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We study the gauge invariance of physical observables in holographic theories under the local 
diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: 
the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action 
as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and 
the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS). By 
extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand 
the problem in the context of general holographic embedding of a global symmetry at the boundary into 
the local gauge symmetry in the bulk.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

According to AdS/CFT correspondence, any global symmetry at 
the boundary theory is lifted to a local symmetry in the bulk [1,2]. 
The gauge symmetry is essential to reduce the degree of freedom 
which is enlarged by going into one higher dimension. The physical 
goal in holography is the boundary quantities which do not know 
the presence of higher dimension or gauge degrees of freedom, 
while we use the tools in the bulk theory. Therefore the gauge 
invariance of a physical quantity is a critical issue for the validity of 
the AdS/CFT. Also tracing the gauge invariance gives much intuition 
on the way how holography actually works, especially how global 
symmetry is encoded in the local gauge symmetry.

One can find gauge invariant combinations of the fields, and 
express the physical quantities in terms of such master variables, 
however, it is not always easy to find such gauge invariant combi-
nation. Even in the case they are available, it is not very convenient 
to use such fields, especially if many fields are coupled, because 
the physical quantities are defined in terms of the field variables 
which are formally gauge dependent. For example [2], energy mo-
mentum tensor and chemical potential are defined in terms of 
metric/gauge field which is not gauge invariant. Similarly, heat cur-
rents can be related to the metric perturbation defined only in a 
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specific gauge where time period has definite relation with tem-
perature.

In recent works [3,4], based on [5,6], we developed a system-
atic method to numerically calculate the Green’s functions and all 
AC transports quantities simultaneously for the case where many 
fields are coupled and there are constraints due to gauge sym-
metry. Although we have tested the validity of the procedure by 
showing the agreement of zero frequency limits of AC conductivi-
ties with the known analytic DC conductivities [7–9] we still think 
that we need to prove the gauge invariance of our procedure as a 
matter of principle. We found that the bulk gauge invariance is in-
timately related to the holographic renormalization. Although the 
local counter terms were introduced to kill the divergences, they
also kill most of gauge dependence.

Furthermore, there is a residual gauge symmetry (RGS) even af-
ter we fix the axial gauge grx = 0. While equations of motion can 
be written in terms of the gauge invariant master fields Ph, Pχ

(3.8), it turns out that the quadratic on-shell action, the generating 
function for two point retarded Green’s functions, cannot be writ-
ten as such. However, we prove that the Green’s functions are still 
invariant under such a symmetry.

There is a mismatch in the degrees of freedom in the bulk and 
those at the boundary: there are only two independent bulk solu-
tions satisfying the in-falling boundary conditions while we need 
three solutions at the boundary since there are three independent 
source fields. The RGS is the one that resolves the problem: since it 
cannot satisfy a proper boundary condition, it is not a proper gauge 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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symmetry but a ‘solution generating symmetry’. It generate the de-
sired solution at the boundary and therefore we should accept its 
bulk counter part as a new physical degree of freedom as well al-
though it cannot satisfy the infalling boundary condition (BC). By 
extending the RGS such that it satisfies infalling boundary condi-
tion at the horizon, we can make the bulk solution more natural in 
the sense that it satisfies the infalling BC. With such solution we 
can also understand the problem in the context of general struc-
ture of holography, namely the correspondence between a global 
symmetry at the boundary and the local gauge symmetry in the 
bulk.

2. Action and background solution

Let us first briefly review the system we will discuss, which has 
been analysed in detail in [3,7,10]. The holographically renormal-
ized action (Sren) is given by

Sren = SEM + Sψ + Sc , (2.1)

where

SEM =
∫
M

d4x
√−g

[
R − 2� − 1

4
F 2

]
− 2

∫
∂M

d3x
√−γ K , (2.2)

is the usual action for charged black hole in AdS space (� < 0) 
with the Gibbons–Hawking term and

Sψ =
∫
M

d4x
√−g

[
−1

2

2∑
I=1

(∂ψI )
2

]
, (2.3)

is the action for two free massless scalars added for a momentum 
relaxation effect. Sc is the counter term

Sc = ηc

∫
∂M

dx3√−γ

(
−4 − R[γ ] + 1

2

2∑
I=1

γ μν∂μψI∂νψI

)
, (2.4)

which is included to cancel the divergence in SEM + Sψ . Here we 
introduced ηc to keep track of the effect of the counter term. At 
the end of the computation we will set ηc = 1.

