
Research Article
Maximizing the Lifetime of Wireless Sensor Networks Using
Multiple Sets of Rendezvous

Bo Li and Sungkwon Park

Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Republic of Korea

Correspondence should be addressed to Sungkwon Park; sp2996@hanyang.ac.kr

Received 27 May 2015; Revised 20 August 2015; Accepted 7 September 2015

Academic Editor: Bjorn Landfeldt

Copyright © 2015 B. Li and S. Park. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In wireless sensor networks (WSNs), there is a “crowded center effect” where the energy of nodes located near a data sink drains
much faster than other nodes resulting in a short network lifetime. Tomitigate the “crowded center effect,” rendezvous points (RPs)
are used to gather data from other nodes. In order to prolong the lifetime of WSN further, we propose using multiple sets of RPs in
turn to average the energy consumption of the RPs. The problem is how to select the multiple sets of RPs and how long to use each
set of RPs. An optimal algorithm and a heuristic algorithm are proposed to address this problem. The optimal algorithm is highly
complex and only suitable for small scaleWSN.The performance of the proposed algorithms is evaluated through simulations.The
simulation results indicate that the heuristic algorithm approaches the optimal one and that usingmultiple RP sets can significantly
prolong network lifetime.

1. Introduction

A wireless sensor network (WSN) is composed of spatially
distributed autonomous sensor nodes that monitor physical
or environmental conditions. WSN has a wide field of
applications such as intelligent transportation [1], health
monitoring [2], military information integration [3], and
forest fire detection [4]. In a WSN, sensor nodes generate
sensory data which are then delivered to one or more data
sinks using multihop forwarding. All sensory data from the
entire network ultimately pass through sensor nodes situated
at one-hop distance from a sink node. That is, those nodes
within one-hop distance to a sink node must transmit all
data generated from the entire network. These sensor nodes
consume significant energy for data transmission causing
rapid energy depletion. Once all available energy of them
is depleted, sensory data from the whole network is unable
to reach the data sink rendering the network inoperative.
This phenomenon is called the “crowded center effect” [5]. In
order tomitigate this problem, rendezvous-based approaches
are proposed [6–13].

In rendezvous-based approaches, somenodes are selected
as rendezvous points (RPs) to gather data from other nodes.
Each RP is visited by a mobile device, referred to as a mobile

element (ME), which collects the gathered data. A RP
transmits this data when the ME passes by and the ME
carries the collected data back to the sink. Utilizing this
approach, network traffic is distributed to RPs. Designating
additional RPs increases the dispersion of network traffic,
thereby increasing network lifetime as well. However, nodes
cannot be arbitrarily designated as RPs as the ME must visit
each RP to collect data and transmit the data to the sink
within a delay constraint. If there are toomany RPs, the travel
time of the ME will exceed the delay constraint.

In a rendezvous-based method, typically a single set of
nodes is selected as RPs. Consequently, the selected RPs
are constantly subjected to the “crowded center effect” and
their energy depletes at a faster rate than regular nodes. In
order to further balance energy consumption, we propose
implementing multiple sets of RPs in turn to gather data. As
shown in Figure 1, assume that in a WSN RP sets {1, 3} and
{2, 4} are both feasible. Suppose that we only use RP set {1, 3}
and allow nodes 2 and 4 to forward their data to nodes 1 and
3, respectively, as shown in Figure 1(a). As a result, nodes 1
and 3 will consume their available energy sooner than nodes
2 and 4. When nodes 1 and 3 expire, the network becomes
inoperative despite nodes 2 and 4 having available energy.
However, if we set nodes 1 and 3 as RPs as shown in Figure 1(a)
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Figure 1: Use multiple sets of RPs in turn to prolong lifetime of WSN further.

only for a portion of the time and then designate nodes 2
and 4 as RPs for the remainder of the time as shown in
Figure 1(b), then the average energy consumption of nodes 1
and 3 is reduced and the lifetime of the network is extended.
The primary goal is to utilize multiple RPs at different times
to average their energy consumption. The problem is how to
select the different RP sets and how long to utilize each RP set
in order to maximize network lifetime. We first propose an
optimal algorithm to address this problem, which identifies
all feasible RP sets and selects the optimal time fraction to use
each RP set by solving linear programming problems. If there
are too many feasible RP sets, the computation complexity of
finding the best solution is extremely high.Therefore, we also
propose a heuristic algorithm for this situation.

The contributions of this paper are summarized as fol-
lows: (1) We formulate the problem of using multiple sets
of RPs to maximize the lifetime of WSN; (2) we propose
an optimal algorithm for this problem; (3) we propose a
heuristic algorithm for large scale WSN with low complexity.
The remainder of this paper is organized as follows: Related
rendezvous-based energy saving methods for WSN are
reviewed in Section 2. Section 3 formally states the problem
we studied in this paper. Section 4 presents the proposed
algorithms. In Section 5, we evaluate the performance of the
proposed algorithms. Finally, conclusions are presented in
Section 6.

