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ABSTRACT Human status detection (HSD) is important to understand the status of users when interacting
with various systems under different conditions. Recently, although various machine learning algorithms
have been applied to analyze and detect human status, there are no guidelines to utilize machine learning
algorithms to analyze physical, cognitive, and emotional aspects of human status. Therefore, this study
aimed to investigate measures, tools, and machine learning algorithms for HSD by applying a systematic
literature reviewmethod.We followed the preferred reporting items for systematic reviews andmeta-analysis
(PRISMA) model to answer three research questions related to the research objective. A total of 76 articles
were identified using two hundred keyword combinations addressing topics under HSD in the fields of
human factors and human-computer interaction (HCI). The results showed that research on HSD becomes
important in industrial systems, focusing on how intelligent systems based on machine learning (ML) differ
from earlier generations of automated systems, and what these differences necessarily imply for HCI to
design and evaluation. The tools used to collect data for HSD on different parameters are broadly discussed.
Recent HSD studies seem to focus on cognitive load and emotion, whereas prior studies have focused on the
detection of physical effort. This research assists domain researchers in identifying HSD approaches using
different ML algorithms that are suitable for use in their research.

INDEX TERMS Human status detection, physical status, cognitive status, emotional status, machine
learning algorithms.

I. INTRODUCTION
Human status detection (HSD) is important in human-
computer interaction (HCI) fields to understand users’ status.
Researchers and practitioners in this field can provide design
insights by capturing physical, cognitive, and emotional sta-
tus. Traditionally, perceived user data from self-reporting
methods such as questionnaire have been widely used to
observe human status because it is simple, intuitive, and effec-
tive. However, these approaches have a weak point that users
sometimes do not know themselves exactly [1]. Recently,
with the development of data collection and analysis tech-
nologies, the HSD using physiological data becomes another
major method. As physiological indices on heart, skin, mus-
cle, and eye movements can directly provide information
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about the human status, researchers and practitioners do not
necessarily need to ask users about their status.

There are two aspects enabling this technology to use in
HSD: (1) sensing technologies and (2) analysis techniques.
Due to the advancement of sensors (e.g., miniaturization and
wireless), it is easier to get physiological data than before [2].
Evenwe can collect the data using a commercial products like
wearable devices. The second factor is the advancement of
big data analysis on physiological data using machine learn-
ing (ML) algorithms [3]. The overall process of analyzing
data usingML algorithms in these areas consists of threemain
phases. In the first phase, data acquisition is performed using
different tools. The second phase involves the process of fea-
ture extraction from the acquired data. The classification of
the extracted features is performed in the third phase to check
efficiency. ML approaches are effective for analyzing and
forecasting physical, cognitive, and emotional states, as well
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as encouraging autonomy [4]. ML is a technology that allows
adaptive automation to reach its full potential. It is extremely
useful for analyzing massive datasets of HSD, it also allows
the machine to comprehend human behaviors.

AlthoughML algorithms have been rapidly advancingwith
the syndrome of artificial intelligence in the world, it is
still difficult to utilize in HCI fields. As physiological data
from the human body are very sensitive and fluctuated, only
unstructured data is available when analyzing the data with
ML algorithms [5]. Therefore, without a careful selection of
ML algorithms depending on the data type, it is highly likely
that the model performance is lower than expected as well as
not knowing the decision process.

With this background, in this study, we aimed to pro-
vide the holistic understanding of HSD using ML algo-
rithms based on a systematic literature review (SLR) method.
We seek to offer a comprehensive review of available research
that investigates HSD usingML algorithms in HCI fields. The
study structure in terms of domain classification is shown
in Fig. 1. Physical, cognitive, and emotion are considered
the main components of human status and have been widely
investigated in HCI and Human Factors (HF) fields. Phys-
iological data are collected using different data acquisition
tools to detect physical, cognitive, and emotional status by
analyzing the data. Physiological indices on the heart, skin,
muscle, and eye are considered to detect physical state [6].
The cognitive state refers to the part of the brain that deals
with reasoning and process such as memory and attention
whereas the emotional state refers to emotions [7].

FIGURE 1. HSD domain classification.

The information gathered for the HSD is divided into
two categories: quantitative and qualitative. Collected data
are analyzed using different ML algorithms to detect human
status. Feature selection and classification are performed
depending on the data parameters. Based on these compo-
nents, the following research questions are addressed:

• RQ1: What kind of data are collected for detecting
human status in existing research?

• RQ2: How are the data collected using different data
acquisition tools for human status detection?

• RQ3: What type of machine learning and deep learning
algorithms are applied to analyze the human status data?

