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Abstract

The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical
role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6
demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various
developmental genes, but some genes are expressed in a KDM6 demethylase-indepen-
dent manner. To address the role of H3K27me3 in the retinoic acid (RA)-induced differentia-
tion of the human carcinoma NCCIT cell line, we inhibited JMJD3 and UTX using the
H3K27me3 demethylase inhibitor GSK-J4. The commitment of JMJD3/UTX-inhibited cells
to a specific fate was delayed, and transcriptome profiling also revealed the differential
expression of genes related to cell fate specification in demethylase-inactivated cells; the
expression levels of RA metabolism and HOX family genes significantly decreased. We
observed a weak correlation between H3K27me3 enrichment and transcriptional repression
in the control and JMJD/UTX-inhibited cells, except for a few sets of developmental genes
that are indispensable for cell fate specification. Taken together, these results provide the
H3K27me3 landscape of a differentiating cell line and suggest that both demethylase-
dependent and demethylase-independent transcriptional regulation play a role in early dif-
ferentiation and developmental gene expression activated by H3K27me3 demethylation.

Introduction

The differentiation of pluripotent stem cells requires dramatic changes in the initiation and
suppression of gene transcription to accomplish cell specification. Numerous modifications
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modulate the regulation of gene expression programs, including post-translational histone
modifications. These covalent modifications epigenetically regulate and maintain lineage-spe-
cific gene expression during development. Two specific histone modifications play a critical
role in the regulation of developmental genes: a repressive marker, the trimethylation of his-
tone H3 on lysine residue 27 (H3K27me3), and an activating marker, the trimethylation of his-
tone H3 on lysine residue 4 (H3K4me3). These two modifications co-exist at promoters that
regulate the expression of essential developmental genes in embryonic stem (ES) cells and
other progenitor cell lines, forming epigenetic signatures called bivalent promoters [1-3]. Due
to the co-existence of these modifications, promoters are “poised” for gene activation, rapidly
responding to developmental stimuli. Bivalent promoters can change their histone modifica-
tion state to either an H3K4me3-dominant (active) or an H3K27me3-dominant (inactive)
state, and this state primarily depends on H3K27me3 demethylation [4]. Previous reports
showed that H3K27me3 demethylation is required for gene activation in various cell types [4—
9], implying that the precise regulation of H3K27me3 demethylation must be maintained for
proper development.

The Jumonji-C domain (JmjC)-containing histone demethylase family KMD6 is responsible
for H3K27me3 demethylation. Three KDM6 demethylases, JMJD3 (KDM6B), UTX (KDM6A)
and UTY, can remove one methyl residue from H3K27me3 and H3K27me2; however, the
activity of UTY is significantly lower than that of other demethylases [10-13]. JMJD3 and UTX
play an essential role in differentiation by changing compact heterochromatin structures to
open states, allowing poised promoters to be activated by the recruitment of lineage-specific
transcription factors. JMJD3 promotes epithelial-mesenchymal transition in murine epithelial
cells [14]. In mouse embryonic stem cells, JMJD3 regulates neural marker expression, thereby
mediating neural commitment [4]. Knockout and knockdown studies of JMJD3/UTX sug-
gested that these demethylases play an essential role in the development of the central nervous
system [15-17], respiratory system [6, 18] and cardiac system [19]. Whereas H3K27me3 acts
as a suppressive marker and H3K27me3 demethylases have been highlighted as regulatory fac-
tors in differentiation, recent reports have indicated weak correlations between H3K27me3
and demethylases in cell types that previously showed JMJD3/UTX activity and H3K27me3
during cellular development. JMJD3/UTX-knockout mouse zygotes exhibited a normal life-
span or displayed developmental defects during the late stage of differentiation, surviving the
early lethality that is expected due to defects in demethylase-dependent cell commitment. UTX
has been shown to mediate embryonic development, mesoderm induction and differentiation
in a demethylase-independent fashion [11, 20, 21]. At the molecular level, ]MJD3 and UTX
play a demethylase-independent chromatin remodeling role in murine EL4 cells and primary
T cells [22]. A recent report states that H3K27me3 demethylation during early embryonic
development may occur in a KDM6 demethylase-independent manner [23]. Despite the piv-
otal role of their catalytic function, these recent findings suggest complex roles for JMJD3 and
UTX in cell commitment.

Previous studies have assessed the significance of JMJD3/UTX functions in biological pro-
cesses using several techniques to disable the catalytic activities of these enzymes, including
RNA-interference techniques and site-specific mutagenesis [4, 9, 20, 24]. Although these
approaches are readily applied in the field, they may affect the integrity of the demethylases,
unintentionally hindering their other transcriptional regulatory functions. A solution to this
undesired manipulation of enzymatic integrity is the design of a chemical inhibitor that binds
to the active site, thereby preventing the interaction between J]MJD3/UTX and H3K27me3
without compromising the conformation of these enzymes. GSK-J4 is an ethyl ester derivative
of GSK-J1, a JMJD3/UTX-selective histone demethylase inhibitor [25]. Since its development,
GSK-J4 has been applied in various studies of the function of JMJD3 and its role in various
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biological processes [26-28]. In this work, we also used GSK-J4 as a JMJD3/UTX inhibitor to
study the role of H3K27me3 in the retinoic acid (RA) induced differentiation of human carci-
noma NCCIT cells. We observed differences in the transcriptome of wild-type and H3K27me3
demethylation-inhibited NCCIT cells during differentiation; the simple inhibition of
H3K27me3-specific demethylases could delay cell specification. We also investigated the distri-
bution of this suppressive histone modification and identified changes in the levels of
H3K27me3 at the promoters of developmental genes due to JMJD3/UTX inhibition, whereas
differences in other genes were insignificant. The presented results provide a global view of
demethylase-dependent and demethylase-independent transcription during early
development.

Materials and Methods
Cell culture conditions and RA treatment

Human embryonal carcinoma (EC) NCCIT (ATCC, Manassas, VA) cells were cultured in
RPMI 1640 and OPTIMEM media (Invitrogen, Carlsbad, CA) to maintain and differentiate
the cells, respectively. All media were supplemented with 100 U/ml penicillin, 100 pug/ml strep-
tomycin (Invitrogen) and 10% heat-inactivated fetal bovine serum (Thermo Scientific, Wal-
tham, MA). Embryonic bodies (EB) were formed as previously described [29]. All-trans RA
(Sigma-Aldrich, St. Louis, MO) was prepared in DMSO. After growing for 24 h, the EBs were
treated with RA or RA supplemented with GSK-J4 (Tocris Bioscience, Bristol, United King-
dom) and cultured in 5% CO, at 37°C for 48 h. EBs treated with RA and RA plus GSK-J4 are
hereafter referred to as EBra and EBragsk, respectively.

