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Degree distributions under general node removal: Power-law or Poisson?
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Perturbations made to networked systems may result in partial structural loss, such as a blackout in a power-
grid system. Investigating the resulting disturbance in network properties is quintessential to understand real
networks in action. The removal of nodes is a representative disturbance, but previous studies are seemingly
contrasting about its effect on arguably the most fundamental network statistic, the degree distribution. The key
question is about the functional form of the degree distributions that can be altered during node removal or
sampling. The functional form is decisive in the remaining subnetwork’s static and dynamical properties. In this
work, we clarify the situation by utilizing the relative entropies with respect to the reference distributions in the
Poisson and power-law form, to quantify the distance between the subnetwork’s degree distribution and either of
the reference distributions. Introducing general sequential node removal processes with continuously different
levels of hub protection to encompass a series of scenarios including uniform random removal and preferred
or protective (i.e., biased random) removal of the hub, we classify the altered degree distributions starting from
various power-law forms by comparing two relative entropy values. From the extensive investigation in various
scenarios based on direct node-removal simulations and by solving the rate equation of degree distributions, we
discover in the parameter space two distinct regimes, one where the degree distribution is closer to the power-law
reference distribution and the other closer to the Poisson distribution.
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I. INTRODUCTION

Complex systems of interacting elements found ubiqui-
tously in nature and society can be represented as networks
[1,2]. Depicting a system in the framework of network science
helps us to glean insight about the system. For example, the
analysis of the network structure residing in a given system
can provide valuable leads to uncovering the fundamental
question: How do entities form their interactions? Under-
standing the network structure improves our knowledge of a
system such as emergent dynamical patterns depending on
given structures [3,4]. Examples include outbreaks of epi-
demics [5–7], blackouts in power grids [8–10], traffic jam on
roads [11,12], and metabolic functions in organisms [13–16].
Yet, there is always uncertainty in figuring out genuine struc-
tures of empirical networks in the real world, as we inevitably
rely on experiments and observations to access the real-world
networks. Moreover, real systems naturally undergo structural
changes, caused by the appearance of obsolete parts, random
failure, or intentional malicious attacks.

Among the basic statistical properties of networks, the
distribution of degree, i.e., the number of neighbors connected

*kgoh@korea.ac.kr
†lshlj82@gnu.ac.kr
‡sonswoo@hanyang.ac.kr
§deoksunlee@kias.re.kr

to each node, has received by far the most attention since
the early days due to its decisive role in virtually all aspects
of network systems, including phase transitions [4], dynami-
cal processes [17], and controllability [18]. In particular, the
notion of scale-free (SF) networks was introduced to denote
a class of networks exhibiting a degree distribution with a
power-law form, P(k) ∼ k−γ for large values of the degree k
[19], and the degree exponent γ has been shown to make (both
literally and figuratively) critical differences in the aforemen-
tioned aspects [2–7]. Despite such a far-reaching impact of
the power-law degree distributions, their statistical reliability
[20] and their implications [21] have constantly been under
scrutiny. A recent and intense debate was about whether the
SF networks are common or rare in reality [22,23]. This
debate is in fact inseparable from the complication caused by
the inherent finiteness of real networks. The scale-freeness of
the finite-sized real networks demands the application of the
renowned concept of finite-size scaling in statistical physics
[24], and uncertainty and incompleteness in measurement and
sampling [25–28]. The key question is whether the functional
form of the degree distribution remains a power law under
the partial sampling or loss of network structure, informa-
tional or real. In fact, a random or biased sampling is the
reverse process to the random failure of or the intentional
attack to nodes and the consequent removal of them [29–32],
where one can observe only the remaining part of the original
network.
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Partial loss or sampling of a network can be correlated
with the centrality of individual nodes [33,34]. Biological
evolution proceeds with natural selection that systematically
filters species with lower fitness, which is usually related to
node centrality, such as degree. In social systems, there can
be complex scenarios such as selective vaccination to prevent
epidemics or an intervention to the bankruptcy spreading in
a financial system. In these cases, it is crucial to target the
most appropriate nodes, which one identifies via their degree
or other node properties, because structural modification in
these systems can be irreversible. Understanding the structural
properties under selective observation is also useful to de-
termine relevant features in graph-based learning techniques
[35].