The action (2.1) yields general equations of motion1

RMN = 1

2
gMN

(
R − 2� − 1

4
F 2 − 1

2

2∑
I=1

(∂ψI )
2

)

+ 1

2

∑
I

∂MψI∂NψI + 1

2
F M

P FNP , (2.5)

∇M F MN = 0 , ∇2ψI = 0 , (2.6)

which admit the following solutions

ds2 = GMNdxM dxN = − f (r)dt2 + dr2

f (r)
+ r2δi jdxidx j , (2.7)

f (r) = r2 − β2

2
− m0

r
+ μ2

4

r2
0

r2
,

m0 = r3
0

(
1 + μ2

4r2
0

− β2

2r2
0

)
, (2.8)

A = μ
(

1 − r0

r

)
dt , (2.9)

ψI = βI i x
i = βδI i x

i . (2.10)

1 Index convention: M, N, · · · = 0, 1, 2, r, and μ, ν, · · · = 0, 1, 2, and i, j, · · · = 1, 2.
These are reduced to AdS–Reissner–Nordstrom (AdS–RN) black 
brane solutions when β = 0. Here we have taken special βI i , which 
satisfies 1

2

∑2
I=1

�βI · �βI = β2 for general cases.
The solutions (2.7)–(2.10) are characterized by three parame-

ters: r0, μ, and β . r0 is the black brane horizon position ( f (r0) = 0) 
and can be replaced by temperature T for the dual field theory:

T = f ′(r0)

4π
= 1

4π

(
3r0 − μ2 + 2β2

4r0

)
. (2.11)

Non-vanishing components of energy–momentum tensor and
charge density read

〈T tt〉 = 2m0 , 〈T xx〉 = 〈T yy〉 = m0 , 〈 J t〉 = μr0 . (2.12)

〈T tt〉 = 2〈T xx〉 implies that charge carriers are still of massless 
character. From here we set r0 = 1 not to clutter.

3. Gauge fixing and residual gauge transformation

To study electric, thermoelectric, and thermal conductivities we 
introduce small fluctuations around the background (2.7)–(2.10)

δAx(t, r) =
∞∫

−∞

dω

2π
e−iωtax(ω, r) , (3.1)

δgtx(t, r) =
∞∫

−∞

dω

2π
e−iωtr2htx(ω, r) , (3.2)

δgrx(t, r) =
∞∫

−∞

dω

2π
e−iωtr2hrx(ω, r) , (3.3)

δψ1(t, r) =
∞∫

−∞

dω

2π
e−iωtχ(ω, r) . (3.4)

The fluctuations are chosen to be independent of x and y. This 
is allowed since all the background fields appearing in the equa-
tions of motion turn out to be independent of x and y. The gauge 
field fluctuation (δAx(t, r)) sources metric (δgtx(t, r), δgrx(t, r)) and 
scalar field (δψ1(t, r)) fluctuation and vice versa and all the other 
fluctuations are decoupled. We will work in momentum space and 
htx(ω, r) and hrx(ω, r) is defined so that it goes to constant as r
goes to infinity.

By linearizing the full equation of motion, we get four equa-
tions. However one of them can be obtained by the others. Thus 
we may consider following three equations:

(χ ′ − βhrx) − iμωax

βr2 f (r)
− ir2ω(h′

tx + iωhrx)

β f (r)
= 0 , (3.5)

a′′
x (r) + a′

x(r) f ′(r)
f (r)

+ ω2ax(r)

f (r)2
+ μ(h′

tx + iωhrx)

f (r)
= 0 , (3.6)

f (r) f ′(r)(χ ′(r) − βhrx) + f (r)2(χ ′ − βhrx)
′

+ 2 f (r)2(χ ′ − βhrx)

r
+ ω2χ(r) − iβωhtx(r) = 0 . (3.7)

If we differentiate the third equation with respect to r, all equa-
tions can be written in terms of three variables, Pχ , Ph , and ax , 
where