JMJD3 knockout NCCIT cell line construction using a CRISPR-Cas9
system

JMJD3 knockout NCCIT cells were constructed using the clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system based on a method
designed by Mali et al. [30], with modifications. To prepare JMJD3 guide RNA (gRNA) frag-
ments, four sites in a JMJD3-coding region were amplified by polymerase chain reaction (PCR)
using four sets of primers (Table 1). The gRNA cloning vector (Addgene plasmid ID 41824,
Cambridge, MA) was linearized using AfIIT (New England Biolabs, Ipswich, MA), and mixed
with four gRNA inserts separately for ligation by Gibson Assembly method using the Gibson
Assembly Master Mix (New England Biolabs) according to the manufacturer’s instructions.
NEB 5-o. competent cells (New England Biolabs) were then transformed with the ligated
DNAs, and the constructed gRNA vectors were purified and sequenced for confirmation. The
purified gRNA vectors and the pCas9-GFP vector (Addgene plasmid ID 44719) were then
mixed at a molar ratio of 20:1 and transfected into NCCIT cells using Lipofectamine LTX and
PLUS Reagent (Invitrogen) according to the manufacturer’s instructions. Cells expressing
green fluorescent protein 48 h post-transfection were sorted, plated on RPMI-containing
dishes at a density of 3000-5000 cells per dish, and allowed to grow for up to two weeks. Visible
colonies were then transferred to 24-well plates and allowed to grow for genomic DNA extrac-
tion. The JMJD3 knockout in NCCIT cells was further confirmed by PCR, sequencing using
primers flanking the target regions (Table 1) and quantitative real-time PCR (qRT-PCR) for
JMJD3 mRNA expression.
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Table 1. Oligonucleotide primer sets used in this study.

JMJD3 gRNA1
JMJD3 gRNA2
JMJD3 gRNA3
JMJD3 gRNA4

JMJD3(1-2)-1
JMJD3(1-2)-2
JMJD3(3-4)-3
JMJD3(3-4)-4
NANOG
POUSF1
SOX2

NES

PAX6

BMP4

RBP1
STRA6
CRABP1
CRABP2
CYP26A1
GAPDH

Primer Sequence (5’ ~ 3’)
Forward
TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG

AAGCTGCCCGCCTTCATGC

TTTCTTGGCTTTATATATCTTGTGGAAAGGAC
GAAACACCGTGGCTCAGCATGTTGCCCG

TTTCTTGGCTTTATATATCTTGTGGAAAGGA
CGAAACACCGCTCGTCCTTGACACGGCCC

TTTCTTGGCTTTATATATCTTGTGGA
AAGGACGAAACACCGCTGGAGCAGTACCGCACTG

GTTCCTGCTTCCTTCCCCTC
TGATGCTAAGCGGTCAGTGG
CCTCTGCCCTTGCTCCAG
TGGTCTCAACACAACCCCAC
AGCTACAACAGGYGAAGAC
TCTATTTGGGAAGGATT
TCCCATCACCCACAGCAAATGA
TGGCGCACCTCAAGATGTC
AGATTCAGATGAGGCTCAAA
GCTGAGGTTAAAGAGGAAACGA
CAACTGGCTCCAGTCACTCC
CCACAGAGGACTACTCCTATGG
CAGGACGGGGATCAGTTCTA
ATCGGAAAACTTCGAGGAATTGC
CATGTTCTCCAGAAAGTGCG
ATGGGGAAGGTGAAGGTCG

doi:10.1371/journal.pone.0135276.t001

RNA preparation and gRT-PCR

Reverse
GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCT
AAAACGCATGAAGGCGGGCAGCTTC

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTA
AAACCGGGCAACATGCTGAGCCAC

GACTAGCCTTATTTTAACTTGCTATTT
CTAGCTCTAAAACGGGCCGTGTCAAGGACGAGC

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCT
AAAACCAGTGCGGTACTGCTCCAGC

TCACAGAAAGCGCTGATGGT
GTCTCCCAGTAGTGCTCGTG
TAGGTCCAGCCCAGGCAT
CCTCATCGCGACGTGCT
GGTGGTAGGAAGAGTAAAGG
ATTGTTGTCAGCTTCCTCCA
TTTCTTGTCGGCATCGCGGTTT
GGTCCTAGAATTGCAGCTC
AATTGGTTGGTAGACACTGG
TGGTCTTGAGTATCCTGAGCG
TGCACGATCTCTTTGTCTGG
CAGCACAAGGATTGACAGCG
CGCCAAACGTCAGGATAAGT
AGGCTCTTACAGGGCCTCC
GGGATTCAGTCGAAGGGTCT
GGGGTCATTGATGGCAACAATA

Total RNA samples were extracted from EBga and EBragsk by homogenization in RNAiso
Plus, and the extracts were further purified according to the manufacturer’s instructions
(TaKaRa BIO, Shiga, Japan). First-strand cDNA was synthesized with SuperScript II Reverse
Transcriptase (Invitrogen). QRT-PCR was performed with the synthesized cDNA, SYBR Pre-
mix Ex Taq II and the appropriate primers (Table 1) using the ABI 7500 Real-Time PCR sys-
tem (Applied Biosystems, Carlsbad, CA), as previously described [31].

Western blotting

Whole cell extracts were prepared in RIPA buffer [50 mM Tris-Cl, pH 7.5; 150 mM sodium
chloride; 0.5% sodium deoxycholate; 0.1% sodium dodecyl sulfate; 1% (v/v) Nonidet P-40] sup-
plemented with cOmplete EDTA-free Protease Inhibitor Cocktail (Roche, Mannheim, Ger-
many). Total proteins were separated on polyacrylamide gels by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride
(PVDF) membranes (Schleicher & Schuell Bioscience, Inc., Keene, NH). After blocking with
PBS supplemented with 5% horse serum (Invitrogen) for 2 h, the membranes were blotted with
the appropriate primary antibodies at 4°C for 16 h, followed by blotting with horseradish per-
oxidase-conjugated anti-rabbit immunoglobulin G (IgG; Jackson ImmunoResearch Laborato-
ries, Inc., West Grove, PA; 711-545-152) secondary antibody for 1 h at room temperature.
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After washing with TBS-T (20 mM Tris-Cl, pH 7.6; 500 mM NaCl; 0.1% Tween 20), the reac-
tions were detected using ECL Prime Western Blotting Detection Reagent (GE Healthcare,
Wauwatosa, WI).

The following antibodies were used for western blotting and were all purchased from
Abcam (Cambridge, the United Kingdom): anti-histone H3 (ab1791), anti-H3K27me3
(ab6002) and anti-histone H3 dimethylated lysine 27 (H3K27me2, ab24684).

KDM®6 demethylase activity inhibition assay

Nuclear extracts were prepared using an EpiQuik Nuclear Extraction Kit (Epigentek, Farming-
dale, NY) according to the manufacturer’s instructions. The inhibition of JMJD3/UTX in
NCCIT, EBga and EBra,gsk was examined with an Epigenase JMJD3/UTX Demethylase
Activity/Inhibition Colorimetric Assay Kit (Epigentek) using the nuclear extracts (20 pg)
according to the manufacturer’s instructions. The inhibition ratio was measured in triplicate,
and the percentage of inhibition was calculated based on three different assays.