2. Related Work

InWSNs, the mobile element (ME) has been implemented to
reduce the energy consumption of sensor nodes. The related
approaches can be classified into two types: (1) one-hop and
(2) rendezvous-based. In one-hop approaches, the ME visits
each sensor node, and a sensor node only needs to transmit
its data to theME via one hop. Consequently, the energy con-
sumption of sensor nodes is reduced significantly. Initially,

researchers proposed using MEs with random mobility such
as animals [14], an access point mounted on a bus [15],
or a flying mobile agent [16] to collect data from sensor
nodes. Although these methods can be implemented with
relative ease, randommobility uses time inefficiently for data
collection. To address this, controlled mobility approaches
were subsequently proposed. Nesamony et al. studied the
problem of finding the minimum length path for a ME to
visit each sensor node for data collection [17].The problem is
essentially the well-known traveling salesman problem (TSP)
[18] which is NP-hard.Therefore, several heuristic algorithms
were proposed for the ME path selection [19–25].

Although one-hop approaches canminimize energy con-
sumption of sensor nodes by avoiding multihop transmis-
sion, this causes high latency when collecting data from a
large number of sensor nodes. In order to reduce data delivery
delay, rendezvous-based approaches were proposed. In these
approaches, a subset of sensor nodes are selected as RPs to
gather data from other nodes via multihop transmission. A
MEonly visits RPs to collect data, and the data collection time
cannot exceed a delay constraint.The problem studied in this
paper falls into rendezvous-based approaches.

The rendezvous-based model mentioned above was first
implemented in [7, 8]. The authors proved that the problem
of selecting a single set of RPs is NP-hard and instead pro-
posed RP-CP and RP-UG algorithms. RP-CP is the optimal
algorithm for a special case where the ME only moves along
a routing treewhich is rooted at the sink. RP-UG, on the other
hand, is a heuristic algorithm for the general case. A cluster-
based algorithm for rendezvous planning was proposed in
[9]. The algorithm iteratively divides sensor nodes into
clusters and designates a RP in each cluster. In each iteration,
if the length of the shortest tour which covers all RPs is less
than the length limit, the algorithm will select additional
clusters in the next iteration until the longest feasible ME
tour is found. Another algorithm called “rendezvous points
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Figure 2: Different data forwarding patterns when different RPs are selected.

selectionwith load balancing” (RPS-LB) [10] was proposed to
jointly optimize path planning for theME and load balancing
for the network. It assumes that a routing tree has been built
in the network. From the median of the tree, it traverses the
heaviest subtree to construct a tour for the ME. If the tour
length is less than the limit, it continues to traverse the second
heaviest subtree. This procedure repeats until the tour length
reaches the limit which leads to the final solution.

In [11], a greedy method called weighted rendezvous
planning (WRP) was proposed to select RPs iteratively. In
this method, each node is assigned with a weight equal to the
number of packets it must forward per period multiplied by
its hop distance from the nearest RP. Initially, only the sink is
selected as a RP. In each iteration, the node with the highest
weight will be selected as RP and the weight of the remaining
nodes is updated accordingly. When the length of the tour
which covers the selectedRPs exceeds the limit, the procedure
ends. Konstantopoulos et al. proposed a clustering method
for RP selection based on the watershed transform which is
used in image segmentation [12].The authors enhanced their
work by adding an algorithm to periodically reselect a new
set of RPs and rebuild the data gathering structure [13]. To
the best of our knowledge, this work is the most similar to
the methods discussed in this paper.

Other works [26–31] also considered using multiple MEs
to collect data from sensor nodes. Authors in [27–29, 31]
investigated the problem of designing tours for multiple MEs
to gather data with the same deadline, while authors in [27,
29] considered scheduling multiple MEs to harvest sensed
data with different deadlines.

3. System Model and Problem Statement

In this paper, we consider a WSN with randomly distributed
sensor nodes and a single sink node. In order to prolong the
lifetime of the WSN, we select multiple sets of rendezvous

points (RPs) and use them in turn to gather data from other
sensor nodes. Amobile element (ME) visits currently selected
RPs to collect gathered data. Some assumptions about this
system are as follows:

(1) The locations of sensor nodes and the sink node are
known.

(2) Each sensor node generates one chunk of sensory data
with the same size synchronously in every period of
𝐷.

(3) Each sensor node has an omnidirectional antenna to
forward sensory data, and each node has at least one
neighbor within its transmission range.

(4) The sensory data generated in each period must be
delivered to the sink within𝐷 seconds.

