 (5 mm ≤ cap or band <10 mm), and P3 (10 mm ≤ cap or band); deep WMH (DWMH) was classified into D1 
(maximum diameter of deep white matter lesion <10 mm), D2 (10 mm ≤ lesion < 25 mm), and D3 (≥25 mm). 
The inter-rater reliability of the WMH visual rating scale was presented in the previous study, which was proven 
to be a great support to our current study (intraclass correlation coefficient between 0.726 and 0.905)21. Another 
previous study showed that WMH visual rating scale correlated with automated measured volume of WMH22.

The results were combined to give a final ischemia classification of minimal, moderate, or severe. The combi-
nations of D1 with P1 (D1P1) and D1 with P2 (D1P2) were classified as ‘minimal’. The combinations D2P1, D3P1, 
D2P2, D3P2, D1P3, and D2P3 were classified as ‘moderate’, while D3P3 was classified as ‘severe’. A previous study 
showed that this ischemia classification system distinguished the presence of vascular risk factors and the severity 
of cerebrovasculare disease (CVD) markers.

Number of lacunes. The lacune was defined as a small lesion (≤15 mm in diameter) with low signal on T1-, 
high signal on T2-weighted images, and perilesional halo on FLAIR images. Two experienced neurologists who 
were blinded to the patients’ data reviewed the number and location of the lacunes on 20 axial slices of FLAIR. 
The rate of agreement between these two neurologists was 83.0% and consensus was reached in any case of 
discrepancy.

Number of microbleeds. Cerebral microbleeds were defined according to the criteria proposed by 
Greenberg et al., ranging <10 mm in diameter23. Two experienced neurologists, who were blinded to patients’ 
data, reviewed the number and location of cerebral microbleeds on 20 axial slices of T2 FFE-MRI. The rate of 
agreement between these two neurologists was 92.3% and a consensus was reached in any case of discrepancy.

Image processing for cortical thickness measurement. Images were processed by the standard 
Montreal Neurological Institute anatomic pipeline. This processing includes stereotaxic space transformation24, 
intensity normalization25, tissue segmentation26, and automatic surface extraction of the inner and outer cortex27. 
Cortical thickness was measured in native space due to limitations of linear stereotaxic normalization, as pre-
viously described in detail28. As MRI volumes were transformed and cortical surface models were extracted in 
stereotaxic space, we reconstructed cortical surfaces by applying inverse transformation29 and calculated cortical 
thickness in native space using Euclidean distance between the linked vertices of the inner and outer surfaces27. 
We included intracranial volume (ICV) as a covariate to control the brain size effect in statistical analyses. ICV 
was calculated by measuring the volume within the brain mask which was generated using the FSL brain extrac-
tion tool algorithm30.

Nonlinear registration of cortical surface. To compare the thicknesses of corresponding regions 
among the subjects, the vertices of each subject were nonlinearly registered onto a surface group template using 
surface-based two-dimensional registration with a sphere-to-sphere warping algorithm31.

Using the transformation, an individual cortical surface took the lobar labels from the template on which 
lobar boundaries were previously defined28. For the global analysis, average values of the thickness of the whole 
vertex in each hemisphere and lobar region were used. Diffusion smoothing with a full-width half-maximum of 
20 mm was used to blur each map of the cortical thickness, which increased the signal-to-noise ratio and statis-
tical power27,29.

Statistical analyses. We divided the patients into five groups according to eGFR: <60 (GFR1), 60–74 
(GFR2), 75–89 (GFR3), 90–104 (GFR4), and ≥105 (GFR5) ml/min/1.73 m2. The categories with eGFR 90-104 ml/
min/1.73 m2 (GFR4) and normal UACR were used as references, respectively. Baseline characteristics were com-
pared between participants in a reference category and other categories. Regarding continuous variables, further 
comparison was done using Student’s t-test and analysis of variance (ANOVA). While for categorical variables, 
Chi-square test was used for comparison.