Chromatin immunoprecipitation (ChlP) and ChIP-qgPCR

NCCIT cells were collected and resuspended in digestion buffer (50 mM Tris-Cl, pH 7.6; 1
mM CaCl,, 0.2% Triton X-100, 5 mM butyrate, 1X protease inhibitor cocktail, 0.5 mM PMSF),
followed by incubation with 0.3 U Micrococcal nuclease (MNase; Sigma-Aldrich) at 37°C for 5
min. The reaction was stopped with 50 mM EDTA and treated with RIPA buffer for 16 h, fol-
lowed by incubation with an appropriate antibody (see below) and Dynabeads Protein A beads
(Invitrogen) for 16 h at 4°C. The chromatin-antibody-Dynabeads Protein A complexes were
consecutively washed with RIPA buffer supplemented with 0.3 M NaCl, lithium chloride
(LiCl) buffer and TE buffer, and then incubated with proteinase K at 65°C for 16 h. The DNA
from the complexes was purified via phenol/chloroform extraction and concentrated by etha-
nol precipitation. The resulting DNA pellets were dissolved in TE buffer for further analyses.
ChIP-qPCR was performed similarly to qPCR, with one modification: the cDNA was
replaced with immunoprecipitated DNA. The primers used in ChIP-qPCR are listed in
Table 1. The following antibodies were used for the ChIP analysis and were purchased from
Abcam, Santa Cruz Biotechnology (Dallas, TX) and Cell Signaling (Danvers, MA): control IgG
(Santa Cruz sc-2025), anti-H3K27me3 (Cell Signaling #9733), anti-RNA polymerase II (RNA-
PII, Abcam ab5131) and anti-H3K4me3 (ab8580).

RNA sequencing (RNA-seq) and ChIP sequencing (ChlP-seq)

Ribosomal RNAs (rRNAs) were removed from total RNA using the RiboMinus Transcriptome
Isolation Kit (Invitrogen). rRNA-depleted total RNAs were used to construct paired-end tran-
scriptome libraries using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina
(New England Biolabs). Briefly, first-strand cDNAs were synthesized from rRNA-depleted
RNA samples, followed by second-strand synthesis with DNA polymerase I and RNase H. The
double-stranded cDNAs were then end-repaired and ligated to adaptors. The ligated libraries
were then separated on a 2% agarose gel (Duchefa, Haarlem, The Netherlands), and fragments
with sizes between 300-400 bp were purified using the MinElute Gel Extraction Kit (Qiagen,
Hilden, Germany). The fragments were amplified for further enrichment and purified by etha-
nol precipitation. Two biological replicates were prepared from each condition.

Immunoprecipitated DNA was used to construct paired-end ChIP-sequencing libraries
using the NEBNext Ultra DNA Library Prep Kit for Illumina. ChIP reactions using rabbit IgG
and from untreated and RA-treated NCCIT were used as normalization controls.

PLOS ONE | DOI:10.1371/journal.pone.0135276 August 11,2015 5/25



@’PLOS ‘ ONE

H3K27me3-Related Transcription in Early Differentiation

The paired-end deep sequencing of the constructed libraries was performed using HiSeq
2000 and 2500 (Illumina, San Diego, CA) by the National Instrumentation Center for Environ-
mental Management (NICEM, Seoul, Republic of Korea) and the Next-Generation Sequencing
Core from the University of Pennsylvania (http://ngsc.med.upenn.edu/).

Data analysis and statistics

For transcriptome expression profiling, the raw reads were trimmed using the FASTX-Toolkit
[32] and aligned against USCS Homo sapiens hgl9 using Tophat (version 2.0.10) [33]. The
aligned reads were assembled with the Cufflinks package, version 2.2.1 [34]. Differentially
expressed genes (DEGs) were identified using Cuffdiff [35]. All data were normalized accord-
ing to their fragments per kilobase per million map reads (FPKM) for each gene [36]. DEGs
displaying more than twofold changes in their log, fold-change were selected for functional
annotation using the Database for Annotation, Visualization and Integrated Discovery
(DAVID) version 6.7 [37, 38] and the following parameters: threshold count 5 and enrichment
probability (EASE score) 0.1. The raw reads used in this work were deposited into the Gene
Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) under accession num-
ber SRP045949.

For the ChIP-seq analysis, the raw reads were aligned using Bowtie2 version 2.2.1 [39].
UCSC hgl9 was used as the reference index. Significantly enriched regions were identified
using the hypergeometric Optimization of Motif EnRichment (HOMER) analysis package
[40]. Default parameters were used for peak calling. The identified peaks were visualized using
the UCSC Genome Brower (https://www.genome.ucsc.edu).

The JMJD3/UTX inhibition assay and qPCR data were statistically analyzed using SPSS 21.0
(SPSS Inc., Chicago, IL). All experiments were conducted in triplicate, and data are presented
as the means + SE. The data were tested with a one-way ANOVA followed by Tukey’s HSD
post hoc test.

Results

The effect of GSK-J4 on the cellular morphology and the global
H3K27me3 level in the early differentiation of NCCIT cells

In this study, we aimed to specify the role of KDM6 demethylases during differentiation.
NCCIT cells were developed into EBs, treated with either RA alone or RA supplemented with
GSK-J4, and collected 24 and 48 h after the treatments (Fig 1A). After EB formation, the mor-
phological changes of cells in response to RA-induced differentiation were assessed. Cell
attachment and differentiation could be observed in EBgy cells1 and 2 days after RA treatment.
However, treating both RA and GSK-J4 partially inhibited cell attachment and delayed the dif-
ferentiation of EBra,gsk cells (Fig 1B and S2 Fig). The transcriptional levels of JMJD3 and
UTX were measured to assess the effect of GSK-J4 on the expression of KDM6 demethylases.
JMJD3 and UTX expression increased during differentiation, and JMJD3 expression was
greater than UTX expression. Upon GSK-J4 treatment, the expression of both KDM6
demethylases was decreased (Fig 2A). H3K27me3 levels in EB cells were also affected by
GSK-J4 treatment: H3K27me3 was demethylated during differentiation, but GSK-J4 treatment
reversed this reaction (Fig 2B). The effect of GSK-J4 on KDM6 demethylases was further con-
firmed using an inhibition assay, which showed that the amount of demethylated products was
lower in in EBga,gsxk cells than in EBgy cells This difference implies that GSK-J4 inhibits the
demethylase activities of JMJD3 and UTX and that the inhibitor delays the RA-induced differ-
entiation of NCCIT.

PLOS ONE | DOI:10.1371/journal.pone.0135276 August 11,2015 6/25


http://ngsc.med.upenn.edu/
http://www.ncbi.nlm.nih.gov/geo
https://www.genome.ucsc.edu

D)
@ : PLOS | ONE H3K27me3-Related Transcription in Early Differentiation

A EB formation
Initial culturing 0 day 1 day 2 day
f Sample  Sample
collection collection
RA or
RA+GSK-J4
B

Fig 1. The effect of GSK-J4 on RA-induced differentiation. (A) Schematic illustration of RA and GSK-J4
treatment to NCCIT cells. NCCIT cells were stabilized and subcultured to form EBs. After stabilization, the
EBs were treated with RA or RA+GSK-J4. The samples were then collected 1 and 2 days thereafter for
analyses. (B) Cell morphology of NCCIT (a), EB (b), EB (c, 1 day; d, 2 day) and EBgra.ask (€, 1 day; f, 2 day).