Pχ ≡ χ ′ − βhrx , Ph ≡ h′
tx + iωhrx . (3.8)

Therefore, hrx is a non-dynamical degree of freedom. Indeed, 
Pχ , Ph , and ax are invariant under a diffeomorphism generated by 
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ξμ = (0, ζ(r)e−iωt , 0, 0), under which the fields are transformed as 
follows:

δhrx = 1

r2
(∇rξx + ∇xξr) = ζ ′(r)e−iωt , (3.9)

δhtx = 1

r2
(∇tξx + ∇xξt) = −iωζ(r)e−iωt , (3.10)

δχ = βζ(r)e−iωt , (3.11)

δax = 0 . (3.12)

Using this gauge degree of freedom, one may set hrx = 0, which is 
so-called the axial gauge. The numerical calculation in [3] has been 
performed in this gauge. A question arises whether the resulting 
physical quantities are independent of such gauge fixing condition.

Furthermore, even after we fix hrx = 0, one can still find a resid-
ual gauge transformation which is given by constant ζ [11]. This 
residual diffeomorphism doesn’t change the gauge fixing condition 
hrx = 0 and generates constant shift on htx and χ , because the 
equations of motion contain only derivatives of htx and χ and the 
linear combination of them, ωχ(r) − iβhtx(r), which is invariant 
under

htx → htx + h0, and χ → χ + i
β

ω
h0, (3.13)

where h0 is a constant. Thus there is one parameter constant solu-
tion given by

ax = 0, htx = h0, χ = i
β

ω
h0 , (3.14)

which does not satisfy in-falling boundary condition so it is not a 
physical degree of freedom.2 We call it the residual gauge symme-
try (RGS) because it is generated by the zero mode of a diffeomor-
phism generator. This kind of solution was first introduced in [12].

Why should there be such a residual degree of freedom? It can 
be traced to the difference of the differential equation near horizon 
and those near boundary. Near the black hole horizon (r → 1) the 
solutions are expanded as

htx = (r − 1)ν±+1
(

h(I)
tx + h(I I)

tx (r − 1) + · · ·
)

,

ax = (r − 1)ν±
(

a(I)
x + a(I I)

x (r − 1) + · · ·
)

,

χ = (r − 1)ν±
(
χ(I) + χ(I I)(r − 1) + · · ·

)
, (3.15)

where ν± = ±i4ω/(−12 +2β2 +μ2) = ∓iω/(4π T ) and the incom-
ing boundary condition corresponds to ν = ν+ . By inserting these 
to the equations of motion, one can easily find a linear relations 
between the zero-th modes:

(ν + 1)h(I)
tx + μa(I)

x + βχ(I) = 0. (3.16)

Notice that all other modes are generated by these. Thus there is 
a well defined constraint equation which reduces the degrees of 
freedom.

On the other hand, by inserting the expansion near the bound-
ary (r → ∞)

htx = h(0)
tx + 1

r2
h(2)

tx + 1

r3
h(3)

tx + · · · ,

ax = a(0)
x + 1

r
a(1)

x + · · · ,

χ = χ(0) + 1

r2
χ(2) + 1

r3
χ(3) + · · · , (3.17)

2 It is a regular solution at future horizon.
to the equations of motion, we cannot get any relation between 
the zero-th modes a(0)

x , h(0)
tx , and χ(0) , all of which are related to 

the higher modes. More explicitly,

ω(ωχ(0) − iβh(0)
tx ) − 2χ(2) = 0,

iβ(ωχ(0) − iβh(0)
tx ) − 2h(2)

tx = 0, (3.18)

which are evolution equations in r-direction. Therefore, there is 
no constraint equation. Then there is a crisis of mismatch of de-
grees of freedom and this crisis is resolved by the effective residual 
degree of freedom described above. However, this residual gauge 
degree of freedom raises another issue of invariance of physics 
under this symmetry. We will address this issue at the end of Sec-
tion 5.

4. Holographic renormalization and gauge invariance

Now we come back to the question whether physical quantities 
are independent of the choice of the gauge condition hrx(r) = 0. 
We will show this by proving that the generating function of phys-
ical quantities, the on-shell action, is invariant even in the case 
with hrx(r) = 0.