We first evaluated the independent associations of eGFR and albuminuria as categorical variables with CSVD 
burdens (WMH, lacunes or microbleeds) and regional cortical thickness. For the analysis, WMH were dichot-
omized into absent/minimal WMH or moderate to severe WMH. Also, the numbers of lacune and microbleed 
were dichotomized into categories of being absent or present. Logistic and liner regression analyses were per-
formed after adjusting for age, sex, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic heart 
disease, and stroke, fasting glucose, systolic blood pressure, diastolic blood pressure, total cholesterol level, body 
mass index, status of current smoking and alcohol drinking, education level and intracranial volume. P values 
were corrected by Bonferroni’s method due to multiple testing and p <  0.05 was considered statistically signifi-
cant. All these analyses were executed using SPSS version 20.

To analyze the localized statistical map of cortical thickness on the surface model related to albuminuria, the 
elevated UACR was entered as the predictor and cortical thickness on a vertex-by-vertex; which then we per-
formed a multiple linear regression analysis. This was also carried out after controlling the same confounders as 
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the above analysis. The resulting statistical maps were thresholded, using the false discovery rate (FDR) theory at 
a Q value of 0.05, after pooling the p values from the regression analysis.

To evaluate whether CSVD burdens mediates the effect of albuminuria on cortical thickness, path analyses 
were performed after controlling for age, sex, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic 
heart disease, and stroke, fasting glucose, systolic blood pressure, diastolic blood pressure, total cholesterol level, 
body mass index, status of current smoking and alcohol drinking, education level and intracranial volume.

Results
The clinical characteristics of the participants are summarized in Table 1. Compared to the normal UACR group, 
elevated UACR group had the following characteristics: older age, greater number of males and current alcohol 
drinkers, higher levels of fasting glucose, greater BMI and increased vascular risk factors such as hypertension, 

N = 1,215

eGFR (ml/min/1.73 m2) UACR (mg/g)

GFR1 (<60) GFR2 (60–74) GFR3 (75–89)
GFR4 (90–104, 

reference) GFR5 (≥105)
Normal UACR 

(reference) Elevated UACR

Numbers 65 (5.3) 272 (22.4) 463 (38.1) 325 (26.7) 90 (7.4) 1092 (89.9) 123 (10.1)

Elevated UACR 16 (24.6)* 29 (10.7) 40 (8.6) 24 (7.4) 14 (15.6)* 0 (0) 100 (100)

Age, years 69.6 ±  8.2* 65.6 ±  7.5* 63.2 ±  7.0 62.2 ±  7.7 61.8 ±  7.9 63.5 ±  7.6 65.8 ±  7.4*

Sex: female 23 (35.4)* 131 (48.2) 265 (57.2) 170 (52.3) 62 (68.9)* 595 (56.4) 34 (29.3)*

Education

 < 10 years 15 (23.1) 69 (25.4) 119 (25.7) 93 (28.6) 27 (30.0) 282 (26.7) 31 (26.7)

 10~14 years 17 (26.2) 73 (26.8) 153 (33.0) 107 (32.9) 36 (40.0) 341 (32.3) 36 (31.0)

 ≥15 years 33 (50.8) 130 (47.8) 191 (41.3) 125 (38.5) 27 (30.0) 432 (40.9) 49 (42.2)

Hypertension 47 (72.3)* 143 (52.6)* 189 (40.8) 118 (36.3) 45 (50.0) 446 (42.3) 76 (65.5)*

Diabetes 17 (26.2) 45 (16.5) 62 (13.4) 47 (14.5) 14 (15.6) 143 (13.6) 33 (28.4)*

Hyperlipidemia 15 (23.1) 68 (25.0) 114 (24.6) 79 (24.3) 23 (25.6) 251 (23.8) 40 (34.5)*

Coronary heart 
disease 7 (10.8) 22 (8.1) 24 (5.2) 21 (6.5) 3 (3.3) 64 (6.1) 12 (10.3)

Stroke 5 (7.7) 5 (1.8) 23 (5.0) 8 (2.5) 4 (4.4) 37 (3.5) 6 (5.2)

Smoking

 Non-smoker 31 (47.7) 166 (61.0) 302 (65.2) 209 (64.3) 64 (71.1) 791 (65.5) 56 (48.3)*