doi:10.1371/journal.pone.0135276.g001

Transcriptomic profiling of NCCIT cells during early differentiation

To identify developmental genes regulated by histone demethylation, the whole transcriptome
of three samples was profiled using an Illumina HiSeq 2500: undifferentiated NCCIT, EBga
and EBpa sk Genes from RNA-seq with an absolute value of the log, fold-change larger than
two (log, fold-change > 2 and log, fold-change < -2) were considered to be differentially
expressed genes (DEGs). A total of 673 genes were differentially expressed between NCCIT
and EBgra, with 316 up-regulated and 357 down-regulated genes (Fig 3A). These DEGs were
closely related to RA metabolism, cell differentiation and proliferation (Tables 2 and 3).
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Fig 2. The effect of GSK-J4 on global H3K27me3 during RA-induced differentiation. (A) mMRNA
expression levels of KDM6 demethylases JMJD3 and UTX in RA-induced differentiation and GSK treatment.
qRT-PCR data were normalized to GAPDH expression. The values are presented as the means + SE (n = 3).
(B) Changes in H3K27me3 level by GSK-J4 during NCCIT differentiation. Whole cell extracts were collected
from cells treated for 1 day and 2 days, isolated using RIPA buffer, and immunoblotted with the following
antibodies: H3 and H3K27me3. The experiment was performed in triplicate, and a representative blotimage
is shown. (C) Densitometric analysis of changes in H3K27me3 level by GSK-J4 during NCCIT differentiation.
The average relative density of H3K27me3 was compared with the relative density of histone H3 based on
triplicate experiments. The asterisk represents the significant difference analyzed by one-way ANOVA
followed by Tukey’s HSD post hoc test (*: P < 0.05).

doi:10.1371/journal.pone.0135276.g002
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Fig 3. Transcriptomic profiling of RA-induced differentiation in NCCIT, EBga and EBra.gsk- (A) Venn diagrams of the gene expression patterns in
NCCIT, EBra and EBra.ask- The numbers represent the number of DEGs that were either up-regulated or down-regulated at the analyzed conditions. (B)
Heat map representation of gene expression during RA-induced differentiation by RA and RA + GSK-J4 (green, low expression; red, high expression).
Genes with specific expression patterns were then clustered into three groups (1, Up-Up; 2, Up-Down; 3, Down-Down). (C) Relative expression pattern graph
of three gene clusters defined from the transcriptome profiling. Genes with specific expression patterns were clustered according to their relative expression

values.

doi:10.1371/journal.pone.0135276.9003

GSK-J4 treatment increased the proportion of down-regulated genes in EB, and these DEGs
were involved in gene transcription, cell differentiation and stress response (Tables 4 and 5).
Comparing EBra with EBgra.csk @ large number of genes (599 genes) were down-regulated,
whereas a relatively small number of genes (363 genes) were activated. GSK-J4 treatment
affected genes involved in stress response, gene transcription and cell specification (Tables 6
and 7). DEGs were also clustered into three groups according to the changes in their expression
patterns (Fig 3B and 3C): up-regulation in both conditions (Cluster 1), staggered expression in
response to RA and GSK-J4 treatments (Cluster 2), and exacerbated down-regulation (Cluster
3). Genes from Cluster 2 that showed deregulated transcriptional patterns after GSK-J4 treat-
ment were used for further analyses.

Selected DEGs affected by RA and GSK-J4 were submitted to the DAVID database for func-
tional annotation. Genes up-regulated by GSK-J4 treatment were related to muscle develop-
ment, ion transport, cellular homeostasis and anti-apoptosis (Table 8 and S1 Table), whereas
those down-regulated by GSK-J4 were shown to participate in mesenchymal differentiation,
embryonic organ morphogenesis, anterior/posterior pattern formation and cell adhesion
(Table 9 and S2 Table). The GO annotation of genes in the EBra and EBgra, sk populations
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Table 2. Top 10 up-regulated DEGs identified in EBga as compared to those of in NCCIT (p < 0.05).

Locus

XLOC_010497

XLOC_010326

XLOC_001950

XLOC_001452

XLOC_015495

XLOC_001298

XLOC_004892
XLOC_022849

XLOC_010897

XLOC_006962

doi:10.1371/journal.pone.0135276.t002

Gene name

HOXB1

HNF1B

CRABP2

FNDC5

APOBEC3G

DHRS3

TENM4
ZNF703

RBBP8

DACT1

Entrez
gene ID

3211

6928

1382

252995

60489

9249

26011
80139

5932

51339

Log, fold-
change

14.34569

11.43815

5.48966

5.26276

5.07141

4.90678

4.673
4.61949

4.32479

4.18477

Putative function

Belongs to the homeobox family of genes;
encode a highly conserved family of
transcription factors that play an important role
in morphogenesis in all multicellular organisms

Encodes a member of the homeodomain-
containing superfamily of transcription factors;
the gene has been shown to function in
nephron development, and regulates
development of the embryonic pancreas

Encodes a member of the RA binding protein
family and lipocalin/cytosolic fatty-acid binding
protein family; a cytosol-to-nuclear shuttling
protein, which facilitates RA binding to its
cognate receptor complex and transfer to the
nucleus

Encodes a secreted protein that is released
from muscle cells during exercise; may
participate in the development of brown fat

A member of the cytidine deaminase gene
family; may be RNA editing enzymes and have
roles in growth or cell cycle control

A type of short-chain dehydrogenases/
reductases (SDRs); catalyze the oxidation/
reduction of a wide range of substrates,
including retinoids and steroids

Involved in neural development

Acts as a transcriptional corepressor which
does not bind directly to DNA and may
regulate transcription through recruitment of
histone deacetylases to gene promoters;
regulates cell adhesion, migration and
proliferation; may be required for segmental
gene expression during hindbrain development

Encodes a ubiquitously expressed nuclear
protein; complexes with transcriptional co-
repressor CTBP; associated with BRCA1 and
is thought to modulate the functions of BRCA1
in transcriptional regulation, DNA repair, and/or
cell cycle checkpoint control

Encodes a protein that belongs to the dapper
family; interacts with, and positively regulates
dishevelled-mediated signaling pathways
during development

indicates that that inhibition of KDM6 demethylases deregulates some but not all differentia-
tion processes. This suggests that KDM6 demethylase-independent developmental processes
participate in early differentiation.
To validate our RNA-seq results, we assessed the expression of DEGs by qRT-PCR. RNA
samples from RNA-seq were reverse transcribed into cDNA and subjected to qRT-PCR using a
commercially available kit with specific primers. Because exogenous agents such as RA can
induce neural differentiation of EC [41], we selected pluripotency markers (NANOG, SOX2,
POUS5F1), neural markers (NES, BMP4, PAX6) and other RA-related genes (RBP1, STRAS,
CRABP1, CRABP2, CYP26A1 and HOXBI) as targets to assess RA-induced differentiation

PLOS ONE | DOI:10.1371/journal.pone.0135276 August 11,2015
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Table 3. Top 10 down-regulated DEGs identified in EBr, as compared to those of in NCCIT (p < 0.05).