The on-shell renormalized action to quadratic order in fluctua-
tion fields, S(2)

ren, is

S(2)
ren = lim

r→∞

∫
d3x

[
δψ1

(
1

2
β f δgrx − 1

2
f r2δψ ′

1

)

+ 2

r
δg2

tx − 1

2
f δAxδA′

x

− δgtx

(
1

2
δ ġrx − 1

2
r2(

δgtx

r2
)′ + μ

2r2
δAx

)

+ ηc

(
δψ1

(
r2 ¨δψ1

2
√

f
− βδ̇gtx

2
√

f

)

+ β ˙δψ1δgtx

2
√

f
−

(
2√

f

)
δg2

tx

)]
, (4.1)

where f (r) = r2 − β2

2 − m0
r + μ2

4r2 . We dropped the boundary con-
tribution from the horizon as a prescription for the retarded Green 
function [13].3 Near boundary r → ∞, the fluctuation fields in mo-
mentum space, (3.1)–(3.4), may be expanded as

htx(ω, r) =
∞∑

n=0

h(n)
tx (ω)

rn
, hrx(ω, r) =

∞∑
n=0

h(n)
rx (ω)

rn
,

ax(ω, r) =
∞∑

n=0

a(n)
x (ω)

rn
, χ(ω, r) =

∞∑
n=0

χ(n)(ω)

rn
, (4.2)

and using the equations of motion, we can obtain a quadratic ac-
tion as follows

3 In fact, the contribution of the incoming solution at the horizon is zero in (4.1), 
which is real. However, for a generating function of retarded Green’s functions, we 
will take only part of (4.1) as explained below (4.3), which is complex. In this case, 
it turns out that the contribution from the horizon is pure imaginary. From this 
perspective, we should drop the contribution from the horizon.
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S(2)
ren = V 2

2

∞∫
0

dω

2π

[
−μā(0)

x h(0)
tx − μh̄(0)

tx a(0)
x − 2m0h̄(0)

tx h(0)
tx + ā(0)

x a(1)
x

+
(
χ̄ (0) + iβ

ω
h̄(0)

tx

)(
3χ(3) + βh(4)

rx

)

+ (ηc − 1)

{
−�3

(
4h̄(0)

tx h(0)
tx

)
− �2

(
4h̄(1)

tx h(0)
tx + 4ih̄(0)

tx h(2)
rx ω

)
+ �

(
iβh̄(0)

tx χ(0)ω − 2ih̄(0)
tx h(3)

rx ω + β2h̄(0)
tx h(0)

tx

)
+ �

(
−4ih̄(1)

tx h(2)
rx ω − 4h̄(2)

tx h(0)
tx + iβχ̄ (0)h(0)

tx ω

−χ̄ (0)χ(0)ω2
)

− 2m0h̄(0)
tx h(0)

tx − 4h̄(0)
tx h(3)

tx − 2iωh̄(1)
tx h(3)

rx

+ β2h̄(1)
tx h(0)

tx + iβωh̄(1)
tx χ(0) − 4iωh̄(2)

tx h(2)
rx − 4h̄(3)

tx h(0)
tx

+ iβωχ̄(1)h(0)
tx − ω2χ̄ (1)χ(0)

}]
+ [c.c], (4.3)

where the argument of the fields4 is ω. V 2 denotes volume in x–y
space and [c.c] means the complex conjugated terms. From here, 
we will drop the [c.c] term since we want to compute retarded
Green’s functions [13].

The second line is proportional to a gauge invariant combi-
nation under (3.13). Furthermore, one of the equation of motion 
including h(4)

rx is

h(4)
rx − 1

β2 − ω2

(
3iωh(3)

tx − iμωa(0)
x − 3βχ(3)

)
= 0. (4.4)