This study makes three important contributions: (1) a
comprehensive mapping of the current literature on HSD,
(2) a discussion of the results based on data acquisition tools,
and (3) a feature analysis of ML/DL algorithms with an
overview of future research paths. This review is planning
to start a cumulative research tradition in the future. The
reminder of this paper is organized as follows: Section 2 con-
tains the literature based on previous studies. Section 3 covers
the methodology for conducting SLR. The results based on
the RQs are presented in Section 4. This section’s under-
standing of HSD in terms of data acquisition for feature
analysis and classification using various ML/DL algorithms
is abstracted because it is meant to be an in-depth anal-
ysis of the area for interested scientists and researchers.
Section 5 presents the discussion and future aspects. Finally,
concluding remarks are presented in Section 6.

II. LITERATURE REVIEW
Research onHSD began in the late 1970s andHSD has a wide
range of applications in the field of HCI [8]. An examina-
tion of operators’ behaviors, perceptions, and emotions may
reveal potential threats when interacting with systems and
devices, enabling us to manage these instances more effec-
tively. HCI uses traditional processes to control and commu-
nicate when interacting between humans and machines [9].
Improved data acquisition techniques are invented with new
devices but most of the methods are still following traditional
processes. HSD can be used as an observation tool that
uses data on physical, cognitive, emotional, and monitoring
capacities [10] while adapting to data quality trade-offs [11].
The use of machine learning (ML) algorithms to analyze data
and develop applications has been increasing in many areas,
such as intelligent tutoring, robotics, medical diagnosis, stress
recognition, and decision support [12].

A literature review is conducted to gain an understanding
of the existing research on HSD, considering all important
aspects from data acquisition to data processing for identi-
fying human status. The overall process of analyzing data
using ML algorithms in these areas consists of three main
phases. In the first phase, data acquisition is performed using
different tools. The second phase involves the process of
feature extraction from the acquired data. The classification
of the extracted features is performed in the third phase to
check efficiency. Detailed explanations of these three phases
are provided below.

A. DATA ACQUISITION
Physiological data used to identify human status is often
analog, and it is transformed to digital form for analysis [13].
To acquire the data, different data acquisition tools are used.
The data obtained under ideal conditions are devoid of noise
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and artifacts. There are numerous approaches to understand-
ing human status. Techniques for collecting data include inva-
sive, semi-invasive, and non-invasive approaches. According
to this study, methods used to detect human status are elec-
troencephalography (EEG), functional magnetic resonance
imaging (fMRI), electrocorticography (ECoG), electrocar-
diography (ECG), electromyography (EMG), eye-tracking,
and magnetic resonance imaging (MRI). The acquisition of
appropriate data is the first step in information retrieval [14].
Different data acquisition techniques are described below.

1) ELECTROENCEPHALOGRAPHY (EEG)
EEG is a technique used to determine anomalies in brain
electrical activity. The findings appear as wavy lines on the
output console. Electrodes, which are connected to the skull
with the assistance of adhesive, conducting substances, are
used to capture impulses from the brain. It is a simple pro-
cess that yields trace matching in different brain areas [15].
According toMousa et al. [16], EEG is sensitive to secondary
current characteristics. The data acquisition procedure com-
prises electrodes collecting data from the scalp, amplifiers
increasing the data amplitude, an A/D converter digitizing
the analog data, and a recording device for storing and dis-
playing the processed data. The 10–20 international system
dominates the positioning of electrodes on the scalp.

2) FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)
fMRI is another data collection approach that provides a
structural and functional perspective of the brain [17]. fMRI
has the advantage of being able to image specific brain
regions while the person is performing certain behaviors.
With the use of variations in blood flow to specific areas of
the brain, it can detect which sections of the brain are engaged
during each task. The fact that hemoglobin in human blood
is magnetic and hence responds strongly to the magnetic
field utilized in fMRI provides substantial temporal evidence.
Even with short simulation durations, fMRI may detect activ-
ity [18]. The finding of good or incorrect functioning of
regions is based on relative variances in the hemoglobin
response in diverse regions.

3) ELECTROCORTICOGRAPHY (ECoG)
Invasive data acquisition has health restrictions, stability, and
permanence difficulties, which ECoG addresses [19]. The
performance of ECoG in two-dimensional tasks was vali-
dated by Kang [20] and demonstrated how it outperformed
invasive approaches. Furthermore, epidural ECoG (EECoG),
a form of ECoG, is superior to standard ECoG. These tech-
niques allow individuals to be rehabilitated with minimal
invasiveness and high precision.

4) ELECTROCARDIOGRAPHY (ECG)
ECG is a technique used to measure and record the elec-
trical potentials of the heart [21]. Electrical activities are
picked up by ECG acquisition equipment via sensors attached
to the human skin, and the electrical activities are drawn

in millivolt ranges. During the normal cardiac function,
both atria contract together, followed by ventricular con-
traction [22]. The depolarization and repolarization stages
of the muscle fibers of the heart can be roughly separated
into ECGs. Basic features (amplitudes and time intervals) are
provided by the ECG data analysis and classification system,
which are used in the automatic analysis [23]. Several studies
have resulted in the development of numerous arrhythmia
classification techniques. Digital data analysis, fuzzy logic,
genetic algorithms (GA), artificial neural networks (ANN),
self-organizing maps, support vector machines, bayesian
and wavelet-domain hidden Markov models, and others are
among these methodologies. This document provides a broad
overview of the various strategies and works that have been
proposed.