Locus

XLOC_017654

XLOC_015744

XLOC_010570
XLOC_021984

XLOC_016009
XLOC_000191
XLOC_007413

XLOC_011377

XLOC_024410

XLOC_020332

Gene
name

MXD4

ANKRD54

HEATR6
NRF1

TMEM42
RHD
oTX2

DAND5

WDR31

THBS2

Entrez
gene ID

10608

129138

63897
4899

131616
6007
5015

199699

114987

7058

doi:10.1371/journal.pone.0135276.t003

Log, fold-
change

-5.91607

-4.47717

-4.00643
-3.48989

-2.96713
-2.96435
-2.88437

-2.8223

-2.60329

-2.40784

Putative function

A member of the MAD gene family; tumor
suppressors and contribute to the regulation of
cell growth in differentiating tissues

Plays an important role in regulating intracellular
signaling events associated with erythroid
terminal differentiation

Amplification-dependent oncogene

Encodes a protein that homodimerizes and
functions as a transcription factor which
activates the expression of some key metabolic
genes regulating cellular growth and nuclear
genes required for respiration, heme
biosynthesis, and mitochondrial DNA
transcription and replication; has also been
associated with the regulation of neurite
outgrowth

Unknown
Rh blood group, D antigen

Encodes a member of the bicoid subfamily of
homeodomain-containing transcription factors;
acts as a transcription factor and plays a role in
brain, craniofacial, and sensory organ
development

encodes a member of the BMP (bone
morphogenic protein) antagonist family; may
play a role in regulating organogenesis, body
patterning, and tissue differentiation

Encodes a member of the WD repeat protein
family; involved in a variety of cellular
processes, including cell cycle progression,
signal transduction, apoptosis, and gene
regulation

Encoded by this gene belongs to the
thrombospondin family; mediates cell-to-cell and
cell-to-matrix interactions; shown to function as
a potent inhibitor of tumor growth and
angiogenesis

(Fig 4). The expression of pluripotency markers gradually decreased as RA-induced differentia-
tion proceeded. Upon GSK-J4 treatment, the expression patterns of NANOG and POU5F1
were reversed, but that of SOX2 was not significantly affected (Fig 4A). Differentiation up-reg-
ulated the expression of three neural markers, but this change was less pronounced in NES
than in the other two markers. Surprisingly, the inhibition of KDM6 demethylases enhanced
the expression of PAX6 and BMP4, but the expression of NES decreased to a level similar to
that observed in undifferentiated NCCIT cells (Fig 4B). RA-related genes showed similar
expression patterns; their expression levels were increased by differentiation and reduced by
GSK-J4 treatment. These results show that H3K27me3 demethylation regulates the transcrip-
tion of many differentiation genes, whereas the regulation of some developmental genes is
KDM6 demethylase-independent during the early stage of RA-induced differentiation.

PLOS ONE | DOI:10.1371/journal.pone.0135276 August 11,2015
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Table 4. Top 10 up-regulated DEGs identified in EBra.gsk as compared to those of in NCCIT
(p <0.05).

Locus Gene Entrez Log, fold-  Putative function
name gene ID change
XLOC_012048 REXO1 9606 5.43387 Seems to have no detectable effect on
transcription elongation in vitro
XLOC_008771 MTI1E 4493 5.15957 Binds various heavy metals; transcriptionally

regulated by both heavy metals and
glucocorticoids

XLOC_016639 CELSR3 1951 5.1582 Belongs to the flamingo subfamily, which is
included in the cadherin superfamily; may be
involved in the regulation of contact-dependent
neurite growth and may play a role in tumor
formation

XLOC_010897 RBBP8 5932 4.98784 Encodes a ubiquitously expressed nuclear
protein; complexes with transcriptional co-
repressor CTBP; associated with BRCA1 and is
thought to modulate the functions of BRCA1 in
transcriptional regulation, DNA repair, and/or cell
cycle checkpoint control

XLOC_001950 CRABP2 1382 4.88666 Encodes a member of the RA binding protein
family and lipocalin/cytosolic fatty-acid binding
protein family; a cytosol-to-nuclear shuttling
protein, which facilitates RA binding to its
cognate receptor complex and transfer to the
nucleus

XLOC_023535 SCRIB 23513 4.68124 Encodes a protein that was identified as being
similar to the Drosophila scribble protein; involved
in tumor suppression pathways

XLOC_004892 TENM4 26011 4.59506 Involved in neural development

XLOC_008769 MT2A 4502 4.54637 Binds various heavy metals; transcriptionally
regulated by both heavy metals and
glucocorticoids

XLOC_017586 CPE 1363 4.28043 Encodes a carboxypeptidase that cleaves C-
terminal amino acid residues and is involved in
the biosynthesis of peptide hormones and
neurotransmitters, including insulin

XLOC_001298 DHRS3 9249 4.00125 A type of short-chain dehydrogenases/
reductases (SDRs); catalyze the oxidation/
reduction of a wide range of substrates, including
retinoids and steroids

doi:10.1371/journal.pone.0135276.t004

Global transcription and histone modification pattern characterization in
early NCCIT differentiation

To investigate the relationship between transcriptional activation and H3K27me3 repression
in the early stage of RA-induced differentiation, we observed the RNAPII recruitment patterns
as well as the H3K27me3 and H3K4me3 landscapes in NCCIT, EBga and EBga sk cells col-
lected at day 2 (Fig 5 and S4 Fig). The sequenced raw reads were aligned to hgl9, and enriched
peaks were selected for analysis. Based on the transcriptome profiling data, we focused on
RNAPII binding and H3K27me3 enrichment to the promoters of genes selected based on the
RT-qPCR data: pluripotency markers (NANOG, SOX2, POU5F1), neural markers (NES,
PAX6, BMP4) and RA-affected genes (RBP1, STRA6, CRABP1, CRABP2, CYP26A1, HOXBL1).

The binding affinity of RNAPII to the promoters of pluripotency markers did not dramati-
cally differ in EBgy cells, and only a subtle increase could be observed in EBga.gsk cells.
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Table 5. Top 10 down-regulated DEGs identified in EBgra.gsk as compared to those of in NCCIT
(p <0.05).

Locus Gene name Entrez Log. fold- Putative function
gene ID change
XLOC_017654 MXD4 10608 -5.73052 A member of the MAD gene family; tumor

suppressors and contribute to the regulation of
cell growth in differentiating tissues

XLOC_000191 RHD 6007 -3.71237 Rh blood group, D antigen

XLOC_014222 TIGD1 200765 -3.61723 Belongs to the tigger subfamily of the pogo
superfamily of DNA-mediated transposons in
humans; the exact function of this gene is not
known

XLOC_021984 NRF1 4899 -3.34274 Encodes a protein that homodimerizes and
functions as a transcription factor which
activates the expression of some key metabolic
genes regulating cellular growth and nuclear
genes required for respiration, heme
biosynthesis, and mitochondrial DNA
transcription and replication; has also been
associated with the regulation of neurite
outgrowth

XLOC_018012 SPOCK3 50859 -2.96754 encodes a member of a novel family of
calcium-binding proteoglycan proteins that
contain thyroglobulin type-1 and Kazal-like
domains; may play a role in adult T-cell
leukemia by inhibiting the activity of
membrane-type matrix metalloproteinases

XLOC_010164 LINC00324 284029 -2.87243 An RNA gene; affiliated with the IncRNA class

XLOC_018419 VTRNA1-1 56664 -2.83112 An RNA gene; affiliated with the vault RNA
class
XLOC_023491 HHLAA1, 10086 -2.63831 Unlikely to have a phospholipase A2 activity
0C90
XLOC_000258 LCK 3932 -2.62229 a member of the Src family of protein tyrosine

kinases; a key signaling molecule in the
selection and maturation of developing T-cells

XLOC_018056 SORBS2 8470 -2.53261 Adapter protein that plays a role in the
assembling of signaling complexes, being a
link between ABL kinases and actin
cytoskeleton

doi:10.1371/journal.pone.0135276.t005

H3K27me3 enrichment to the upstream regions of pluripotency markers was increased upon
RA induction and decreased as KDM6 demethylases were enzymatically inhibited (Fig 5A).
The enrichment pattern of H3K27me3 in SOX2 was somewhat different; it was enriched at the
start and the end of the SOX2 exon (54 Fig). The H3K4me3 patterns were concordant with the
aforementioned expression patterns observed by RNA-seq (S5 Fig). The RNAPII binding and
H3K27me3 enrichment patterns showed that the transcription of stemness markers during dif-
ferentiation are negatively mediated by H3K27me3 enrichment.