(5) The initial energy of all sensor nodes is the same.
(6) A sensor node has enough memory to buffer the data

forwarded from its descendants.

For different set of RPs, we need different data for-
warding patterns to gather data. For example, Figures 2(a)
and 2(b) show the different data forwarding patterns when
{node 1, node 2} and {node 3, node 4} are selected as RPs,
respectively. In a data forwarding pattern, each RP is a root
of a data forwarding tree. If in a data forwarding tree node,
data from node A will be forwarded through node B, then
we say that node A is a descendant of node B. With different
data forwarding patterns, the number of descendants of a
node is different. For a given set of RPs, we can let sensor
nodes deliver their data to these RPs following different data
forwarding patterns. Suppose that there are𝑀 possible data
forwarding routing patterns in total for all possible RP sets.
We denote the number of descendants of node 𝑖 under 𝑚th
data forwarding pattern by 𝑛

𝑖,𝑚
. Consider the data generated

by one sensor node during every 𝐷 seconds as one unit
of data. Assume that the energy consumption incurred for
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transmitting and receiving one unit of data is 𝐸TX and 𝐸RX,
respectively. Under 𝑚th data forwarding pattern, the energy
consumption of node 𝑖 for data reception in a period is
𝐸RX𝑛𝑖,𝑚. Node 𝑖 has to forward the received data and the
data generated by itself to its parent node; thus its energy
consumption for data transmission in a period is𝐸TX(𝑛𝑖,𝑚+1).
The energy consumption of node 𝑖 in data communication
during a period under𝑚th data forwarding pattern, denoted
by 𝐸
𝑖,𝑚
, can be calculated by

𝐸
𝑖,𝑚

= 𝐸RX𝑛𝑖,𝑚 + 𝐸TX (𝑛𝑖,𝑚 + 1) . (1)

We normalize the network lifetime as 1 and denote the
fraction of time that 𝑚th data forwarding pattern is used
by 𝜃
𝑚
, where 𝜃

𝑚
≥ 0 and ∑

𝑀

𝑚=1
𝜃
𝑚

= 1. We only use a
part of all possible data forwarding patterns. If 𝜃

𝑚
= 0, then

𝑚th data forwarding pattern is not used. The average energy
consumption of node 𝑖 in data communication during every
𝐷 seconds is

𝐸
𝑖
=

𝑀

∑
𝑚=1

𝜃
𝑚
𝐸
𝑖,𝑚
. (2)

InWSN,most of the energy is consumed by data communica-
tion.We consider 𝐸

𝑖
as the total energy consumption of node

𝑖 per period. The network lifetime is equal to the lifetime of
the nodewith the highest energy consumption rate.Thus, our
goal is to minimize max

𝑖
𝐸
𝑖
. The main notations in this paper

are listed in “Notation” section.
The constraint of the problem is that the sensory data

must be delivered to the sink nodewithin𝐷 seconds. Suppose
that the average velocity of the ME is V. The maximum
path length of the ME, denoted by 𝐿max, can be calculated
as

𝐿max = 𝐷V. (3)

Periodically, the ME starts from the sink node to collect data
from all RPs and then returns to the sink node. For a set of
RPs, we can find the shortest path for the ME to collect data
from RPs by a TSP solver [18]. We denote this shortest path
length of a RP set S by PL(S), giving us the constraint PL(S) ≤
𝐿max. The distance between any node in S and the sink must
be less than 𝐿max/2; otherwise PL(S) is longer than 𝐿max. Any
node adjacent to the sink should not be included in a RP set S
because it can transmit data to the sink directly and using the
ME to collect data from it is an unnecessary energy cost. We
set nodes not adjacent to the sink node and with a distance
of less than 𝐿max/2 from the sink as candidates for RPs. For
example, as shown in Figure 2, the candidate RPs are nodes
1, 2, 3, and 4. Denoting the set of candidate RPs as C, we can
choose any subset S of C as RPs at the same time if PL(S) ≤
𝐿max.

Suppose that there are 𝑀 possible data forwarding pat-
terns for all feasible subsets of C. For each data forwarding
pattern, we can calculate 𝐸

𝑖,𝑚
according to (1). Let vector

e
𝑖
= (𝐸
𝑖,1
, 𝐸
𝑖,2
, . . . , 𝐸

𝑖,𝑀
)
𝑇 and 𝜃 = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑀
)
𝑇. Then,

the problem can be formulated as a linear min-max problem:

min
𝜃

max
𝑖

e𝑇
𝑖
𝜃,

s.t.
𝑀

∑
𝑚=1

𝜃
𝑚
= 1,

𝜃
𝑚
≥ 0, 1 ≤ 𝑚 ≤𝑀.

(PI)

This problem can be transformed to a set of linear program-
ming problems. We explain this in detail in the next section.