One can show that (4.4) is equivalent to a Ward identity

∇μ〈T μν〉 + Fλ
ν〈 Jλ〉 − 〈OI 〉∂νψI = 0 , (4.5)

by using the boundary metric and the other fields in the linear 
approximation given as follows:

ds2 = ημνdxμdxν + 2h(0)
tx e−iωtdtdx ,〈

T μν
〉 = 〈

T (0)μν
〉
+

〈
T (1)μν

〉
F = −iωa(0)

x e−iωtdt ∧ dx ,〈
Jμ

〉 = 〈
J (0)μ

〉
+

〈
J (1)μ

〉
= (μ,0,0) +

(
0,a(1)

x − μh(0)
tx ,0

)
e−iωt

ψI = (βx, β y) ,〈
OI

〉
=

〈
O(1)I

〉
=

(
3χ(3) + βh(4)

rx ,0
)

e−iωt , (4.6)

where

〈
T (0)μν

〉
= m0

⎛
⎝ 2 0 0

0 1 0
0 0 1

⎞
⎠ ,

〈
T (1)μν

〉
=

(
−2m0h(0)

tx − 3h(3)
tx + iωh(4)

rx

)⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ e−iωt .

(4.7)

One may ask why Ward identity of the boundary theory is in-
cluded in the bulk equation of motion. It is not accidental: The 

4 ā(0)
x (ω) ≡ a(0)

x (−ω) = a(0)
x (ω)

∗
by the reality condition of δAx . The same nota-

tion and reality condition apply to all the other fields.
translation, x → x +ξ0 at the boundary theory is imbedded into the 
bulk diffeomorphism x → x + ξ(x), which induces the field trans-
formation � → � + δξ�, which in turn is a special case of general 
variation, � → � + δ�. Now the equation of motion is coming 
from the invariance of bulk action δS B = 0 under the general vari-
ation, while the Ward identity is the requirement of the boundary 
action under the translation δξ0 Sb = 0. Because AdS/CFT request 
S B = Sb at the onshell, the latter is contained in the huge tower of 
equation of motion as a tiny piece.

The terms proportional to (ηc −1) in (4.3) include the divergent 
terms with �, a regularization parameter, and finite terms with-
out �. A remarkable fact is that with the counter term of weight 
ηc = 1, not only the divergent terms are canceled, but also all the 
hrx dependent finite terms disappears from the on-shell action, as 
we claimed in the beginning of this section.

5. Gauge invariance under the residual gauge transformation

Our starting point is the action5

S(2)
ren = V 2

2

∞∫
0

dω

2π

[
−μā(0)

x h(0)
tx − 2m0h̄(0)

tx h(0)
tx + ā(0)

x a(1)
x

− 3h̄(0)
tx h(3)

tx + 3χ̄ (0)χ(3) +
(
βχ̄ (0) + iωh̄(0)

tx

)
h(4)

rx

]
+ c.c, (5.1)

which is still dependent on residual gauge (3.13) even after we 
set hrx = 0. Since it is just a constant shift of the solution �, 
its effects are only shifts of zero-th modes and �′(r) and all of 
its modes, especially (a(1)

x , h(3)
tx , χ(3)) := �a are intact. Notice that 

the recurrence relations derived from equations of motion relate 
higher modes with the zero-th modes J a = (a(0)

x , h(0)
tx , χ(0)). How-

ever, all dependences of higher modes on zeroth modes is through 
the gauge invariant combination ωχ(0) − iβh(0)

tx . See, for example, 
(3.18). Thus all higher modes are gauge invariant, which makes the 
gauge invariance of the �′(r) intact in spite of the complicated de-
pendence of higher modes on the zeroth modes.

The residual gauge dependence of (5.1) can be understood as 
follows. The full on shell action should be invariant under the 
residual gauge transformation. However, what we are looking at is 
the quadratic part of the action S(2)

ren, which generates the 2-point 
function, in the expansion of

Sren[δ�] = S(0)
ren + S(1)

ren[δ�] + S(2)
ren[δ�] + · · · , (5.2)

where δ� = (δ�μν, δ�μ, δ�I ) collectively denotes the sources of 
the dual field theory, which are boundary values of 1

r2 δgμν , δAμ

and δψI . S(1)
ren[δ�] and S(2)

ren[δ�] are given as follows:

S(1)
ren[δ�] =

∫
d3x

(
1

2
δ�μν

〈
T (0)μν

〉
+ δ�μ

〈
J (0)μ

〉

+ δ�I

〈
O(0)I

〉)
, (5.3)