 Ex-smoker 28 (43.1) 83 (30.5) 128 (27.6) 89 (27.4) 21 (23.3) 286 (27.1) 50 (43.1)*

 Current smoker 6 (9.2) 23 (8.5) 33 (7.1) 27 (8.3) 5 (5.6) 78 (7.4) 10 (8.6)

Alcohol

 No 28 (43.1) 128 (47.1) 237 (51.2) 151 (46.5) 49 (54.4) 527 (50.0) 44 (37.9)*

 Yes 37 (56.9) 144 (52.9) 226 (48.8) 174 (53.5) 41 (45.6) 528 (50.0) 72 (62.1)*

Fasting glucose 101.4 ±  20.5 99.6 ±  22.6 99.0 ±  19.5 98.5 ±  18.5 100.9 ±  26.0 98.2 ±  18.8 109.0 ±  30.6*

Cholesterol 178.3 ±  36.0* 192.8 ±  35.3 196.0 ±  37.7 194.9 ±  35.6 195.2 ±  40.7 194.6 ±  36.5 188.5 ±  40.2

Body mass index 25.0 ±  3.6* 24.1 ±  2.8 23.7 ±  2.7 23.7 ±  3.3 23.7 ±  3.0 23.8 ±  2.9 24.4 ±  3.6*

SBP (mmHg) 125.2 ±  19.4 125.1 ±  19.7 124.9 ±  17.9 123.1 ±  16.8 125.9 ±  19.3 124.2 ±  17.9 128.6 ±  19.7*

DBP (mmHg) 74.2 ±  11.9 75.1 ±  10.8 74.9 ±  10.5 73.3 ±  10.4 73.7 ±  10.1 74.1 ±  10.5 76.2 ±  11.3*

WMH

 Moderate to severe 17 (26.2)* 45 (16.5) 65 (14.0) 39 (12.0) 12 (13.3) 144 (13.2) 34 (27.7)*

Lacunes 0.5 ±  1.5* 0.2 ±  0.5 0.2 ±  0.6 0.2 ±  0.7 0.2 ±  0.6 0.2 ±  0.6 0.4 ±  1.1*

 Yes 12 (18.5) 37 (13.6) 44 (9.5) 33 (10.2) 9 (10.0) 109 (10.0) 26 (21.1)*

Microbleeds 0.7 ±  2.9 0.1 ±  0.5 0.2 ±  1.4 0.2 ±  1.9 0.2 ±  0.5 0.2 ±  1.4 0.5 ±  2.2*

 Yes 9 (13.8) 27 (9.9) 38 (8.2) 30 (9.2) 10 (11.1) 96 (8.8) 18 (14.6)*

ICV (mm3) 1372441.7 ±  142026.1 1359796.9 ±  124610.9 1368566.2 ±  118300.2 1380767.3 ±  123177.2 1364610.1 ±  117243.3 1365263.1 ±  120085.2 1409890.9 ±  134926.2*

Cortical thickness (mm)

 Overall 2.99 ±  0.15* 3.03 ±  0.11* 3.06 ±  0.10 3.06 ±  0.10 3.06 ±  0.11 3.05 ±  0.11 3.02 ±  0.13*

 Frontal 3.04 ±  0.15* 3.08 ±  0.12 3.11 ±  0.11 3.10 ±  0.11 3.10 ±  0.12 3.10 ±  0.11 3.06 ±  0.14*

 Temporal 3.17 ±  0.17 3.20 ±  0.16 3.22 ±  0.15 3.22 ±  0.16 3.20 ±  0.18 3.22 ±  0.15 3.18 ±  0.18*

 Parietal 2.84 ±  0.15* 2.89 ±  0.14* 2.92 ±  0.13 2.92 ±  0.14 2.93 ±  0.16 2.91 ±  0.14 2.89 ±  0.16

 Occipital 2.64 ±  0.17* 2.68 ±  0.13 2.71 ±  0.12 2.70 ±  0.12 2.70 ±  0.12 2.70 ±  0.14 2.66 ±  0.13*