4. Proposed Algorithms

In this section, we first propose the optimal algorithm for the
problem stated in the previous section.Theoptimal algorithm
has a very high complexity and is only suitable for a small
scale WSN. For large scale WSNs, we also propose a heuristic
algorithm with a much lower complexity. The heuristic
algorithm ismore suitable for practical implementations, and
we will mainly focus on the heuristic algorithm.

4.1. The Optimal Algorithm. The optimal solution for prob-
lem (PI) can be found by solving a set of linear programming
problems. Consider a problem set (PII) which includes 𝑁
linear programming problems as follows:

min
𝜃

e𝑇
𝑘
𝜃,

s.t. e𝑇
𝑘
𝜃 ≥ e𝑇
𝑖
𝜃, 𝑖 ̸= 𝑘,

𝑀

∑
𝑚=1

𝜃
𝑚
= 1,

𝜃
𝑚
≥ 0, 1 ≤ 𝑚 ≤𝑀,

(𝑘 = 1, 2, . . . , 𝑁) .

(PII)

Referring to 𝑘th problem in (PII) as (PII
𝑘
), we have the

following two theorems.

Theorem 1. If (PII
𝑘
), 𝑘 = 1, 2, . . . , 𝑁, has the optimal solution

𝜃
∗

𝑘
and e𝑇
𝑝
𝜃
∗

𝑝
= min

1≤𝑘≤𝑁 e𝑇𝑘𝜃
∗

𝑘
, then 𝜃∗

𝑝
is the optimal solution

of (PI).

Proof. See Appendix A.

Theorem 2. Assume that 𝜃∗
𝑘
is the optimal solution of (PII

𝑘
);

letW = W(𝜃
∗

𝑘
) = {𝑖 | e𝑇

𝑘
𝜃
∗

𝑘
= e𝑇
𝑖
𝜃
∗

𝑘
, 𝑖 ̸= 𝑘}; then

(1) ifW = 0, 𝜃∗
𝑘
is the optimal solution of (PI);

(2) if W ̸= 0 and, for any 𝑖 ∈ W e𝑇
𝑖
𝜃
∗

𝑖
≥ e𝑇
𝑘
𝜃
∗

𝑘
, then 𝜃∗

𝑘
is

the optimal solution of (PI).

Proof. See Appendix B.

Based on these two theorems, we give the optimal algo-
rithm for the problem as follows:
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(1) Find all feasible RP sets and all possible data routing
patterns for each RP set.

(2) For each routing pattern𝑚, calculate 𝐸
𝑖,𝑚
, 1 ≤ 𝑖 ≤ 𝑁.

(3) For 𝑘, 1 ≤ 𝑖 ≤ 𝑁, find the optimal solution 𝜃∗
𝑘
of

problem (PII
𝑘
).

(4) Find outW = W(𝜃
∗

𝑘
) = {𝑖 | e𝑇

𝑘
𝜃
∗

𝑘
=e𝑇
𝑖
𝜃
∗

𝑘
, 𝑖 ̸= 𝑘}.

(5) IfW is empty, return 𝜃∗
𝑘
; otherwise for each 𝑖 ∈ Wfind

the optimal solution 𝜃∗
𝑖
of problem (PII

𝑖
). If e𝑇
𝑖
𝜃
∗

𝑖
<

e𝑇
𝑘
𝜃
∗

𝑘
, set 𝑘 = 𝑖 and go to step (4). If for any 𝑖 ∈

W e𝑇
𝑖
𝜃
∗

𝑖
≥ e𝑇
𝑘
𝜃
∗

𝑘
, return 𝜃∗

𝑘
.

Because each candidate RP can be either selected or not
in a RP set, given 𝑁 candidate RPs, there are 2

𝑁
− 1

possible combinations of the them. We check each possible
combination to ascertain all feasible RP sets. Also, for each
feasible RP set, we must find all possible corresponding
routing patterns. If 𝑁 is large, the computation complexity
is extremely high. Therefore, we propose a low complexity
heuristic algorithm in the next subsection.

4.2. The Heuristic Algorithm. In order to reduce the com-
plexity of the algorithm, we build a routing tree 𝑇 rooted at
the sink node, and each time we select a set of RPs only from
nodes at the same level of 𝑇. Consequently, the search space
is significantly reduced. Also, for each set of RPs, we only set
one corresponding data forwarding pattern.We construct the
routing tree 𝑇 as follows. We set nodes near the sink node
as its children; and for each child of the sink node, we again
designate its adjacent nodes as its children. If a node is close
to multiple upper level nodes, we set it as a child of the upper
level node which has the least children in order to maintain
the balance of the tree.This procedure repeats and, ultimately,
we build the tree 𝑇 which covers all sensor nodes. Next, we
explain how to select RP sets at each level of 𝑇. The detailed
algorithm is shown in Algorithm 1.