5) ELECTROMYOGRAPHY (EMG)
EMG data are quickly becoming one of the most important
biological characteristics with numerous uses in HSD [24].
EMG is a bio-potential data collected by electrodes via the
skin of a muscle fiber to monitor muscle function [25]. It is
also linked to neurological data that travel from the spinal
cord to themuscles [26]. The extraction of features and classi-
fication are the two elements of pattern recognition for EMG
which are performed by the ML algorithm. The dimension-
ality of the EMG dataset was decreased to generate a feature
vector in the feature extraction method [27]. This is beneficial
for retrieving useful data and removing unnecessary informa-
tion. These factors influence pattern recognition accuracy and
categorization time. To preserve structural information, the
features are recovered using segmentation of the EMG data
rather than individual samples.

6) EYE-TRACKING
Eye-tracking technology is a rapidly expanding discipline
that detects and analyzes human visual processing for interac-
tive and diagnostic applications. Eye-tracking tools and tech-
niques may be used in a variety of scientific fields, including
HSD, to explore the quantitative data underpinning visual
processes in an unobtrusive manner [28]. The eye tracker
offers objective and quantitative proof of the user’s visual and
attentional processes in its diagnostic capacity. Eye move-
ments are often collected in this capacity to determine the
user’s attentional patterns concerning a particular stimulus.
The use of eye-tracking equipment in diagnostic applications
is often inconspicuous. Furthermore, the projected stimulus
is rarely required to vary or respond to the viewer’s attention.
The eye tracker is utilized in this scenario to record eye
movements for post-trial, offline evaluation of the viewer’s
gaze during the experiment [29].

7) MAGNETIC RESONANCE IMAGING (MRI)
MRI is a technique that uses magnets and radio waves to
create detailed images of the brain [30]. Along with detect-
ing abnormalities, MRI also aids in determining the origin
of the anomalies and consequently potential rehabilitation
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strategies. MRI can distinguish between opposing sides of
the brain that are normally similar to determine which side
and section of the brain are collapsing. Balafar et al. [31]
investigated MRI image segmentation methodologies, imag-
ing modalities, noise reduction, non-homogeneity correction,
and segmentation algorithms. According to the study, MRI
is capable of detecting anomalies in the brain at the seed
stage and generally offers high-contrast brain images, out-
performing computerized tomography (CT) scans. Various
segmentation approaches have been considered, including
fuzzy C-means, Gaussian mixture vector, learning vector
quantization, self-organizing maps, watersheds, and others,
many of which fail because of poor picture contrast, weak
image borders, and unknown noise participation.

B. FEATURE EXTRACTION
To achieve higher accuracy, classificationmethods are crucial
along with the selection of significant features. The acquired
data were pre-processed to reduce noise and additional data
amplification is required to complement data acquisition
techniques. Electromyogram (EMG) artifacts and electroocu-
logram (EOG) artifacts are two of the most common artifacts
observed when collecting EEG data. EMG noise is produced
by muscle activation. EOG is produced every time the eyes
move, even for basic responses such as blinking. Because
EOG and EMG are 40–100 times stronger than EEG, they
are easier to spot. To separate these aberrations, regression
algorithms, which provide satisfactory EOG correction in
both time and frequency domains, and spatial filtering, which
can consistently filter out EOG and EMG data from EEG
data obtained, can be used. Principal component analysis
(PCA), independent component analysis, and dipole mod-
eling are popular examples for feature selection [32]. If the
characteristics are adequately extracted, the mental states can
be successfully separated during the classification step. The
popularity of non-invasive data acquisition techniques has left
the work of data smoothing and filtering unfinished. Noise
and artifacts are present in non-invasive data, and muscle
action obstructs the data. The most common noise reduction
techniques are listed below.

1) LINEAR FILTERING
It is typically employed to filter out noise in the form of
analog data that are not in the brain’s frequency range. Low-
pass and high-pass linear filters are the two types of linear fil-
ters available. Minguillon et al. [33] emphasized the need for
artifact removal in low-cost yet successful EEG data capture,
as well as a review of existing artifact removal methods and
their relevance. Exogenous (machinery faults) or endogenous
(muscle, eye, or other cardiac activity- noise) sources produce
artifacts. There are three ways to deal with artifacts in EEG
data acquisition.

• Artifact avoidance: Avoid artifacts by following up on
the subject’s movements and the machine’s operation.

• Artifact rejection: Contaminated experiments are dis-
carded.