Given such ubiquity of degree-dependent loss or sampling
of networks and the importance of characterizing correctly
the form of the degree distribution, here we present a rep-
resentative case study of the SF networks under the attack
to and consequent removal of nodes depending on degree,
and investigate how their degree distributions evolve in such
circumstances. Recent studies [36,37] have reported that SF
network models such as Barabási-Albert (BA) model [19] and
the configuration model [38] find their degree distributions
converging towards the Poisson (PO) distribution as nodes are
removed randomly or with a preference to the hub nodes. The
claim is based on the Kullback-Leibler (KL) divergence [39]
to measure the distance between degree distributions. In other
words, SF networks appear to converge to the Erdős-Rényi
(ER) random graph [40] under random node removal. The
study makes an impression that a power-law degree distri-
bution changes to the PO distribution under node removal,
which may appear inconsistent with the studies claiming that
sampling does not change the form of the degree distributions
of the SF networks [25–28].

In this work, instead of focusing on a couple of limited
cases, we introduce the general node removal strategy adjust-
ing continuously the level of hub protection and study the
variation of the degree distribution as we remove nodes for
a given hub-protection level. Starting from the SF networks
constructed by the static model with the adjustable degree
exponent [41,42] and the BA model [19], and using the KL
divergence, also called relative entropy, as a distance measure,
we show that the parameter space, encompassing the limited
cases reported in Refs. [36,37], is divided into the regime
where the degree distribution is closer to the PO distribu-
tion and the regime where it is closer to the reference SF
distribution—the degree distribution of the static model. As
shown in Fig. 1, the SF regime exists, being even larger than
the PO one. Therefore, the SF property is preserved over a
wide range of parameters. The two reference distributions are
shown to be invariant in form and attractive in their respective
regimes, under random node removal, suggesting that they can
be considered as sort of a stable fixed point in the space of
degree distributions.

The rest of the paper is organized as follows. We intro-
duce our general node-removal scheme in Sec. II. Applying
the removal process to SF networks, we investigate how the
degree distribution changes under different types of node
removal in the first part of Sec. III. The remaining part of
Sec. III is dedicated to presenting the main results by using

FIG. 1. Scale-free (SF) and Poisson (PO) regimes on the f –θ

plane. The variables f and θ are the fraction of removed nodes
and the parameter that characterizes the level of hub protection in
node removal [Eq. (1)], respectively. The degree distribution of the
network remaining after node removal is closer to the reference SF
(PO) distribution in the SF (PO) regime. The boundary between the
two regimes is obtained by comparing the two relative entropies with
respect to the two reference distributions [Eq. (4)] from direct sim-
ulations (filled points with solid lines dividing the two regimes with
distinct colors) and from the rate-equation approach (dashed lines)
as detailed in the text. The initial networks are (a) the static-model
SF networks [41] with the degree exponent γ = 2.5 and (b) the
BA model networks [19] (γ = 3), both having initial mean degree
10. A couple of circular points indicate the parameter sets that are
considered in Fig. 3.

the relative entropies to systematically explore the distance
to the reference distributions. We also simply perform the
percolation analysis, because the behavior of the giant com-
ponent seems to depend on the modified degree distributions.
We conclude the paper with the summary and further dis-
cussions in Sec. IV. In Appendices A and B, we provide
a further numerical analysis and the rate-equation formula-
tion to calculate the degree distribution under node removal,
respectively.