Table 1.  Characteristics of study participants. eGFR, estimated glomerular filtration rate; UACR, urine 
albumin to creatinine ratio; elevated UACR if the value was ≥ 17 mg/g for men and ≥ 25 mg/g for women. SBP, 
systolic blood pressure; DBP , diastolic blood pressure; WMH, whitematter hyperintensities; ICV, intracranial 
volume. Values are expressed as mean (± standard deviation) for continuous variables or N (%) for categorical 
variables. *p <  0.05 compared to the reference group (eGFR 90-104 or normal UACR) after Bonferroni 
correction.
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diabetes mellitus, and hyperlipidemia. GFR1 group (the lowest eGFR) was older and had more frequent hyper-
tension, higher levels of BMI, and lower levels of total cholesterol than the GFR4 group (reference group). The 
proportion of subjects with elevated UACR was higher in the GFR1 group compared to the GFR4 group.

CKD markers and CSVD burdens. Elevated UACR group had more frequent moderate to severe WMH 
compared to the normal UACR group (OR, 2.3; 95% CI, 1.4-3.8; p =  0.002) (Table 2). However, there were no 
differences in CSVD burdens between the GFR4 group and other GFR groups.

CKD markers and cortical thickness. Elevated UACR group showed significant cortical thinning in the 
frontal and occipital regions, of which were results obtained after controlling possible confounders (Table 3). 
There were no differences in cortical thickness between the GFR4 group and other GFR groups.

Topography of cortical thinning showed that elevated UACR group had cortical thinning in the bilateral mid-
dle frontal, insula, and lingual gyri; right superior frontal, lateral occipital, and fusiform gyri; and left cuneus, 
anterior cingulate, and middle and inferior temporal gyri (Fig. 1).

Path analysis. The path analysis for frontal cortical thickness showed goodness of fit to the data: Chi-square =  
59.470, degrees of freedom = 46, p = 0.088, comparative fit index = 0.995 and root-mean-square error of approx-
imation = 0.016 (Fig. 2). Elevated UACR was associated with moderate to severe WMH, which were further 
associated with frontal cortical thinning. Elevated UACR was also associated with frontal thinning without being 
mediated by WMH burdens.

Discussion
This study reports novel findings about the relationship between CKD markers, CSVD burdens, and cortical 
thickness in a large cognitively normal cohort. Our findings suggested that assessment of albuminuria is needed 
to improve our ability in identifying high risk individuals for cognitive impairments, so that we can institute 
appropriate preventive measures.

Our conclusion that albuminuria was associated with cortical thinning with or without the mediation of 
WMH burden is supported by the following observations: (1) albuminuria was associated with increased WMH 
burdens; (2) albuminuria also contributed to cortical thinning, predominantly in the frontal and occipital regions; 
(3) path analyses for cortical thinning showed that albuminuria was associated with frontal thinning with or 
without the mediation of WMH burdens. Although previous studies evaluated the relationships between kidney 
function and imaging biomarkers5–8, the concurrent relationships between kidney function, CSVD, and cortical 
thickness remains to be fully established.

The mechanisms by which albuminuria was associated with cortical thinning with the mediation of WMH 
burden might be explained by shared pathophysiology between kidney and brain. It has been suggested that albu-
minuria may simply represent the renal manifestations of systemic endothelial dysfunction16,32. That is, gradual 
endothelial damage and leakage of serum proteins into the brain’s interstitial spaces could lead to increased WMH 
burdens6. In fact, pathological studies revealed that enlarged perivascular spaces and perivascular demyelination 
were observed in WMH on MRI33. Considering previous studies showing that WMH were associated with corti-
cal thinning through secondary degeneration after subcortical injury, it might, therefore, be reasonable to explain 
that albuminuria affect WMH, which in turn lead to cortical thinning15,34. In fact, the topography of cortical 
thinning related to albuminuria generally overlapped with that related to WMH15,34.