Neural marker promoters were enriched with RNAPII as differentiation was induced. This
enrichment could also be observed in the gene-encoding regions of neural markers. Upon the
GSK-J4 treatment of RA-treated NCCIT cells, the RNAPII enrichment in neural markers
decreased at the promoter region and gene bodies of NES (54 Fig). The RNAPII binding to the
promoter regions and H3K4me3 recruitment near their transcription start sites (TSSs) of
PAX6 and BMP4 were increased despite GSK-J4 treatment (Fig 5B, S4 and S5 Figs). These
results are consistent with the aforementioned up-regulation in PAX6 and BMP4 expression in
response to GSK-J4 treatment identified by RT-qPCR (Fig 4B). The H3K27me3 at the
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Table 6. Top 10 up-regulated DEGs identified in EBra.gsk as compared to those of in EBga (p < 0.05).

Locus Gene Entrez Log, fold-  Putative function
name gene ID change
XLOC_008771 MT1E 4493 5.65036 Binds various heavy metals; transcriptionally

regulated by both heavy metals and
glucocorticoids

XLOC_012048 REXO1 9606 5.18944 Seems to have no detectable effect on
transcription elongation in vitro
XLOC_008769 MT2A 4502 5.15751 Binds various heavy metals; transcriptionally

regulated by both heavy metals and
glucocorticoids

XLOC_016639 CELSR3 1951 5.01109 Belongs to the flamingo subfamily, which is
included in the cadherin superfamily; may be
involved in the regulation of contact-dependent
neurite growth and may play a role in tumor
formation

XLOC_023535 SCRIB 23513 4.23912 Encodes a protein that was identified as being
similar to the Drosophila scribble protein;
involved in tumor suppression pathways

XLOC 023805 GADD45G 10912 3.59167 A member of a group of genes whose transcript
levels are increased following stressful growth
arrest conditions and treatment with DNA-
damaging agents

XLOC_023770 ANXA1 301 3.59033 encodes a membrane-localized protein that
binds phospholipids; inhibits phospholipase A2
and has anti-inflammatory activity

XLOC_002253 LEFTY2 7044 3.28842 encodes a member of the TGF-beta family of
proteins; plays a role in left-right asymmetry
determination of organ systems during
development

XLOC_013015 MXD1 4084 3.04017 Encodes a member of the MYC/MAX/MAD
network of basic helix-loop-helix leucine zipper
transcription factors; mediates cellular
proliferation, differentiation and apoptosis

XLOC_019332 HSPA1B 3304 3.02529 encodes a 70kDa heat shock protein which is a
member of the heat shock protein 70 family;
stabilizes existing proteins against aggregation
and mediates the folding of newly translated
proteins in the cytosol and in organelles; also
involved in the ubiquitin-proteasome pathway

doi:10.1371/journal.pone.0135276.t006

promoter regions of PAX6 and BMP4 increased as RA induced differentiation and decreased
in response to GSK-J4 treatment. These results suggest that some developmental genes are acti-
vated in a KDM6 demethylase-independent manner.

The RNAPII binding and H3K4me3 recruitment patterns in five RA metabolism genes
showed a similar pattern: increased binding in response to RA and reduced binding in response
to GSK-J4 (Fig 5C, S4 and S5 Figs). In addition to RA metabolism, we selected HOXB1, one of
the first targets regulated by RA signaling, to assess the role of H3K27me3 demethylases in the
regulation of RA-mediated differentiation. Similar to RA metabolic genes, the RNAPII-binding
and trimethylation of H3K4 near the HOXBI1 promoter was enhanced in EBg, cells and
decreased in EBra sk cells (Fig 5D). The H3K27me3 enrichment patterns for RA-responding
genes were similar: RA treatment induced the demethylation of H3K27me3, and GSK-J4 treat-
ment impaired the enzymatic activity of KDM6 demethylases leading to H3K27me3 enrich-
ment at the upstream region of the TSSs of RA-related genes. Thus, we surmised that the
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Table 7. Top 10 down-regulated DEGs identified in EBgra,gsk as compared to those of in EBra

(p <0.05).
Locus

XLOC_014222

XLOC_014231

XLOC_012938

XLOC_004908

XLOC_007093

XLOC_001535

XLOC_018072

XLOC_001378

XLOC_020242

XLOC_010332

Gene
name

TIGD1

GBX2

PKDCC

FZD4

SERPINA5

PTCH2

LPHN3

ID3

OLIG3

C170rf96

Entrez
gene ID

200765

2637

91461

8322

5104

8643

23284

3399

167826

100170841

doi:10.1371/journal.pone.0135276.t007

Log. fold-
change

-3.72327

-3.04778

-2.76946

-2.72852

-2.64582

-2.54595

-2.51175

-2.29516

-2.24445

-2.17487

Putative function

Belongs to the tigger subfamily of the pogo
superfamily of DNA-mediated transposons in
humans; the exact function of this gene is not
known

May act as a transcription factor for cell
pluripotency and differentiation in the embryo

Protein kinase which is required for
longitudinal bone growth through regulation of
chondrocyte differentiation

A member of the frizzled gene family; may
play a role as a positive regulator of the
Wingless type MMTYV integration site
signaling pathway

Encoded by this gene is a member of the
serpin family of proteins; a glycoprotein that
can inhibit several serine proteases, thus
plays diverse roles in hemostasis and
thrombosis in multiple organs

Encodes a transmembrane receptor of the
patched gene family; may function as a tumor
suppressor in the hedgehog signaling
pathway

Encodes a member of the latrophilin
subfamily of G-protein coupled receptors;
may function in both cell adhesion and signal
transduction

A helix-loop-helix (HLH) protein that can form
heterodimers with other HLH proteins; inhibits
the DNA binding of any HLH protein with
which it interacts

May determine the distinct specification
program of class A neurons in the dorsal part
of the spinal cord and suppress specification
of class B neurons

Has putative a nucleotide binding function

Table 8. Top 10 enriched processes for genes up-regulated in EBga.gsk compared to EBga.

GO term Count Fold enrichment
1 G0:0048634~regulation of muscle development 6 9.253078
2 G0:0016202~regulation of striated muscle tissue development 5 7.865116
3 G0:0006821~chloride transport 5 6.446817
4 G0:0030879~mammary gland development 5 6.242156
5 G0:0015698~inorganic anion transport 5 4.228557
5 G0:0032147~activation of protein kinase activity 6 4.139535
6 GO0:0021700~developmental maturation 5 3.893622
7 G0:0060348~bone development 6 3.836642
8 G0:0046942~carboxylic acid transport 7 3.745293
9 G0:0015849~organic acid transport 7 3.719987
10 G0:0048634~regulation of muscle development 6 9.253078
doi:10.1371/journal.pone.0135276.t008
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Table 9. Top 10 enriched processes for genes down-regulated in EBga,gsk compared to EBga.