II. GENERAL NODE REMOVAL PROCESSES

Depending on the scenario that one would like to simu-
late, the strategy to remove nodes can be different. One can
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use various types of centrality or features of a node as an
elimination criterion, e.g., degree and betweenness (central-
ity) [41,43], age and affiliation (feature), etc. In this paper,
we take the most intuitive and practical criterion: to remove
nodes based on their degree centrality. We will demonstrate
that the node-removal strategy and the fraction of removed
nodes conjointly yield different regimes of the degree dis-
tributions of the remaining subnetworks, nicely reconciling
the seemingly inconsistent results between Refs. [25–27] and
Refs. [36,37].

As the degree distributions of many real networks are more
heterogeneous than the expected one in completely random
graphs [1,2,40], one clear piece of information to determine
the nodes to remove can be whether the nodes of interest
are rare but highly connected (hubs) or common but sparsely
connected. The “nodes of interest” can be either the target of
removal or the target of protection, depending on the context.
In any case, a simple set of degree-dependent node-removal
strategies would be setting the node-removal probability as ei-
ther a monotonically increasing or a monotonically decreasing
function of the degree. More complicated scenarios involv-
ing nonmonotonic behaviors could be considered, but we
focus on the monotonic cases throughout our work. The hub-
preferential removal may model a malicious attack towards
breaking down a network or a vaccination strategy (remov-
ing hub susceptible nodes) to prevent or slow the spread
of epidemic on social networks [44,45]. In contrast to the
hub-preferential removal, there are hub-protecting removal
processes, e.g., natural or artificial selection processes that
would preferably remove nodes with lower fitness that tend
to have small degrees [46].

To systematically cover possible scenarios, we consider a
general rule of removal with the probability q(k) for a given
node of degree k to be removed formulated as

q(k) = (k + 1)−θ∑N
i=1(ki + 1)−θ

= (k + 1)−θ

Z
, (1)

for a network of N nodes, where θ is a controllable pa-
rameter indicating the level of dependence on the degree,
and Z = ∑N

i=1(ki + 1)−θ is the normalization factor. We use
(k + 1) instead of k in the base of the exponent to avoid
the singular probabilities for nodes with k = 0. With Eq. (1)
for a given value of θ , we introduce the node removal pro-
cess defined as follows. Starting from an original network
with N0 nodes and L0 links, one randomly chooses a node
i with the probability q0(ki ) in Eq. (1) with N0 in place of
N . The selected node and its links are removed from the
network, which reduces the degrees of the neighbors by one.
The removal probability is updated [q f (k) = (k + 1)−θ /Z f ]
reflecting this structural change with f = 1

N0
indicating the

fraction of removed nodes at this stage, with which one of the
(N0 − 1) remaining nodes is selected and removed. We repeat
these procedures to remove nodes sequentially, increasing
f , with the updated removal probability q f (k). Meanwhile,
we investigate the degree distribution Pf (k) of the remaining
subnetwork consisting of Nf = (1 − f )N0 nodes and the L f

links with the mean degree m f = 2L f /Nf as a function of f .
Our scheme includes the conventional random removal

strategy when θ = 0 and the hub-preferential removal [q(k) ∝

k] described in Refs. [36,37] in the large-degree limit when
θ = −1. Positive values of θ (> 0) correspond to the node
removal strategy that protects hubs, while one preferentially
removes hubs first for θ < 0. Note that θ = 0 corresponds to
the uniform-random removal and any other θ values corre-
spond to the nonuniform-random removal.

The degree-dependent node removal has been popularly
dealt with. Our framework can embrace the previous studies
[34,47] in terms of θ . The studies have considered the certain
removal of the node with the largest degree, corresponding to
the limit θ → −∞ in our framework, being the extreme case
of preferential removal of the hub. In addition, by contrast
to our processes, some previously studied degree-dependent
removal processes [29,31,33] have neglected the possible re-
duction of the degrees of the remaining nodes after each node
removal and specified the removal probability by the initial
degrees.