• Artifact removal: Pre-processing methods are used to
remove artifacts.

2) ADAPTIVE FILTERING
The optimization theory underpins a linear adaptive filter.
This filtering uses an adaptive approach to filter the collec-
tion of acquired data and regulate the adjustable parame-
ters. It determines how the filter’s design can be changed in
response to any feature picked from the data under investi-
gation. It is a two-stage closed-loop feedback system, with
the first phase being selection and the second being cost
function-based adaptation (which is the basis of the proper
performance of a filter). The optimized cost function is sup-
plied to an optimization algorithm, which updates the filter
transfer function to attain the lowest cost for subsequent
epochs. Nonlinear adaptive filtering techniques such as ANN,
fuzzy logic, and GA lead to better solutions [34].

3) SPATIAL FILTERING
This is a supervised approach for reading EEG data using a
minimal number of additional channels that are a linear mix-
ture of the original channels. The goal is to break down a data
into sub-components with the greatest possible inter-class
difference [35].

4) MOVING AVERAGE ALGORITHM
The moving average algorithm is a well-known method for
smoothing data. This method creates a new array of raw noisy
data composed of equidistant points. The smoothing effect
becomes more severe as the filter width increases.

5) DISCRETE WAVELET TRANSFORM (DWT)
DWT employs a spectral estimating approach that allows
generic functions to be expressed as an endless series of
wavelets [36]. It enables data analysis in a variety of fre-
quency ranges and resolutions. Scaling and wavelet func-
tions, which are related to low-pass and high-pass filters,
respectively, were used to decompose the data. For the high-
dimensional, multivariate series, Li [37] discussed the devel-
opment of an accurate, efficient, and flexible classification
system based on PCA. The multivariate time series (MTS)
includes both time and variable-based dimensions, causing
traditional classification approaches to fail. PCA is the most
often used dimensionality reduction approach, as the princi-
pal component series has fewer dimensions than the original
but retains most of the information about the original MTS.

6) FAST FOURIER TRANSFORM (FFT)
Power spectral density (PSD) estimation is used in FFT to
assess the properties of the analog data [38]. The principal
EEG spectra were found in the four frequency bands alpha,
beta, gamma, and theta. To selectively represent the EEG
sample data, PSD estimation was used to determine the char-
acteristics of the obtained EEGdata to be studied. Themethod
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has the advantages of being low-cost, simple to implement,
sensible, and efficient. This is significant for practical BCI
because of the high classification accuracy that comes with
it [39].

7) WAVELET PACKET DECOMPOSITION (WPD)
Ting et al. [40] proposed employing a novel approach based
on WPD to extract features from EEG data generated during
a motor imagery task. WPD is more advanced than wavelet
decomposition (WD) because it uses several bases. Differ-
ent bases result in different categorization performances,
which is an advantage. Because EEG data are non-stationary,
established approaches such as the Fast Fourier Transform,
auto regression model, time-frequency analysis, and wavelet
transform are limited, prompting the invention of this unique
method based on WPD.

C. DATA CLASSIFICATION
Any HSD system, particularly one designed for real-time
applications, is strongly reliant on classification. Misclassi-
fication is often difficult with higher accuracy in the result.
Effective, precise, and efficient categorization of extracted
data is necessary to establish a high-performance system.
Various methods have been developed to extract appropriate
characteristics for classification from the acquired data are
described below.

A generative classifier, such as Bayes quadratic, classifies
a feature vector by selecting the class that best fits the feature
vector [41]. SVM is a supervised learning model that knows
how to categorize a feature vector [42]. During classification,
a static classifier, such as a multilayer perceptron, cannot
consider dynamic temporal information [43]. A dynamic
classifier, such as a hidden Markov model, may adjust as
the temporal dynamics change. The minor fluctuations in the
training data set do not affect a stable classifier such as a linear
discriminant analysis (LDA) [44]. An unstable classifier is
sophisticated where minor changes in the learning set can
result in significant structural changes because it does not
know when to end training [45]. Recursive partitioning can
be considered as an unstable classifier.

On the other hand, a normalized classifier can be consid-
eredmore robust resulting in better performance. To bifurcate
classes, these classifiers employ linear functions. SVM and
LDA are examples of linear classifiers. Artificial neurons
were used to create nonlinear boundaries. Neural networks
are widely used for HSD, with MLP being the most promi-
nent. Nonlinear Bayesian classifiers are generative, resulting
in nonlinear decision-making limits because they are too slow
for real-time HSD. Nearest neighbor classifiers, which are
discriminative and simple, are applied to identify classifiers
with nonlinear boundaries [46]. For enhancing classification,
aggregating classifiers can be used as a modern and popular
approach. Boosting, in which each classifier complements the
previous one, voting, which is the most basic and popular, and
stacking, in which the input to each meta-classifier is output
from the preceding classifier are all examples of combination

tactics [47]. Basic classification algorithms generate a single
model from training data. A model’s interpretation is very
simple and has limits when it comes to reaching higher
accuracy. In this scenario, a hybrid classifier is considered
as a popular classifier because it mixes the outputs of many
classifiers to meet the needs of the application [48].