GO term Count Fold enrichment
1 G0:0048762~mesenchymal cell differentiation 5 7.801615
2 G0:0014031~mesenchymal cell development 5 7.801615
3 G0:0060485~mesenchyme development 5 7.651584
4 G0:0048704~embryonic skeletal system morphogenesis 5 6.980392
5 G0:0048754~branching morphogenesis of a tube 5 6.121267
5 G0:0019748~secondary metabolic process 6 6.043783
6 G0:0031349~positive regulation of defense response 5 5.450443
7 G0:0001763~morphogenesis of a branching structure 5 5.376789
8 G0:0048706~embryonic skeletal system development 5 5.167303
9 G0:0048562~embryonic organ morphogenesis 8 4.786555
10 G0:0048762~mesenchymal cell differentiation 5 7.801615

doi:10.1371/journal.pone.0135276.t009

transcription initiation of RA-responsive metabolic and developmental genes is controlled by
H3K27me3 demethylation. Collectively, the overall RNAPII recruitment and histone H3 meth-
ylation enrichment indicate that the transcription of key developmental genes is regulated in
both KDM6 demethylase-dependent and KDM6 demethylase-independent manners.

In addition to ChIP-seq, ChIP-qPCR was used to further confirm histone modification
enrichment. We attempted to assess the promoters of the aforementioned genes, but only three
showed significant changes in their H3K27me3 demethylation patterns (Fig 5E-5G). In PAXS,
the level of H3K27me3 increased in response to RA-induced differentiation and decreased in
response to GSK-J4 treatment (Fig 5E). The increased H3K27me3 level during differentiation
may reflect the histone demethylase-independent transcription of PAX6 [20], and the
decreased level in response to GSK-J4 treatment partly explains the increased expression of
PAX6 in EBra.gsk cells (Figs 4B and 5B). In RA-responsive genes, the inhibition of KDM6
demethylases by GSK-J4 led to increased H3K27me3 levels at their promoters (Fig 5F and 5G).
Conclusively, both KDM6 demethylase-dependent and KDM6 demethylase-independent gene
transcription co-exist during early differentiation.

JMJD3 knockout and mRNA transcription pattern analysis of
demethylase-dependent and demethylase-independent genes

To further investigate the role of H3K27me3 demethylases during NCCIT differentiation, we
constructed a JMJD3 knockout NCCIT cell line using CRISPR/Cas9 genome editing to exam-
ine the changes in the expression of selected genes. Initial attempts to abolish JMJD3 expres-
sion by deleting selected target sequences in JMJD3 exons 17, 21 or 22 produced insignificant
changes in JMJD3 mRNA expression (data not shown). Transfecting four target gRNA plas-
mids together into NCCIT cleaved a 1650-bp fragment ranging from exon 17 to 22, which sig-
nificantly reduced JMJD3 transcription in all cases of NCCIT differentiation and inhibition by
GSK-J4 (S1B and S1C Fig). To assess the effect of JMJD3 knockout on the expression of differ-
entiation-related and RA metabolism-related genes, the expression levels of the aforemen-
tioned genes were analyzed by qRT-PCR. None of the tested conditions significantly affected
the mRNA expression levels of pluripotency markers, such as POU5F1, when JMJD3 was
knocked down (Fig 6A), whereas NANOG and SOX2 mRNA were not re-expressed (S6A Fig).
The expression patterns of neural differentiation markers were somewhat similar between
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Fig 4. Validation of transcription patterns affected by GSK-J4 in cell differentiation. (A-D) mRNA expression levels of pluriopotency markers (A), neural
markers (B) and RA-responsive genes (C-D) in RA-induced differentiation. gRT-PCR data were normalized to GAPDH expression. The values are presented
as the means * SE (n = 3). The asterisk represents the significant difference analyzed by a one-way ANOVA followed by Tukey’s HSD post hoc test (*:

P <0.05).

doi:10.1371/journal.pone.0135276.g004

wild-type and JMJD3 knockout cells under all conditions, differing only in the level of expres-
sion in response to GSK-J4 treatment, which did not significantly affect knockout cells. PAX6
and BMP4, which were predicted to be expressed in an H3K27me3 demethylase activity-inde-
pendent manner, showed almost identical expression patterns under both conditions. The
mRNA expression levels of RA metabolism genes were complex but decreased in most cases,
indicating that H3K27me3 demethylation regulated the transcription of these genes. The sig-
nificant decrease observed in the level of HOXB1 mRNA expression further confirmed the role
of JMJD3 in gene transcription initiation. Similar differences in the mRNA levels may account
for the compensation for JMJD3 loss by UTX, analogous to the compensation of JMJD3 for
UTX loss in mouse embryonic stem cells [20].
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Fig 5. RNAP recruitment and H3K27me3 enrichment patterns in NCCIT, EBga and EBgra.gsk in RA-induced differentiation. (A-D) USCS genome

browser view of RNAPII binding and H3K27me3 enrichment in the promoters and the gene bodies of NANOG (A), PAX6 (B), CRABP2 (C) and HOXB1 (D).
(E-G) ChIP-gPCR was performed on NCCIT cells using H3K27me3 antibody for PAX6 (E), CRABP1 (F) and HOXB1 (G) during RA-induced differentiation.
gRT-PCR data were normalized to IgG expression. The values are presented as the means + SE (n = 3).

doi:10.1371/journal.pone.0135276.9005

Collectively, the JMJD3 knockout experiments showed that KDM6 demethylase-dependent
gene expression is largely regulated by JMJD3 and UTX plays only a minor role in this regula-
tion. Furthermore, demethylase-independent gene expression can be cooperatively initiated by
both JMJD3 and UTX.
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POUS5F1 (A), a neural marker, PAX6 (B) and the RA-responsive genes CYP26A1 and HOXB1 (C-D) during
the RA-induced differentiation of JMJD3 knockout cells. gRT-PCR data were normalized to GAPDH
expression. The values are presented as the means = SE (n = 3). The asterisk represents the significant
difference analyzed with a one-way ANOVA followed by Tukey’s HSD post hoc test (*: P < 0.05; ** P <0.01).

doi:10.1371/journal.pone.0135276.9g006
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Discussion

Histone modifications play important roles in various biological processes, including differen-
tiation. In this study, we used a selective JMJD/UTX inhibitor GSK-J4 that disables only the
demethylase function of JMJD3 and UTX to study the role of H3K27me3 demethylation in
RA-induced early neural differentiation. As an experimental model, we utilized NCCIT cells,
whose differential traits are similar to those of human embryonic stem cells. Although these
cells are considered to be stem-like cancer cells with potentially ambiguous phenotypes, they
constitute a robust and simplified means to analyze the differentiation and development during
human embryogenesis [42, 43]. Because RA-induced NCCIT differentiation has been widely in
previous studies [44, 45], we selected this carcinoma cell line as a cellular model. A whole tran-
scriptomic analysis and the genome-wide mapping of a transcriptional suppressive markers
identified a complex relationship between transcription activation and changes in the epige-
netic landscape due to the enzymatic activity of histone demethylases. We also found a mis-
matching correlation between transcription and H3K27 methylation at the regulatory regions
of DEGs, suggesting the co-existence of KDM6 demethylase-dependent and KDM6 demethy-
lase-independent gene regulation during the early differentiation of stem-like cancer cells.