We also found that albuminuria affected cortical thinning without the mediation of WMH. Their pathobiol-
ogy remains unclear. However, it might be related to several explanations that albuminuria affect cortical thinning 
through changes at the microvascular level, which, however, are too subtle to be detected by conventional MRI. In 
fact, these microvascular changes including cortical microinfarct, apoptosis, and microstructural abnormalities in 

WMH Lacunes Microbleeds

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value

GFR5 ≥105 0.9 (0.3–2.3) 0.743 0.9 (0.3–2.7) 0.860 1.2 (0.5–3.4) 0.590

GFR4 90–104 references

GFR3 75–89 1.0 (0.6–1.8) 0.994 0.8 (0.4-1.6) 0.449 0.8 (0.4–1.6) 0.419

GFR2 60–74 1.0 (0.5–1.9) 0.897 1.0 (0.5–2.1) 0.948 0.8 (0.4–1.8) 0.574

GFR1 <60 1.0 (0.4–2.7) 0.947 0.9 (0.3–2.7) 0.870 0.9 (0.3–2.7) 0.818

UACR 
Normal references

Elevated 2.3 (1.4–3.8) 0.002 1.5 (0.9–2.6) 0.142 1.5 (0.9–2.5) 0.148

Table 2.  Kidney function and cerebrovascular disease markers (WMH, lacunes and microbleeds). Logistic 
regression analysis adjusted for age, sex, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic 
heart disease, and stroke, fasting glucose, systolic blood pressure, diastolic blood pressure, total cholesterol level, 
body mass index, status of current smoking and alcohol drinking, education level, intracranial volume, and 
GFR groups or UACR. GFR, glomerular filtration rate (ml/min/1.73 m2); UACR, urine albumin to creatinine 
ratio; elevated UACR if the value was ≥ 17 mg/g for men and ≥ 25 mg/g for women. WMH, whitematter 
hyperintensities; dichotomized into absent to minimal or moderate to severe WMH. Lacunes and microbleeds 
were dichotomized into categories of absent or present.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:20692 | DOI: 10.1038/srep20692

normal appearing white matter correlate with cognitive impairments35–37. Therefore, the pathogenesis of cortical 
changes related to albuminuria might include cortical microinfarct, apoptosis, and/or microstructural changes, 
as well as changes resulting in WMHs. Alternatively, other vascular risk factors such as hyperhomocysteinemia, 
hemostatic abnormalities, oxidative stress and inflammation may mediate the association between albuminuria 
and cortical thinning38. Finally, it is possible that albuminuria is associated with the production of uremic tox-
ins such as guanidine compounds, which causes directly neuronal toxicity and eventually resulting in cortical 
thinning2.

However, unlike previous studies, we did not find any relationship of eGFR with CSVD markers or cortical 
thinning after accounting for potential confounding factors. Several studies have shown that lower eGFR levels 
were associated with greater white matter lesions in the elderly3,4,39. Other studies also revealed that decreased 
eGFR levels were associated with decreased cortical thickness7,8. Especially, a previous study from our group 
showed that Alzheimer’s disease dementia (AD) patients with decreased eGFR levels had cortical thinning than 
those with normal eGFR levels40. These discrepancies might be explained by differences in the study population. 
In our study, participants are cognitively normal and most of them (94.7%) had normal to mildly reduced kidney 

Overall Frontal lobe Temporal lobe Parietal lobe Occipital lobe

B (SE) p value B (SE) p value B (SE) p value B (SE) p value B (SE) p value

eGFR (ml/min/1.73m2)

 ≥ 105 − 0.005 (0.012) 0.678 − 0.006 (0.013) 0.659 − 0.023 (0.018) 0.770 0.001 (0.015) 0.953 − 0.003 (0.014) 0.802

 90–104 references

 75–89 0.008 (0.007) 0.278 0.010 (0.008) 0.174 0.011 (0.011) 0.758 0.001 (0.009) 0.879 0.013 (0.008) 0.125

 60–74 − 0.002 (0.008) 0.800 0.001 (0.009) 0.939 0.004 (0.013) 0.305 − 0.011 (0.011) 0.303 0.010 (0.010) 0.289

 < 60 − 0.013 (0.014) 0.341 − 0.009 (0.015) 0.543 0.006 (0.021) 0.203 − 0.024 (0.018) 0.167 − 0.008 (0.016) 0.600

UACR (mg/g)