III. METHOD
The SLRmethod is chosen to fulfill the study aim and answer
the research questions among the many kinds of literature
because it is a systematic and repeatable procedure [49]. The
SLR approach is well known as a useful tool for assessing
published work [50]. We have considered four stages of the
Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines: identification, screening, eli-
gibility, and final inclusion [51]. The overall flow of the
procedure is shown in Fig. 2.

A. SEARCH AND SELECTION PROCESS
1) IDENTIFICATION STAGE
In this phase, a search and collection of articles are conducted
appropriately. Twenty keywords are elicited from the research
questions, and they are divided into four groups: Group A,
Group B, Group C, and Group D (Table 1). Group A consists
of general keywords of HF and HCI domains. Keywords
related to the algorithms are considered in Group B. The
human status-related keywords are pondered in Group C
followed by the measuring tools in Group D. Searches
from the databases are conducted using a combination of
four keywords from different groupings and the ‘‘AND’’
operator.

For example, keyword combinations are selected such as
‘‘Human factors + Supervised learning + Physical work-
load + Physiological measures,’’ and ‘‘Human-Computer
Interaction + Machine learning + Cognitive load + Elec-
troencephalography.’’ Consequently, 600 keyword combina-
tions are used to collect articles (5× 5× 6× 4 = 600). The
resultant articles are accumulated after applying all the key-
word combinations. Six thousand four hundred eighty-eight
articles are gathered from the databases of three digital
libraries (ScienceDirect: 2548; IEEE Xplore: 1061; ACM:
2879). The search and collecting processes are conducted in
October 2021.

2) SCREENING STAGE
The screening procedure is divided into two phases. First,
the reference management program ‘‘Mendeley’’ is used to
remove duplicate data. After deleting duplicates from the
6488 articles, 2452 records remain. Then, using the following
screening criteria, the titles and abstracts of the remaining
articles are excluded: 1) publications that are not related to
HSD, 2) articles that do not consider algorithms to analyze
data, and 3) papers that are solely technical, analytical, and
computer science in nature. A total of 2023 items are left after
these two filtering procedures.
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FIGURE 2. Flow diagram of systematic search and selection process.

TABLE 1. Keywords used for searching literature and selecting articles.

3) ELIGIBILITY STAGE
In this stage, full-text articles are reviewed. 1956 articles
that are not closely related to RQs are excluded. Sixty-seven
records are selected to answer the RQs.

4) FINAL INCLUSION STAGE
The references of the remaining 67 papers are traversed dur-
ing reviewing the articles at the eligibility stage. New articles

are discovered that are missed by the search engine. These
articles are incorporated, bringing the total number of records
to 76.

B. DATA ANALYSIS AND STRATEGY
First, all the final selected articles are reviewed thoroughly,
and based on the metadata gathered, a few graphs are plotted
which open a new dimension for the researchers. To answer
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FIGURE 3. Representation of numbers of articles per year based on three categories.

RQ1, 76 articles are selected based on a two-step procedure.
First, full articles are reviewed and their relevance to RQ1 is
identified. Second, tables and graphs for the definitions and
descriptions of functions, tasks, and information are created
in the context of the RQ1. To answer RQ2, 69 articles are
chosen using a two-step process. Primarily, selected articles
are fully reviewed and their relevance to RQ2 is identified.
In the review step, different data acquisition tools and their
usage are comprehensively evaluated. Next, a table is created
for the definition and description of the data acquisition tools.
Additionally, the relationship between data type and data
acquisition tools in the context of an HSD is established.
To answer RQ3, 70 articles are distinctly reviewed based on
the algorithms used to analyze the data and results. In the
review step, selected articles are evaluated based on algorithm
selection for different data types, selection of features, and
performance accuracies. Accordingly, a table is presented
along with a discussion to answer RQ3.

IV. RESULTS
The results are organized as follows. First, a metadata analy-
sis is performed based on the initial implications that describe
the impacts of data categories in terms of physical, cognitive,
and emotional. Then, the results of the RQs are demonstrated
by taking all the necessary records of selected articles.

A. METADATA ANALYSIS
Three categories are considered for HSD classification: phys-
ical, cognitive, and emotional. Year-wise metadata analysis
is performed based on selected articles from 2015 to 2021
(Fig. 3). The blue bar represents the published articles per
year on physical status whereas the orange bar represents the
cognitive status. The emotion category is represented by a
gray-colored bar. The results show that the total number of
published articles on HSD has increased, with research on
cognitive status having the highest trend in recent years.