S(2)
ren[δ�] =

∫
d3x

(
1

2
δ�μν

〈
T (1)μν

〉
+ δ�μ

〈
J (1)μ

〉

+ δ�I

〈
O(1)I

〉)
. (5.4)

5 It comes from (4.1) before we get Eq. (4.3), for which we have to use the equa-
tions of motion.
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Under the residual gauge transformation6 with h0 = −iωζ0, the 
variations of these actions are

δS(1)
ren[δ�] = V 2

∫
dω

2π

{
ζ̄0

(
iωμa(0)

x + 2iωm0h(0)
tx

)
+ c.c

}
, (5.5)

δS(2)
ren[δ�] = −δS(1)

ren[δ�]
+ V 2

∫
dω

2π

{
ζ̄0

(
3βχ(3) − 3iωh(3)

tx + iωμa(0)
x

+
(
β2 − ω2

)
h(4)

rx

)
+ c.c

}
. (5.6)

Thus the total variation is proportional to the Ward identity (4.4). 
Notice that Sren is gauge invariant but S(2)

ren, which is starting point 
to derive the Green function, is not invariant by itself. Nevertheless 
physical observables derived from S(2)

ren are invariant because the 
Green functions are second derivatives of the full on shell action 
at the zero source limit.

At this point one can discuss a puzzle in counting degrees of 
freedom. There are only two independent bulk solutions satisfying 
the in-falling boundary conditions,7 while we need three solutions 
at the boundary since there are three independent source fields. 
Therefore, there is a crisis of mismatch of degrees of freedom be-
tween the bulk and boundary. What solves the problem is the RGS 
(3.14). We call it RGS because it is generated by the zero mode 
of a diffeomorphism generator. On the other hand, to be a proper 
gauge degree of freedom in the bulk, the diffeomorphism generator 
should satisfy the proper boundary conditions: infalling at horizon 
and Dirichlet at boundary. The residual gauge symmetry genera-
tor is a global shift and therefore it can satisfy neither of them. So 
such a shift by the diffeomorphism zero mode is not a true gauge 
symmetry, while it is a symmetry of the bulk equations of motion. 
In other words, the RGS is a “solution generating symmetry” rather 
than a gauge symmetry. Therefore, the gauge orbit of RGS can pro-
vide us the necessary degree of freedom (d.o.f) near boundary. To 
match the d.o.f, we need to accept its bulk orbit as physical config-
uration inspite of the fact that the resulting bulk solution does not 
satisfy the infalling BC.8 One can give a more natural bulk solution 
by extending RGS to a diffeomorphism which satisfies the infalling 
boundary condition and it is reduced to our previous RGS near the 
boundary. It is generated by ξμ = (0, ζ(r)e−iωt , 0, 0), with9

ζ(r) = ε( f (r)/r2)−iω/(4π T ), (5.7)

where f is the metric factor given in Eq. (2.8) and ε is a constant 
parameter. Notice that the RGS is the case where ζ(r) is constant. 
We will call this “boundary shifting diffeomorphism” (BSD). Now 
we can understand the degree of freedom mismatch as follows: 
Since it is not satisfying the Dirichlet bc, it is still not a proper 
gauge transformation. Notice also that under (5.7), the gauge slice 
is shifted and some of the gauge fields become singular. For the 
discussion on the treating these issues, we refer the reader to p. 24 
of Ref. [9].10 This is the reason why the BSD can generate a new 

6 This transformation changes the sources of the action, δ�μν, δ�μ, δ�I . One 
should note that there are non-vanishing transformations for δ�00 and δ�0.

7 We have two second order differential equations and one first order one in 
three variables: ax, htx, χ . Therefore, there are 5 boundary conditions to fix. If we 
fix the in-falling boundary conditions for all three variables, we are left with two 
degrees of freedom. We recall equations (3.15) and (3.16).

8 So far we discussed the degree of freedom mismatch using the RGS, since our 
formalism in [3] to calculate the conductivity is based on it.