 Normal references

 Elevated − 0.023 (0.009) 0.015 − 0.027 (0.010) 0.008 − 0.024 (0.015) 0.100 − 0.010 (0.012) 0.418 − 0.031 (0.011) 0.005

Table 3.  The effect of eGFR or albuminuria on regional cortical thickness. eGFR, estimated glomerular 
filtration rate; UACR, urinary albumine to creatinine ratio; elevated UACR if the value was ≥ 30 mg/g; SE, 
standard error. Linear regression analysis adjusted for age, sex, history of hypertension, diabetes mellitus, 
hyperlipidemia, ischemic heart disease, and stroke, fasting glucose, systolic blood pressure, diastolic blood 
pressure, total cholesterol level, body mass index, status of current smoking and alcohol drinking, education 
level and intracranial volume, GFR groups or UACR.

Figure 1. Statistical map of cortical thinning related to albuminuria. The subjects with albuminuria showed 
cortical thinning predominantly in bilateral middle frontal, insula, and lingual gyri; right superior frontal, 
lateral occipital, and fusiform gyri; and left cuneus, anterior cingulate, and middle and inferior temporal gyri.
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function, whereas those in the previous studies had AD or severe degree of kidney dysfunction. By contrast, the 
presence of albuminuria had a significant association with WMH burdens or brain atrophy in these participants 
in line with the previous studies7,41. Therefore, our findings suggested that endothelial dysfunction represented 
with albuminuria might have a critical role in developing CSVD or thinning in the brain. Further studies should 
be needed to investigate the effects of endothelial cell dysfunction on the brain related to albuminuria.

Some methodological issues need to be considered. First, this study is a cross-sectional study. Therefore, these 
findings do not allow for causal inference regarding the directionality of the relationship. Second, in the present 
study, CSVD markers were assessed as “none” to “presence” because of non-normalized distribution, which may 
not properly reflect the effects of eGFR abnormalities or albuminuria. Third, the duration or etiologies of kidney 
dysfunction were not available, which could partly explain the changes in brain structure. Finally, our participants 
were recruited from attendees to a comprehensive preventive health exam not covered by national medical insur-
ance, which may limit the generalizability of this study to the general population. However, the strengths of this 
study is analyzing cortical thickness data measured by sophisticated methods in a large sample size, which allows 
for precise estimations of the effects of albuminuria on brain structures.

References
1. Buchman, A. S. et al. Kidney function is associated with the rate of cognitive decline in the elderly. Neurology 73, 920–927 (2009).
2. Bugnicourt, J.-M., Godefroy, O., Chillon, J.-M., Choukroun, G. & Massy, Z. A. Cognitive disorders and dementia in CKD: the 

neglected kidney-brain axis. J Am Soc Nephrol 24, 353–363 (2013).
3. Wada, M. et al. Cerebral small vessel disease and chronic kidney disease (CKD): results of a cross-sectional study in community-

based Japanese elderly. J Neurol Sci 272, 36–42 (2008).
4. Khatri, M. et al. Chronic kidney disease is associated with white matter hyperintensity volume the Northern Manhattan Study 

(NOMAS). Stroke 38 3121–3126 (2007).
5. Mogi, M. & Horiuchi, M. Clinical interaction between brain and kidney in small vessel disease. Cardiology research and practice 

(2011), doi: 10.4061/2011/306189.
6. Knopman, D. S. Invited commentary: Albuminuria and microvascular disease of the brain—a shared pathophysiology. Am J 

Epidemiol (2010), doi: 10.1093/aje/kwp429.
7. Knopman, D. S. et al. Associations of microalbuminuria with brain atrophy and white matter hyperintensities in hypertensive 

sibships. J Neurol Sci 271, 53–60, (2008).
8. Yakushiji, Y. et al. Marked cerebral atrophy is correlated with kidney dysfunction in nondisabled adults. Hypertens Res 33, 

1232–1237 (2010).
9. Levey, A. S. & Coresh, J. Chronic kidney disease. The Lancet 379, 165–180 (2012).

10. Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality: 
a collaborative meta-analysis of general population cohorts. Lancet 375, 2073 (2010).