As mentioned before, we do not set nodes near the sink
node as RPs. Also, a candidate RP must have a distance of
less than 𝐿max/2 from the sink node. Denote the level of the
candidate RP which has the longest distance from the sink
node as ℎmax. We find feasible sets of RPs from level 2 to ℎmax
of tree 𝑇. The more nodes in a RP set the better. Assume that
there are 𝑧 nodes at level 2.We first try to set all these 𝑧 nodes
as RPs at the same time. If the resulting path length is longer
than 𝐿max, then we try to select 𝑧−1 nodes as RPs. If a feasible
set of 𝑧−1RPs cannot be found, we try to find sets of RPs with
𝑧 − 2 nodes and so on. Assume that we can find at least one
feasible set of RPs and the number of nodes in the feasible
RP set is 𝑧󸀠. Then, we stop and move to level 3. At level 3, the
nodes are farther away from the sink compared to those at
level 2. We are unlikely to find a feasible RP set with more
nodes than the RP sets found at level 2. In order to reduce
complexity, at level 3, we begin to search sets of RPs with 𝑧󸀠
nodes. Following the same procedure, we can find all feasible
RPs at each level.

Assuming that in an iteration we try to find a set of 𝑥 RPs
from 𝑦 nodes at a level, the detailed method is as follows.
As shown in Figure 3, we order the nodes in a clockwise

Algorithm to find RPs at different levels of 𝑇
Input: T, locations of sensor nodes, 𝐿max
Output: S

1
, S
2
, . . .

(1) 𝑥 ← number of nodes at level 2, 𝑘 ← 1

(2) for ℎ = 2 to ℎmax do
(3) 𝑦 ← number of nodes at level ℎ
(4) order nodes in clockwise direction
(5) for 𝑖 = 1 to ⌈𝑦/𝑥⌉ do
(6) S ← {𝑖, 𝑖 + ⌈𝑦/𝑥⌉, 𝑖 + 2⌈𝑦/𝑥⌉, . . . , 𝑖 + (𝑥 − 1)⌈𝑦/𝑥⌉}

(7) if PL(S) ≤ 𝐿max then
(8) S

𝑘
← S, k++

(9) end if
(10) end for
(11) if no feasible RP set exists then
(12) 𝑥 ← 𝑥 − 1

(13) goto line (4)
(14) end if
(15) end for

Algorithm 1:The algorithm for finding RPs at different levels of 𝑇.
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Figure 3: Select one RP in every ⌈𝑦/𝑥⌉ nodes.

direction. In order to balance the load of RPs, the RPs should
be equally spaced so that they will have approximately the
same number of descendants. Thus, we always select RPs at
regular intervals. Explicitly, as shown from line 4 to line 9 in
the algorithm, for each 1 ≤ 𝑖 ≤ ⌈𝑦/𝑥⌉, we select a set of nodes
S = {𝑖, 𝑖 + ⌈𝑦/𝑥⌉, 𝑖 + 2⌈𝑦/𝑥⌉, . . . , 𝑖 + (𝑥 − 1)⌈𝑦/𝑥⌉}. If a set of
nodes S satisfies the constraint PL(S) ≤ 𝐿max, then we set it
as a RP set.

For each found RP set at a level ℎ, the corresponding data
forwarding pattern is set as follows. For nodes not at level ℎ,
they simply forward their data along the path of the routing
tree 𝑇. For nodes at level ℎ, we let them forward their data
to the nearest RP rather than to their parents in tree 𝑇. For
example, as shown in Figure 4, assume that nodes 3 and 4 are
selected as RPs. Suppose that node 3 is near to nodes 1 and 2
and node 4 is near to node 5. Then, the data forwarding route
is 1 → 2 → 3 and 5 → 4.

After all RP sets are found, finally we solve linear
programming problems to set the time fraction for each RP
set as in the proposed optimal algorithm. The computation
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complexity for solving a linear programming problem in
problem (PII) is very high if the problem size is large. For
example, the algorithm for linear programming in [32] has a
time complexity of 𝑂(𝑀(log𝑀)

𝑁
2

), where𝑀 is the number
of found RP sets (the number of data forwarding patterns
equals the number of RP sets because eachRP set has only one
corresponding data forwarding pattern) and𝑁 is the number
of candidate RPs. In order to reduce the complexity, we only
choose 𝑘max RP sets from𝑀 found ones to solve for the final
solution where 𝑘max ≤ 𝑀. The method to decide the value of
𝑘max will be described in the next subsection, and the way to
choose 𝑘max RP sets is as follows. For each selected RP set𝑚,
1 ≤ 𝑚 ≤ 𝑀, we calculate 𝐸

𝑖,𝑚
, 1 ≤ 𝑖 ≤ 𝑁, according to (1).