We show examples of the subnetworks remaining after
node removal for the representative cases θ = −1, 0, and 1 in
Fig. 2. We find that the original network becomes fragmented
into many connected components and isolated nodes as the
hubs are preferentially removed (θ = −1), while the original
structure seems to be relatively intact for the hub-protecting
removal (θ = 1). Therefore, one can expect different types of
degree distributions for the remaining subnetworks for differ-
ent values of θ .

Throughout this paper, we focus on the power-law degree
distribution P0(k) ∼ k−γ with the degree exponent γ for the
original networks. The degree distributions of the networks
undergo possible modification from the original forms, during
network shrinkage. For the original networks, we consider
the SF networks constructed by the BA model (γ = 3) [19]
and the static model [41] with γ = 2.5 and 3. The BA model
is a hub-preferential growth model with the resulting degree
exponent fixed at γ = 3. On the other hand, the degree ex-
ponent is adjustable in the static-model networks [41], which
are generated by repeatedly connecting two randomly selected
nodes like the ER graphs [40]. Under the intrinsic inhomo-
geneous probability of selecting nodes, they consequently
display a power-law degree distribution represented analyt-
ically in closed form [42]. There is no correlation between
the degrees of adjacent nodes in the static-model SF networks
except for the inevitable disassortativity for 2 < γ < 3 [48]
due to the hub-hub repulsion [49]. Besides the comparison of
the node-removal results for the static model with γ = 2.5 and
the BA model in the main text, we present in Appendix A the
results for the static model with γ = 3 as a comparison to the
BA model.

As the main result, we identify functional forms of modi-
fied degree distributions for different node-removal strategies
and their resulting percolation properties, by simulating the
proposed general node removal processes using the initial
size and the mean degree value as N0 = 105 and m0 =
10, respectively, for each network. We run the sequen-
tial removal process over 100 realizations for each case,
and inspect the functional form of the degree distribution
Pf (k) during the removal process. Then, we cross-check the
results from the aforementioned node-removal simulations
with those based on the rate-equation approach, detailed in
Appendix B.
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FIG. 2. The subnetworks remaining after applying the representative cases of node-removal strategy: θ = −1 for the hub-preferential
removal, θ = 0 for the random removal, and θ = 1 for the hub-protecting removal. Panel (a) shows the examples from the original BA network
[19] and panel (b) shows those from the static-model network [41] with the degree exponent γ = 2.5. Comparing to each original network
( f = 0) at the top-left corner, the remaining subnetworks contain only 25% of the nodes ( f = 0.75) under the three respective strategies. The
size and mean degree of the original networks are N0 = 103 and m0 = 10, respectively.

III. RESULTS

A. Networks remaining after node removal
at different levels of hub protection

We present in Fig. 3 the shape of the degree distribution,
Pf (k), when the fraction f of the nodes is sequentially re-
moved for the static-model SF networks (with γ = 2.5) [41]
and the BA networks (with γ = 3.0) [19]. When the preferen-
tial removal of the hub (θ = −1) is applied to both networks,
the degree distribution Pf (k) of the remaining subnetwork
appears to remain in a power-law form at f = 0.15, while the
distribution at f = 0.75 deviates from the power law, showing
a fast decay in the tail part [see Figs. 3(a) and 3(d)]. The latter
is in accordance with the results in Refs. [36,37]. However,
for both the random removal processes (θ = 0) and the hub-
protecting (θ = 1) removal processes, the degree distributions
still possess heavy tails even down to f = 0.75. See Figs. 3(b),
3(c), 3(e), and 3(f). Furthermore, the more heterogeneous
degree distributions with γ = 2.5 seems to conserve the over-
all shape of the original distribution across the whole range
of k under the hub-protecting removal strategy (θ = 1) [see
Fig. 3(c)]. One can also observe the similar pattern for the
BA network. It shows the generality of the main results across
different SF generative models and degree-exponent values.