11. Hemmelgarn, B. R. et al. Relation between kidney function, proteinuria, and adverse outcomes. Jama 303, 423–429 (2010).
12. Kramer, J. H. et al. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 21, 412 (2007).
13. Jack, C. R. et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of 

pathological events in Alzheimer’s disease. Brain 132, 1355–1365 (2009).
14. Hampel, H. et al. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4, 38 (2008).
15. Seo, S. W. et al. Cortical thinning related to periventricular and deep white matter hyperintensities. Neurobiol Aging 33, 1156–1167. 

e1151 (2012).
16. Stehouwer, C. D. & Smulders, Y. M. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am 

Soc Nephrol 17, 2106–2111 (2006).

Figure 2. Schematic diagram of the path analyses for frontal cortical thickness. Elevated urine albumin to 
creatinine ratio (UACR) was associated with moderate to severe white matter hyperintensities (WMH), which 
were further associated with frontal cortical thinning. Elevated UACR was also associated with frontal thinning 
without being mediated by WMH burdens. Albuminuria was entered as a predictor and WMH volume was 
entered as a mediator. Age, sex, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic heart 
disease, and stroke, fasting glucose, systolic blood pressure, diastolic blood pressure, total cholesterol level, 
body mass index, status of current smoking and alcohol drinking, education level and intracranial volume were 
entered as covariates. Numbers on the paths are standardized coefficients that were statistically significant.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:20692 | DOI: 10.1038/srep20692

17. Park, H. Y. et al. Lung function, coronary artery calcification, and metabolic syndrome in 4905 Korean males. Resp Med 104, 
1326–1335 (2010).

18. Levey, A. S. et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. 
Ann Intern Med 130, 461–470 (1999).

19. Mattix, H. J., Hsu. C.-y., Shaykevich, S. & Curhan, G. Use of the albumin/creatinine ratio to detect microalbuminuria: implications 
of sex and race. J Am Soc Nephrol 13, 1034–1039 (2002).

20. Eknoyan, G. & Levin, N. W. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and 
stratification. Am J Kidney Dis 39, S1–266 (2002).

21. Moon, S. Y. et al. Impact of white matter changes on activities of daily living in mild to moderate dementia. Eur Neurol 65, 223–230 
(2011).

22. Noh, Y. et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. 
J Stroke Cerebrovasc Dis 23, 636–642 (2014).

23. Greenberg, S. M. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8, 165–174 (2009).
24. Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized 

Talairach space. J Comput Assist Tomogr 18, 192–205 (1994).
25. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI 

data. Medical Imaging, IEEE Transact 17, 87–97 (1998).
26. Zijdenbos, A. et al. Automatic quantification of multiple sclerosis lesion volume using stereotaxic space. Visualization in Biomedical 

Computing. Springer, 1996 pp 439–448.
27. Kim, J. S. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial 

volume effect classification. Neuroimage 27, 210–221 (2005).
28. Im, K. et al. Brain size and cortical structure in the adult human brain. Cereb Cortex 18, 2181–2191 (2008).
29. Im, K. et al. Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. Neuroimage 31, 

31–38 (2006).
30. Smith, S. M. Fast robust automated brain extraction. Hum Brain Mapp 17, 143–155 (2002).
31. Lyttelton, O., Boucher, M., Robbins, S. & Evans, A. An unbiased iterative group registration template for cortical surface analysis. 

Neuroimage 34, 1535–1544 (2007).
32. Diamond, J. R. Analogous pathobiologic mechanisms in glomerulosclerosis and atherosclerosis. Kidney Int Suppl 31, S29–34 (1991).
33. Fazekas, F. et al. The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer’s disease. J Neurol Sci 142, 121–125 

(1996).
34. Reid, A. T. et al. Patterns of cortical degeneration in an elderly cohort with cerebral small vessel disease. Hum Brain Mapp 31, 

1983–1992 (2010).
35. Kovari, E. et al. Cortical microinfarcts and demyelination significantly affect cognition in brain aging. Stroke 35, 410–414 (2004).
36. Viswanathan, A., Gray, F., Bousser, M. G., Baudrimont, M. & Chabriat, H. Cortical neuronal apoptosis in CADASIL. Stroke 37, 