Let 𝐸max
𝑚

= max
1≤𝑘≤𝑁 𝐸𝑘,𝑚; we sort 𝑀 RP sets according to

𝐸
max
𝑚

in ascending order and choose the first 𝑘max RP sets to
solve the time fraction 𝜃 for them. Finally, we use this 𝑘max RP
sets in turn according to the time fraction allocated to them
to prolong the network lifetime.

4.3. Deciding the Value of 𝑘max. 𝑘max controls the tradeoff
between the complexity and performance of the heuristic
algorithm. In the heuristic algorithm, solving the linear
programming problems to obtain the time fraction 𝜃 is
the dominant time-consuming component. As mentioned
before, the time complexity of solving the linear program-
ming problems with 𝑀 RP sets is 𝑂(𝑀(log𝑀)

𝑁
2

), where
𝑁 is the number of candidate RPs. We choose 𝑘max RP
sets. Thus, the complexity of the heuristic algorithm is
𝑂(𝑘max(log 𝑘max)

𝑁
2

). As 𝑘max increases, the complexity of the
heuristic algorithmalso increases.However, the larger 𝑘max is,
the more RP sets will be chosen in the final solution and the
more closely the heuristic algorithm approaches the optimal
one.The value of 𝑘max should be decided carefully in order to
balance the computational complexity and the performance.
The algorithm for finding the proper 𝑘max is as follows.

We first set 𝑘max to 1 and then increase it by increments of
1 and estimate the resulting network lifetime. First, we only

consider the time fraction allocation for the first two RP sets.
Assume 𝐸

𝑖,1
= max

1≤𝑘≤𝑁 𝐸𝑘,1 and 𝐸𝑗,2 = max
1≤𝑘≤𝑁 𝐸𝑘,2; that

is, node 𝑖 and node 𝑗 have the highest energy consumption
in the first and second RP sets, respectively. For node 𝑖, we
should set 𝜃

1
as small as possible.While, for node 𝑗, we should

set 𝜃
2
as small as possible. We have 𝜃

1
+ 𝜃
2
= 1. Thus, we can

find the equilibrium between nodes 𝑖 and 𝑗 by solving 𝜃
1
and

𝜃
2
in

𝜃
1
𝐸
𝑖,1
+ 𝜃
2
𝐸
𝑖,2
= 𝜃
1
𝐸
𝑗,1
+ 𝜃
2
𝐸
𝑗,2
,

𝜃
1
+ 𝜃
2
= 1.

(4)

Then we can calculate 𝐸(1) = 𝜃
1
𝐸
𝑖,1
+ 𝜃
2
𝐸
𝑖,2
. Assume, for

the third RP set, 𝐸
𝑝,3

= max
1≤𝑘≤𝑁 𝐸𝑘,3. We solve equation

𝜃
󸀠
(𝜃
1
𝐸
𝑖,1
+𝜃
2
𝐸
𝑖,2
)+𝜃
3
𝐸
𝑖,3
= 𝜃
󸀠
(𝜃
1
𝐸
𝑝,1
+𝜃
2
𝐸
𝑝,2
)+𝜃
3
𝐸
𝑝,3
, where

𝜃
󸀠
+ 𝜃
3
= 1, and calculate 𝐸(2) = 𝜃

󸀠
(𝜃
1
𝐸
𝑖,1
+ 𝜃
2
𝐸
𝑖,2
) + 𝜃
3
𝐸
𝑖,3
.

This step is repeated iteratively, and, at each iteration 𝑘, 𝐸(𝑘) is
an approximation of the optimal average energy consumption
with 𝑘+1RP sets. As 𝑘 increases, 𝐸(𝑘) approaches the optimal
solution. If𝐸(𝑘)−𝐸(𝑘−1) < 𝜎, where𝜎 is a predefined threshold,
then we stop and 𝑘max is set to 𝑘 + 1.

5. Performance Evaluation

In this section we evaluate the performance of the proposed
algorithms through simulations implemented by MATLAB.
The proposed optimal and heuristic algorithms are first
compared to see how closely the heuristic algorithm can
approach the optimal one. The performance of the proposed
heuristic algorithm is also compared against two existing
methods. One method is proposed by Konstantopoulos et al.
in [13] which also dynamically changes RPs. The other
method is called WRP [11] in which RPs do not change. In
the simulations, we consider a WSN where sensor nodes are
randomly distributed in 100 × 100m2 field and the location of
the sink node is also randomly chosen. Each simulation was
run under 100 different topologies, and we show the average
results. In each simulation, the speed of the ME was set to
1m/s according to the practical experience in packBot system
[33], and parameters of sensor nodeswere set according to the
data sheet of the CC1000 radio on MICA2 motes [34]. Each
sensor node generates 2 bytes of sensory data per second, and
the transmission rate of it is 40 kb/s. The transmission range
of a sensor node was set to 20m. We assume that the initial
energy of all nodes is 100 J, and the energy consumption
of the transmitter and receiver circuit of a node is 40mW
and 25mW, respectively. The parameters are summarized in
Table 1. In the simulations, a local-search-based heuristic TSP
solver [35] was used.