9 We thank the anonymous referee for suggesting to consider this.
10 It is very tempting to consider BSD as a gauge transformation at least from bulk 

point of view. If we do it, we get to the problem: Its orbit in the boundary generate 
physical configuration while it does not in the bulk, so that crisis of d.o.f becomes 
real!
solution in the boundary. It is precisely the same logic why RGS 
generate new solution.11 Since RGS and BSD shift the boundary 
values of fields, they generate the Ward identity for the transla-
tion invariance. This is a typical example how a global symmetry 
is encoded in a local gauge transformation and how the apparent 
paradox of the degree of freedom can be resolved because of the 
holographic correspondence.12

6. Basis independence

In [3], we constructed a formalism to perform the AC conduc-
tivities for the case where multiple fields are coupled together. 
We had to choose a basis of initial conditions and one can ask 
whether different choices of basis give the same result. Answering 
this question will also provide an alternative reasoning of gauge 
invariance. To provide the setup, let us consider N fields �a(x, r), 
(a = 1, 2, · · · , N),

�a(x, r) =
∫

ddk

(2π)d
e−ikxr p�a(k, r) , (6.1)

where the index a may include components of higher spin 
fields. For convenience, r p is multiplied such that the solution 
�a(k, r) goes to constant at boundary. In our case, (�1, �2, �3) =
(ax, htx, χ) and p = 0 for �1, �3 and p = 2 for �2.

Near horizon (r = 1), solutions can be expanded as

�a
i (k, r) = (r − 1)νa± (

ϕa
i + ϕ̃a

i (r − 1) + · · ·) , (6.2)

where a new subscript i is introduced to denote the solutions cor-
responding to a specific independent set of initial conditions. For 
example, ϕa

i may be chosen as

ϕa
1 =

(
1, −(μ̃ + β̃)/(1 + ν), 1

)ᵀ
,

ϕa
2 =

(
1, −(μ̃ − β̃)/(1 + ν), −1

)ᵀ
, (6.3)

where we used (3.16) and ν = −iω/(4π T ) as shown below (3.15)
for incoming boundary condition to compute the retarded Green’s 
function [13]. Due to incoming boundary condition, ϕa

i determines 
ϕ̃a

i through horizon-regularity condition so that we can determine 
the solution completely. Each initial value vector �ϕi yields a solu-
tion, denoted by ��i(r), which is expanded as

�a
i (k, r) → S

a
i + · · · + O

a
i

rδa
+ · · · (near boundary) , (6.4)

where Sa
i are the sources (leading terms) of i-th solution and 

O
a
i are the operator expectation values corresponding to sources 

(δa ≥ 1).
Notice that we have only two solutions while we have a three 

dimensional vector space J of boundary values J a , a = 1, 2, 3. To 

11 This argument is further justified if we consider the numerical calculation start-
ing from the boundary instead from horizon. After choosing 3 fields’s values, we can 
adjust two “expectation values” such that we can get infalling boundary values at 
the horizon. It is easy to show that only when we start from a subspace of codimen-
sion 1, we get three infalling solution near the horizon. If we start from a point off 
this plane, we get one infalling and two fields which are mixture of infalling and a 
constant. In this calculation the gauge condition hrx = 0 is intact. This demonstrates 
that we cannot impose infalling bc for all fields at hands. If we do the same numer-
ical experiment for BSD, the picture is following. The BSD generate the orbit and it 
also move the gauge slice. Now in this case even in the case we start from the off 
the plane, we can get three infalling fields at the horizon. We need to calculate the 
r-evolution at each ‘gauge fixing’ plane which pass through the initial data.
12 The apparent ‘mismatch’ is due to the difference in viewing the gauge orbit of 

BSD (or RGS) between the bulk and boundary. In the bulk, one could view it as 
gauge orbit. On the other hand, from the boundary theory point of view, there is no 
gauge structure and the orbit of translation symmetry is physical degree of freedom.
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fix such mismatch of degree of freedom, we introduce a constant 
solution ��0(r) = �S0 = (0, 1, iβ/ω)ᵀ along the gauge-orbit direction 
of the residual gauge transformation so that Sa

1, Sa
2, S

a
0 form a basis 

of J. Now S and O are generic regular matrices of order 3.
The general solution is a linear combination of them: let

�a(k, r) = �a
i (k, r)ci , (6.5)

with real constants ci ’s. We can choose ci such that the combined 
source term matches the boundary value J a:

J a = S
a
i ci , (6.6)

which yields

�a(k, r) = �a
i (k, r)ci → J a + · · · + �a

rδa
+ · · · ,

(near boundary) (6.7)

where, with (6.4) and (6.6),

�a = O
a
i ci = O

a
i (S

−1)i
b J b =: Ca

b J b . (6.8)

Notice that both �a and Ca
b are invariant under the transformation 

J b → J b + εSb
0 because Ca

b Sb
0 =O

a
i (S

−1)i
b Sb

0 = O
a
0 = 0, where Oa

0 =
0 since it is the sub-leading term of the constant solutions.