Another metadata analysis is performed based on selected
articles from 2015 to 2021. Fig. 4 represents two main cate-
gories of analysis: quantitative and qualitative. The orange
line indicates the quantitative category whereas the qual-
itative category is indicated by the blue line. Based on
the plotted graph of selected articles, it is clearly shown
that the quantitative category has a much higher impact on
current research than the qualitative category. This will be
very helpful for fellow researchers in choosing analytical
categories.

Data type is categorized into five segments based on the
acquired data using different data acquisition tools. Five types
of data from brain, heart, skin, muscle, and eye are repre-
sented by five different colors. As per the represented graph
(Fig. 5), the data related to brain have the highest impact on
research, as it is the largest region and is represented by the
blue line. The second highest acquired data type is the heart,
which is represented by the orange line.

B. RQ1: WHAT KIND OF DATA ARE COLLECTED FOR
DETECTING HUMAN STATUS IN EXISTING RESEARCH?
The data collected for HSD are classified into two main
categories: quantitative and qualitative. In the quantitative
category, five main regions are used to collect data using
different data acquisition tools: brain, heart, skin, muscle, and
eye. In the qualitative category, two main regions are con-
sidered for collecting data: psychological measures and self-
reported measures. Each region has different measurement
parameters. Fig. 6 describes the classification of parameters
for the physiological data.

C. RQ2: HOW ARE THE DATA COLLECTED USING
DIFFERENT DATA ACQUISITION TOOLS FOR HUMAN
STATUS DETECTION?
The data collection process is critical in all forms of
research, but it is more important for human status data
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FIGURE 4. Representation of articles per year based on Qualitative and Quantitative.

FIGURE 5. Year-wise trend based on measurement categories.

because the method must be error-free and the data must
be free of noise to improve the accuracy of the algorithm.
Table 2 presents some of the most frequently used devices
for gathering human status data for the physical and cognitive
followed by emotional category. As a result, a fast view of
the devices is displayed, together with their physiological
characteristics.

D. RQ3: WHAT TYPE OF MACHINE LEARNING AND DEEP
LEARNING ALGORITHMS ARE APPLIED TO ANALYZE THE
HUMAN STATUS DATA?
Data collected using different data acquisition tools are ana-
lyzed using different ML/DL algorithms. Feature extraction

is performed first, and then classification is accomplished
with significant algorithms for the efficiency of accuracy.
HSD is performed for three categories: physical, cognitive,
and emotional. Each category has a different data-collection
method for the parameter. Wavelet coefficients are used
to extract significant features, one of which is the mod-
ified wavelet energy parameter. To reduce redundancy
and maximize relevance, maximum relevance (mRMR) is
employed as the feature selection method. The results of
the ML/DL techniques are described in Table 3 which
implies that the suggested techniques have different per-
formances in specific categories. Fig. 7 represents a com-
bination of different methods and number of articles
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FIGURE 6. Classification of parameters for physiological data.

published. Depending on the features and nature of the
data, two ML/DL methods are combined to obtain higher
accuracy.

V. DISCUSSION
This study presents a novel, framework-driven examination
of the data tying human aspects to detect human status- a topic
that has received limited attention in the management litera-
ture so far. 76 journal articles are included in this SLR, which
offer consistent and theoretically coherent different types of
data on the influence of HSD (RQ1). All the publications
show evidence that how the data is collected using different
data collection tools that might result in higher influence for
future studies (RQ2). In addition, several ML/DL algorithms

are analyzed, and the performance accuracies show that the
HSD has an intermediate human impact that might have a
detrimental influence on performance (RQ3).

A. TYPES OF DATA FOR DETECTING HUMAN STATUS (RQ1)
The data gathered for HSD are categorized into two main cat-
egories with different measuring parameters. Figure 6 depicts
the categorized parameters for collected physiological data.
In the quantitative category, collecting brain data, most of
the EEG research focused on frequency band analysis (i.e.,
the EEG data is decomposed into frequency bands: alpha,
beta, gamma, delta, and theta, which are then analyzed for
power differences). Several studies look at frequency band
ratios, such as the alpha/beta ratio. In addition, a few research
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TABLE 2. Data acquisition devices used to collect physiological data for physical, cognitive, and emotion categories.

examine simple time-domain parameters such as data average
and variance. A few research employ pre-built algorithms to
analyze complex data (e.g., attention) presented by the EEG
equipment.

Furthermore, eye blinking rate, or the number of blinks per
minute, is employed as a characteristic in various research.
Few studies look at interhemispheric differences (power
disparities between the right and left hemispheres), while
few look at non-directed functional connectivity measure-
ments (i.e., statistical associations between spatially distinct
brain areas). One research employs frequency band power
cross-correlations between electrodes, while another uses
phase-locking values, which measure phase synchronization
between pairs of electrodes ( [109]; [110]; [111]). The col-
lected data, the BOLD contrast, is mentioned unambigu-
ously in all fMRI experiments. Furthermore, studies employ

directed functional connectivity measurements, in which
temporal precedence information is used to discover the
effect of brain areas and the direction of that influence [112].