5.1. Comparison of the Proposed Optimal and Heuristic
Algorithms. First, the performance of the proposed optimal
and heuristic algorithms was compared. Since the compu-
tation complexity of the optimal algorithm is very high, we
evaluated the performance in a small scale WSN. In this
simulation, packet delivery delay𝐷 is 100 s and the number of
sensor nodes is 50. We set the threshold 𝜎 to different values
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Table 1: Simulation parameters.

Parameter Value
ME speed 1m/s
Sensor node transmission range 20m
Sensor node data sampling rate 2 B/s
Sensor node transmission rate 40 kb/s
Energy consumption of transmitter 40mW
Energy consumption of receiver 25mW
Initial energy of sensor nodes 100
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Figure 5:The optimal algorithm versus the heuristic algorithmwith
different 𝜎.

to measure its impact on the performance and complexity
of the heuristic algorithm and find a proper value for 𝜎. The
simulation results are shown in Figures 5 and 6.

In Figure 5, we can see that as the threshold 𝜎 decreases
the performance of the heuristic algorithm approaches the
optimal one. When 𝜎 decreases from 10−3 to 10−4, there is
almost no performance improvement. However, as we can
see in Figure 6, the corresponding value of 𝑘max increases
sharply as 𝜎 decreases from 10−3 to 10−4; and when 𝜎 reaches
10−4, 𝑘max no longer increases because 𝑘max already equals the
number of all found RP sets. Consequently, setting 𝜎 to 10−4
will result in an excess of computation and 10−3 is a proper
value for 𝜎. We suggest setting the threshold 𝜎 to 10−3 in real
implementations.

5.2. Comparison of the Proposed Heuristic Algorithm and
Existing Algorithms. Next, we compare the proposed heuris-
tic algorithm with WRP [11] and the algorithm proposed
by Konstantopoulos et al. [13] in a larger scale WSN. The
algorithm proposed by Konstantopoulos et al. reselects RPs
periodically. We set this period to 5000 seconds. The value
of 𝜎 and the maximum packet delivery delay were set to 10−3
and 100 s, respectively. First we evaluate the performancewith
different numbers of sensor nodes. As shown in Figure 7, the
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Figure 6: 𝑘max with different 𝜎.
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Figure 7: Impact of the number of sensor nodes.

simulation result shows that the performance of the proposed
heuristic algorithm is better than that of the two existing ones.
On average, the network lifetime achieved by our algorithm
is about 3 times of that of WRP and about 10% longer than
that of the algorithm of Konstantopoulos et al. [13].

We fixed the number of sensor nodes to 200 and ran
the simulation again with different values for the packet
delivery delay limit𝐷 to see its impact. The simulation result
is shown in Figure 8. When𝐷 is too low (less than 40 s in the
simulation) for theME to visit a node at level 2, only nodes at
level 1 can be set as RPs, which serves no purpose since they
can transmit data to the sink directly. As 𝐷 increases, nodes
farther away from the sink can be set as RPs and more RPs
can share the traffic at the same time. As a result, the energy
consumption of RPs decreases and the network lifetime is
extended. With a longer 𝐷, the benefit of using multiple sets
of RPs is more apparent. This is because we can find more
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Figure 8: Impact of the packet delivery delay limit.

feasible RP sets to average the energy consumption of RPs. As
we can see, when𝐷 is from 120 s to 200 s, the network lifetime
of the proposed heuristic algorithm is about 2 times of that of
WRP and the performance gain is about threefold when 𝐷

is from 200 s to 280 s. The performance of our algorithm is
also about 10% higher than that of the algorithm proposed by
Konstantopoulos et al. [13].

6. Conclusion

In this paper, we studied the problem of usingmultiple sets of
RPs in turn tomaximize the lifetime ofWSN.Weproposed an
optimal algorithm and a heuristic algorithm for this problem.
The computation complexity of the optimal algorithm is very
high and is only suitable for small scale WSN. The heuristic
algorithm can approach the optimal performance with much
lower complexity in a large scale WSN, and we can adjust
the threshold 𝜎 to balance its complexity and performance.
The threshold 𝜎, the number of sensor nodes, and the packet
delivery delay𝐷 have a strong impact on the performance of
the proposed algorithms. Simulation results show that 10−3 is
a proper value for the threshold 𝜎. Additionally, the heuristic
algorithm approaches the optimal one and can achieve a
longer network lifetime than WRP as well as the algorithm
proposed byKonstantopoulos et al. [13].When the number of
sensor nodes is 200 and𝐷 is from 200 s to 280 s, the network
lifetime of the heuristic algorithm is about 3 times that of
WRP and about 10% longer than that of Konstantopoulos
et al.