2690–2695 (2006).
37. O’Sullivan, M., Singhal, S., Charlton, R. & Markus, H. S. Diffusion tensor imaging of thalamus correlates with cognition in CADASIL 

without dementia. Neurology 62, 702–707 (2004).
38. Madero, M., Gul, A. & Sarnak, M. J. Review: cognitive function in chronic kidney disease. Semin Dial Wiley Online Library, 2008 pp 

29–37.
39. Ikram, M. A. et al. Kidney function is related to cerebral small vessel disease. Stroke 39, 55–61 (2008).
40. Cho, E. B. et al. Effect of kidney dysfunction on cortical thinning in patients with probable Alzheimer’s disease dementia. J Alzheimes 

Dis 33, 961–968 (2012).
41. Sink, K. M. et al. Cerebral structural changes in diabetic kidney disease: African American–Diabetes Heart Study MIND. Diabetes 

care 38, 206–212 (2015).

Acknowledgements
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health 
Industry Development  Institute(KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea 
(HI14C2768); the Korean Science and Engineering Foundation (KOSEF) NRL program funded by the Korean 
government (MEST; 2011-0028333); Korea Ministry of Environment (MOE) as the Environmental Health 
Action Program (Grant Number 2014001360002);  and Korean Neurological Association(KNA-15-MI-08); 
and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-
2015R1C1A2A01053281).

Author Contributions
Study concept and design: E.B.C. and S.W.S. Acquisition of data: E.B.C., S.W.S., H.Y.S., H.J.K., Y.J.K., N.Y.J., J.S.L., 
J.L., Y.K.J. and D.L.N. Analysis and interpretation of the data: E.B.C., S.W.S., S.E.P., J.J.Y., E.Y.J., M.K. and J.M.L. 
Draft and revision of the manuscript for content: E.B.C., S.W.S. H.Y.S., P.C., H.R.J., C.K., J.H.M. and S.R.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Cho, E. B. et al. Albuminuria, Cerebrovascular Disease and Cortical Atrophy: among 
Cognitively Normal Elderly Individuals. Sci. Rep. 6, 20692; doi: 10.1038/srep20692 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Albuminuria, Cerebrovascular Disease and Cortical Atrophy: among Cognitively Normal Elderly Individuals
	Materials and Methods
	Participants. 
	Baseline assessment. 
	Acquisition of MRI data. 
	WMH visual rating scale. 
	Number of lacunes. 
	Number of microbleeds. 
	Image processing for cortical thickness measurement. 
	Nonlinear registration of cortical surface. 
	Statistical analyses. 

	Results
	CKD markers and CSVD burdens. 
	CKD markers and cortical thickness. 
	Path analysis. 

	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  Statistical map of cortical thinning related to albuminuria.
	Figure 2.  Schematic diagram of the path analyses for frontal cortical thickness.
	Table 1.   Characteristics of study participants.
	Table 2.   Kidney function and cerebrovascular disease markers (WMH, lacunes and microbleeds).
	Table 3.   The effect of eGFR or albuminuria on regional cortical thickness.



 
    
       
          application/pdf
          
             
                Albuminuria, Cerebrovascular Disease and Cortical Atrophy: among Cognitively Normal Elderly Individuals
            
         
          
             
                srep ,  (2016). doi:10.1038/srep20692
            
         
          
             
                Eun Bin Cho
                Hee-Young Shin
                Sang Eon Park
                Phillip Chun
                Hye Ryoun Jang
                Jin-ju Yang
                Hee Jin Kim
                Yeo Jin Kim
                Na-Yeon Jung
                Jin San Lee
                Juyoun Lee
                Young Kyoung Jang
                Eun Young Jang
                Mira Kang
                Jong-Min Lee
                Changsoo Kim
                Ju-Hong Min
                Seungho Ryu
                Duk L. Na
                Sang Won Seo
            
         
          doi:10.1038/srep20692
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep20692
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep20692
            
         
      
       
          
          
          
             
                doi:10.1038/srep20692
            
         
          
             
                srep ,  (2016). doi:10.1038/srep20692
            
         
          
          
      
       
       
          True
      
   