Heart rate (HR), or the number of heartbeats per minute,
and heart rate variability (HRV), or the fluctuations in the time
intervals between successive heartbeats termed inter-beat
intervals are used as parameters for heart data [113]. The
gathered data is employed in the examined research, and
metrics related to skin conductance level and skin conduc-
tance response are properly considered. A temperature sensor
is also widely used in various experiments to assess skin
temperature [114]. Neurophysiological activity is considered
in physical measurements for muscle data. Muscle activation,
extension, relaxation, muscle force, and strength are con-
sidered parameters for HSD under quantitative data collec-
tion [62].
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TABLE 3. Significant algorithms with accuracy on performance.

In the qualitative category, two types of measures are
studied: psychological measures and self-reported measures.
Questionnaire on gender, education, infection, age is consid-
ered under psychological measures whereas neurophysiolog-
ical activities are considered as an important parameter for
self-reported measures for HSD [66].

B. TOOLS USED TO COLLECT DATA FOR HSD (RQ2)
An overview of the data gathered for HSD using different
data collection tools is represented in Table 2. For brain data,
low-cost consumer-grade EEG devices are used mostly. The
mostly used devices are ESI Neuro-Scan System [98] and
Emotiv EPOC [72]. The ActiveTwo system [103] is also uti-
lizedmostly to gather data for the emotion category. Tobii Eye
Tracker [86] is used for eye tracking andMyo armband [62] is
used to get muscle data. The Shimmer3 [52] unit connects to

one channel of galvanic skin response (GSR) data gathering
and offers preamplification. Using the Shimmer ear clip or
optical pulse probe, the GSR unit can measure the electrical
properties or conductance of the skin, as well as capture an
optical pulse data and convert it to estimate heart rate.

In addition to real-time data collection using different
devices, qualitative data collection methods are also impor-
tant for detecting human status. NASA task load index
(NASA-TLX) is applied to measure physical [66] and
cognitive [78] statuses where wechsler adult intelligence
scale (WAIS) is included in some HSD studies [108] to
measure intelligence and cognitive ability. In most of the con-
trolled lab setups for inducingHSD, a biological phenomenon
known as ’startle’ (a quick reaction to a strong stimulus)
occurs, which crosses various human body response systems:
peripheral physiology, brain physiology, and behavior [118].
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FIGURE 7. Combination of algorithms on number of articles.

As a result, dealing with this reaction when measuring data
for HSD is an inherent barrier in laboratory experiments.
However, when individuals fill out a self-report form, the
researchers have the challenge of accurately capturing the
amount of startle reaction.

1) ADVANTAGES AND DISADVANTAGES OF DATA
COLLECTION METHODS FOR HSD
The advantages and disadvantages of acquired data as a
medium for HSD are based on a review of previous work.
The following are some of the benefits:

• Higher data accuracy than other modalities.
• Robustness.
• Delivering information on the state of operation.
• Tolerance for physical or mental impairments.
• Magnificent effectiveness on results.
• Not too invasive.
• Providing a neutral evaluation.

• Allowing for quick data collection.
• Resulting in real data that has been unmasked.

The disadvantages are mentioned below:

• Complex data processing techniques.
• Difficult in developing models.
• Connectivity concerns in data acquisition.
• Resulting data errors.
• Adding non-stationary nature to overall complexity.
• Complicated data collection process.
• Different impedance levels on data processing.
• Training and test data may not be in synchronization.
• Mismatch in the subject distribution.

C. PERFORMANCE OF ML/DL ALGORITHMS
FOR HSD (RQ3)
The linear and non-linear analysis of characteristics selected
from the obtained data is undertaken to evaluate human status.
The data are classified using popular ML algorithms like
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logistic regression, naive bayes, k-nearest neighbors, decision
tree, and support vector machine (Table 3). HSD does not
rely on sampling from the general population and invari-
ably results in changed physiological data [119]. Successful
experimentation on the new strategy of merging several data
sources is accomplished in a classic work. As a result, a wide
range of data is captured in real-time, including acceleration,
electrodermal activity, heart rate, skin response, eye gaze
data. A brief introduction of various ML algorithms is pro-
vided below.

Statistical approaches to measuring forecast accuracy cus-
tom domain adaptation (CDA) obtains higher accuracy of
98.18% [77] where mean forecast error (MFE) and mean
absolute deviation (MAD) give an accuracy of 91% in cog-
nitive load measurement [108]. An accuracy of 100% is
achieved under the physical category by k-star which is an
instance-based regressing method, where the estimation for a
given input is calculated from samples [68]. Logistic regres-
sion (LR) is used for the emotional category, and it achieved
higher accuracy of 80.78% [95].