A general on-shell quadratic action in momentum space has the 
form of

S(2)
ren = 1

2

∫
ddk

(2π)d

[
J̄ a
Aab(k) J b + J̄ a

Bab(k)�b
]
, (6.9)

where A and B are regular matrices of order N . J̄ a means J a(−k)

and, in matrix notation, J̄ a can be understood as a row matrix. For 
example, in our case, the effective action (5.1) reads

S(2)
ren = V 2

2

∫
dω

2π

[
J̄ a
Aab(ω) J b + J̄ a

Bab(ω)�b
]
, (6.10)

where

J a =
⎛
⎝ a(0)

x

h(0)
tx

χ(0)

⎞
⎠ , �a =

⎛
⎝ a(1)

x

h(3)
tx

χ(3)

⎞
⎠ ,

A=
( 0 −μ 0

−μ −2m0 0
0 0 0

)
, B =

⎛
⎝1 0 0

0 0 3iβ
ω

0 0 3

⎞
⎠ . (6.11)

With (6.8) the action (6.9) becomes

S(2)
ren = 1

2

∫
ω≥0

ddk

(2π)d

[
J̄ a

[
Aab(k) +BacO

c
i (S

−1)i
b(k)

]
J b

]

≡ 1

2

∫
ω≥0

ddk

(2π)d

[
J̄ aG R

ab J b
]

, (6.12)

where the range of ω is chosen to be positive following the pre-
scription in [13]. Notice that Oa

i (S
−1)i

b is independent of J a , be-
cause neither Sa

i nor Oa
i depends on J a . Furthermore Oa

i (S
−1)i

b is 
independent of the choice of the initial condition (6.3), because 
the different choice of initial value vectors is nothing but a linear 
transformation ϕa

i → ϕa
j R j

i , which induces right multiplications in 
the solutions: S → SR, O → OR . This proves the Green functions 
are independent of choice of basis for our initial conditions.

Notice that since A and B are also independent of J , G R
ab is 

independent of J and manifestly gauge invariant, giving alternative 
reason for the invariance of the Green functions under the residual 
gauge symmetry.
7. Conclusion

We investigated the gauge invariance of physical observables in 
a holographic theory under the local diffeomorphism. We find that 
gauge invariance is closely related to the holographic renormal-
ization. Apart from the zero-th mode residual gauge dependence, 
gauge dependence is canceled by the local counter terms defined 
in the boundary. However, due to the difference in the space–time 
structure between the near-horizon and near boundary regions, 
there are residual gauge structure near boundary. There is a sub-
tle and deep connection between the degrees of freedom at the 
boundary and those at the bulk. There are three degrees of free-
dom at the boundary, out of which only two can be embedded 
into bulk fields such that they are the boundary values of the bulk 
fields satisfying the incoming boundary conditions. The residual 
gauge symmetry is not a proper gauge symmetry but a solution 
generator near the boundary. We proved the invariance of Green’s 
functions under such a symmetry in the context of algorithm by 
which all AC transports are constructed simultaneously.

We can extend the RGS such that it satisfies the infalling 
boundary condition, which we call the boundary shifting diffeo-
morphism. Then we can view things more concisely and natural. 
RGS is not gauge symmetry but a solution generating transforma-
tion. Therefore it generate formally new solution both in boundary 
and bulk. By extending it to BSD, the bulk part of the solution can 
be accepted as a true bulk degree of freedom more naturally since 
the latter satisfies the in-falling boundary condition.

8. Note added in proof

After this work is almost finished, the paper [14] appeared 
where residual gauge invariance was discussed using a different 
method.
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