Appendices

A. Proof of Theorem 1

For any feasible solution 𝜃 of (PI), assume e𝑇
𝑘
𝜃 =

max
1≤𝑖≤𝑁 e𝑇𝑖 𝜃; then e𝑇

𝑘
𝜃 ≥ e𝑇

𝑖
𝜃, 𝑖 ̸= 𝑘; that is, 𝜃 is a feasible

solution of (PII
𝑘
). Because 𝜃∗

𝑘
is the optimal solution of (PII

𝑘
),

we have e𝑇
𝑘
𝜃 ≥ e𝑇

𝑘
𝜃
∗

𝑘
. Because e𝑇

𝑝
𝜃
∗

𝑝
= min

1≤𝑘≤𝑁 e𝑇𝑘𝜃
∗

𝑘
and

𝜃
∗

𝑝
is a feasible solution of (PII

𝑝
), we have max

1≤𝑖≤𝑁 e𝑇𝑖 𝜃 =
e𝑇
𝑘
𝜃 ≥ e𝑇
𝑘
𝜃
∗

𝑘
≥ e𝑇
𝑝
𝜃
∗

𝑝
= max

1≤𝑖≤𝑁 e𝑇𝑖 𝜃
∗

𝑝
. Thus, 𝜃∗

𝑝
is the optimal

solution of (PI).

B. Proof of Theorem 2

(1) If W = W(𝜃
∗

𝑘
) = 0, at 𝜃∗

𝑘
we have e𝑇

𝑘
𝜃
∗

𝑘
≥ e𝑇
𝑖
𝜃
∗

𝑘
,

𝑖 ̸= 𝑘. Because e𝑇
𝑖
𝜃 is a continuous function, there exists a

neighborhood of 𝜃∗
𝑘
U(𝜃∗
𝑘
); that is, for 𝜃 ∈ U(𝜃∗

𝑘
), we have

e𝑇
𝑘
𝜃 > e𝑇

𝑖
𝜃, 𝑖 ̸= 𝑘, which means 𝜃 is a feasible solution of

(PII
𝑘
). Thus, for any 𝜃 ∈ U(𝜃∗

𝑘
) we have max

1≤𝑖≤𝑁 e𝑇𝑖 𝜃 =

e𝑇
𝑘
𝜃 ≥ e𝑇

𝑘
𝜃
∗

𝑘
= max

1≤𝑖≤𝑁 e𝑇𝑖 𝜃
∗

𝑘
; that is, 𝜃∗

𝑘
is a local optimal

solution. Because the feasible region of (PI) is a convex
set and the objective function of (PI) is a convex function,
according to the theory of convex optimization, any local
optimal solution of (PI) is the global optimal solution. Thus,
𝜃
∗

𝑘
is the optimal solution of (PI).
(2) From part (1) we know max

𝑖∉W e𝑇
𝑖
𝜃 ≥ max

𝑖∉W e𝑇
𝑖
𝜃
∗

𝑘
;

and because, for any 𝑖 ∈ W, e𝑇
𝑖
𝜃
∗

𝑖
≥ e𝑇
𝑘
𝜃
∗

𝑘
, according to

Theorem 1, we have max
𝑖∈W e𝑇
𝑖
𝜃 ≥ max

𝑖∈W e𝑇
𝑖
𝜃
∗

𝑘
. Thus, for

any 1 ≤ 𝑖 ≤ 𝑁, we have max
1≤𝑖≤𝑁 e𝑇𝑖 𝜃 ≥ max

1≤𝑖≤𝑁 e𝑇𝑖 𝜃
∗

𝑘
. This

completes the proof.

Notation

𝐶: The set of candidate RPs
𝑁: The number of candidate RPs
𝑀: The number of all possible data

forwarding patterns
𝐿max: The maximum tour length of the ME
V: The average velocity of the ME
S
𝑚
: 𝑚th RP set

𝜃
𝑚
: The fraction of time to use𝑚th data

forwarding pattern
PL(S): The shortest length of the path made by

ME which starts from and ends at the sink
node and covers all nodes in set S

𝐸TX: The energy consumption for transmitting
one unit of data

𝐸RX: The energy consumption for receiving one
unit of data

𝐸
𝑖
: The average energy consumption of node 𝑖

during one period
𝑛
𝑖,𝑚
: The number of descendants of node 𝑖

when𝑚th RP set is used.
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