ML algorithms are the most effective, accurate, and effi-
cient classification algorithms of extracted data with higher
performance for HSD. Support vector machine (SVM) is
a highly effective classifier because of its training speed,
indifference to overtraining, robustness, and ability to over-
come the dimensionality curse [42]. Using SVM for clas-
sification, an experiment on emotion detection module is
conducted considering speech and image data, with promis-
ing results of 99.87% [96]. High-dimensional feature space,
on the other hand, might leads to larger SVM generalization
mistakes [120]. For the physical category, SVM achieves the
highest accuracy of 93.20% where physical exertion model-
ing is conducted using multiple physiological measures [59].
For decoding motor and mental imaginary, an accuracy of
95.52% is achieved using SVM under the cognitive cate-
gory [72]. SVM’s generalization performance is better than
other classifiers because it divides the whole space into sam-
ple subspaces. An accuracy of 94.66% is achieved using long
short-term memory (LSTM) [80] for the cognitive category
and 84.12% accuracy is achieved by linear discriminant anal-
ysis (LDA) for the physical category [56].

Random forest (RF) combines classification, regression,
density estimation, manifold learning, semi-supervised learn-
ing, and active learning into a single framework [121]. These
employ bootstrapping to sample the provided dataset and
pick a portion of characteristics to disperse the tree’s nodes,
injecting unpredictability into the output from individual
trees. These classifiers are resilient and excellent at handling
outliers because of randomization, making them excellent
for real-time HSD [122]. An accuracy of 88.80% [65] is
achieved using an RF classifier for the physical category
whereas cognitive obtains an accuracy of 56% [84]. Artificial
neural networks (ANN) based classifier feed-forward neural
network (FFNN) gives 95.80% accuracy for physical cate-
gory [63]. EEG-based emotion recognition using wavelets
achieve the highest accuracy of 91.20% [99]. Each neuron in

an ANN is modeled after the neurons in a real neural network,
and the right design of which can lead to the construction of
a good classifier [43].

DL has proven to be a particularly useful technique in
recent decades due to its ability to manage large volumes of
data. Hidden layers have eclipsed traditional approaches in
popularity, particularly in pattern recognition. Convolutional
neural networks (CNN) are one of the most often used deep
neural networks [123]. An accuracy of 99.79% is achieved by
applying CNN under the cognitive category [76] and 97.84%
for physical [56]. Deep neural network (DNN), convolutional
recurrent attention model (CRAM), and graph convolutional
neural network (GCNN) achieve prominent average efficien-
cies of different datasets, respectively, which both receive
better performances than most of the compared studies.

D. THEORETICAL CHALLENGES
As with any review, the obstacles faced lead to a variety
of restrictions, such as study selection, relevant information
selection, and findings presentation, analysis, generalization,
and implication. The availability of studies addressing spe-
cific components of the HSD limits the outcomes of a review.
This raises the possibility that more research factors have yet
to be investigated, as well as the possibility that the number of
research reporting a certain research finding is not necessarily
connected to its relevance. Another prevalent restriction is
the risk of missing some important material that does not
meet the systematic extraction requirements or is missed by
the keywords. This may be because the search considers
broad topics and associates academic disciplines. However,
given the substantial body of data that supports the theoretical
framework offered, this is unlikely to have a major impact on
findings.

E. APPLICATION
In many instances, ML works effectively as long as there
is a correlation between the job at hand and the availability
of data. ML has infiltrated many other sectors, including
medical, pharmacy, law, business, finance, art, agriculture,
photography, sports, education, media, military, and politics,
due to the ability to make choices or predictions based on
data. The wide spectrum of applications under HSD covers
intelligent tutoring [115], virtual reality [124], medical diag-
nosis [125], automobile industry [126], robotics [127], and
decision support [128].

VI. CONCLUSION
HSD is a psycho-physiological response to everyday occur-
rences. There are several studies available that have con-
ducted research in a controlled laboratory environment and
shown excellent performance in terms of accuracy in detect-
ing human status. Many devices are now available on the
market that may be used to collect physiological data. These
devices are simple to operate and produce minimal noise
and errors. As a result, they may be used to evaluate and
measure human status without interfering with the user’s
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normal activities. The raw data are then pre-processed by
employing filters to remove artifacts and noise, followed
by feature extraction and selection. To create classification
models, a variety of machine learning techniques are used.
The ultimate goal of HSD is to create a model with incred-
ible accuracy that is both effective and economical. In this
study, a systematic literature review is conducted to under-
stand the significance of ML methods in HSD. This review
provided here summarized key details from earlier research,
including device names, evaluation measures, methodologies
employed, advantages, limits, and applications. This research
will undoubtedly assist fellow researchers in gaining a thor-
ough understanding of HSD in physical, cognitive, and emo-
tional categories.
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