The stimulation of NCCIT differentiation with RA induced the expression of gene subsets
closely related to cell differentiation functions, such as energy metabolism, RA metabolic pro-
cessing, cell specification, transcriptional activation, cell adhesion and proliferation (Tables 2, 3
and 8). The inhibition of KDM6 demethylases by GSK-J4 changed the types of genes expressed
during RA-mediated differentiation (Tables 4-7 and 9), resulting in a delay of cell fate commit-
ment. Genes that were up-regulated during differentiation showed decreased expression levels
in response to GSK-J4 treatment, whereas genes related to stemness and transcriptional repres-
sion were readily expressed (Fig 4). Consistent with these transcriptome profiles, the
H3K27me3 state of the regulatory elements of many JMJD3/UTX-dependent genes was sub-
jected to demethylation for active transcription (Fig 5), although the efficiency of capturing
H3K27me3 enrichment was lower than expected. JMJD3 knockout also reduced the down-reg-
ulation of pluripotency markers during differentiation (Fig 6A), further emphasizing the role
of H3K27me3 and KDM6 demethylases in cell fate commitment. The histone methylation and
transcriptional activation patterns of some developmental genes shown in this work are partly
consistent with those described in previous reports of epigenetic changes that occur during dif-
ferentiation: Regulatory regions of the pluripotency markers NANOG, SOX2 and POU5F1 are
enriched with repressive markers during differentiation [46-50], but the presence of
H3K27me3 is not considered to be an apparent blocker of this regulation, because the deletion
of UTX does not compromise the transcription of these stemness markers [20]. In contrast to
previous works, our study showed that the inhibition of H3K27me3 demethylase activity
increased the mRNA expression of pluripotency markers (Fig 4A), suggesting the indirect reg-
ulation of pluripotency by H3K27me3 demethylation. Key differentiation effectors, such as
NES, were regulated by H3K27me3 demethylation in this study (Fig 4B). This regulation is
consistent with previous reports showing the necessity of JMJD3 in neural commitment and its
direct regulation of gene transcription [4, 51]. The mRNA expression of some RA-processing
enzymes also depended on demethylases (Figs 4C and 6C). CYP26A1 is a cytochrome P450
enzyme involved in the inactivation of RA that mediates the formation of the anterior-poste-
rior axis [52] and establishes hindbrain patterning [53]. In mouse ES cells and F9 teratocarci-
noma cells, CYP26A1 expression increases in response to RA treatment and decreases as RA is
withdrawn, and an H3K27me3 demethylation pattern is observed [54, 55]. This demethylation
may be due to the action of JMJD3 because the mRNA expression and the removal of
H3K27me3 were affected by JMJD3/UTX inhibition. HOXB1, a homeobox gene that controls
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spatial specification and differentiation [56-58], contains an RA-responsive enhancer that
enables its transcription in response to RA [59], to regulate differentiation into various tissue
types. The role of HOXBI in neural differentiation has been well-studied [60], and its regula-
tion by H3K27me3 demethylase was also previously noted [5]. We noted that HOXB1 expres-
sion (Figs 4D and 6D) is responsive to RA and regulation via JMJD/UTX, and these findings
are similar to those of previous studies. Collectively, our work signifies that the demethylation
activity of JMJD3/UTX is important in RA-induced transcriptional initiation during
development.

Unexpectedly, this study indicated complex patterns of histone modification contents for
genes known to participate in RA-driven differentiation, and these patterns weakly correlated
with the transcriptional activities of these genes (Figs 4, 5 and 6). In fact, the inhibition of
JMJD3 and UTX did not affect the transcriptional patterns of several DEGs identified by RNA-
seq (Tables 4-7). In this work, the regulatory sequences of PAX6 and BMP4 displayed confus-
ing histone modification patterns during differentiation: their H3K27me3 levels increased as
transcription was activated by RA treatment. Although the presence of H3K27me3 may reflect
its inhibitory role in transcription, previous studies showed that the demethylation of
H3K27me3 does not significantly affect the transcriptional efficiency of PAX6 and rather
enhances its expression level to some extent [20], similar to the findings reported herein. This
demethylase-independent transcriptional regulatory role may be attributed to the functions of
JMJD3 and UTX, which mediate an interaction between the T-box transcription factor and the
SWI/SNF complex [22]. The T-box family proteins regulate the transcription of genes involved
in various cellular development processes [61], and these T-box factors interact with
H3K27me3 demethylases to activate genes in developing and static cells [62]. JMJD3 and UTX
mediate the interaction between the T-box transcription factor T-bet and the Brgl-containing
SWI/SNF remodeling complex, further enhancing their gene regulatory roles in differentiated
cells [22]. Because this study focuses on early differentiation, gene activation by JMJD3/UTX
via the T-bet and SWI/SNF complex may already occur by the 48-h mark. Alternatively,
JMJD3/UTX-independent H3K27me3 demethylation may underlie the inconsistency between
transcriptional initiation and the removal of histone-suppressive markers. Although UTX and
JMJD3 are essential for the demethylation of key development effectors, such as HOX family
proteins, cells lacking one or both KDM6 demethylases show minor changes in H3K27me3
demethylation patterns and may survive to differentiate [23]. The exact mechanisms responsi-
ble for this phenomenon have yet to be elucidated; nonetheless, KDM6-independent
H3K27me3 demethylation may occur during early differentiation. Genes whose promoters
previously demonstrated a loss of H3K27me3 in UTX-and-JMJD3-deleted ES cells [23] also
showed similar patterns in our data, although the peak is weak (data not shown), indicating
that both H3K27me3-specific demethylase-dependent and demethylase-independent histone
demethylation can co-exist during cell commitment.

Histone modifications play critical roles in biological processes, but their mechanisms are
not fully understood. Additionally, the histone code is not consistent with the phenotypes and
requires further interpretation. Differentiating cells undergo rapid changes in transcription
and translation, requiring not only expeditious chromatin modifications but also the fine-tun-
ing of transcriptional initiation. As reported by Heinemann’s group [63], GSK-J4 may have
unintentionally inhibited other KDM family members, which may have affected the results of
this study. Nevertheless, we showed the genome-wide scope of H3K27me3-related changes
that occurred during the early differentiation of a carcinoma cell line and the consequent
changes in its transcriptome, providing demethylase-dependent and demethylase-independent
transcription profiles. Further analyses of chromatin structures, other histone modification
contents and binding of transcription factors to regulatory sites where the conventional idea of
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repression by H3K27 methylation is inconsistent with observed phenotypes may provide
insight into the elaborate epigenetic regulatory system of differentiating cells.
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in the transfected NCCIT. (B) mRNA expression of JMJD3 and UTX in WT NCCIT and
JMJD3 knockout cell. (C) mRNA expression patterns of JMJD3 during RA-induced differentia-
tion and GSK-J4 inhibition. qRT-PCR were normalized for GAPDH. The values are presented
as the means + SE (n = 3). The asterisk represents the significant difference analyzed by one-
way ANOVA followed by Tukey’s HSD post hoc test (*: P < 0.05; ** P < 0.01).
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