The mean node degree of the remaining subnetworks is
plotted as a function of the fraction of removed nodes f
for selected values of θ in Fig. 4. Apart from γ = 2.5 with
θ = 1 (protecting hubs), the ensemble-averaged mean de-
gree 〈m f 〉 = 2〈L f /Nf 〉 monotonically decreases as nodes are
removed, where 〈· · · 〉 symbolizes the average over 100 re-

alizations. The baseline is the random removal with θ = 0,
where links are also removed in a uniformly random manner
[27] and the linear relation 〈m f 〉 = m0(1 − f ) holds as clearly
shown in Fig. 4. Deviated from this baseline, we find 〈m f 〉 >

m0(1 − f ) for θ > 0 (hub-protecting removal) and 〈m f 〉 <

m0(1 − f ) for θ < 0 (hub-preferential removal). More specif-
ically, for negative values of θ (hub-preferential removal), the
hubs are removed first, so 〈m f 〉 decreases rapidly in the early
(small- f ) stage. For the hub-protecting removal (θ = 1), 〈m f 〉
slowly decreases in the early stage or even increases with f in
the more heterogeneous network (γ = 2.5) presumably due to
the survival of hubs.

The goal of the present study is to understand the topology
of the remaining network starting from the original SF net-
work with P0(k) ∼ k−γ . To characterize the functional form of
Pf (k) that varies with f and θ , we compare Pf (k) to selected
reference distributions as done in Refs. [36,37]. In addition
to the PO degree distributions of the completely random ER
graphs adopted in Refs. [36,37], we also take the degree dis-
tribution of the static-model SF networks [42], which we will
call the SF distribution, as another reference distribution for
comparison. Both distributions are the degree distributions of
the maximally random networks under given constraints such
as the prescribed selection probability of each node, uniform
or heterogeneous. Moreover, as will be discussed in Sec. III B,
they are invariant regarding their functional form under the
random node removal (θ = 0). As nodes are removed, the
remaining networks are expected to be randomized and there-
fore likely to exhibit the degree distributions of the ER and the
static-model networks even though they do not initially. We
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FIG. 3. Degree distributions of the subnetworks remaining after node removal, starting from (a)–(c) the static-model SF networks [41] with
γ = 2.5 and (d)–(f) the BA networks [19] with γ = 3 as the original network. For representative fractions f = 0.15 and 0.75 of removed nodes,
we present the degree distributions (points with lines) of the subnetworks remaining under (a), (d) the hub-preferential removal (θ = −1) and
(b), (e) the random removal (θ = 0), and under (c), (f) the hub-protecting removal (θ = 1). The dashed and solid lines represent the reference
PO and SF distributions in Eqs. (2) and (3) with the same mean degrees as the remaining subnetworks. The same degree exponents as the
original networks are used for the reference SF distribution.

will investigate whether Pf (k) is closer to the PO distribution
or to the SF distribution. For systematic comparison, we need
a similarity or dissimilarity measure between two probability
distributions, which will be introduced in the next subsection.
Finally, we remark that the static model is used in this work
both to construct the original SF networks that will shrink
under the node-removal process, and to provide the reference
degree distribution (SF distribution).

B. Reference distributions and relative entropy

The random removal of nodes may wipe out some of struc-
tural characteristics of the original networks, and our question
can be reduced to whether the heterogeneity of degree charac-
terized by the power-law degree distribution will be lost or
not. To answer the question, extending the approach intro-
duced in Refs. [36,37], we compare the degree distribution
of the remaining subnetwork with two reference distributions,
one from the ER graph and the other from the static-model SF
networks having the same size and the same mean degree as
the remaining subnetwork. To be specific, the first reference
distribution is the PO distribution of the ER random graph
[40] represented as

P(PO)(k; m f ) = mk
f e−m f

k!
, (2)

where m f is the mean degree of the remaining subnetwork
at the removal fraction f and fully determines the functional
form of P(PO)(k; m f ). The second reference distribution is the
degree distribution of the static-model SF network represented
as [42]

P(SF)(k; γ ; m f ) = 1

k!

dk

dωk
�̃[γ , m f (1 − ω)]

∣∣
ω=0, (3)

where �̃[γ , m f (1 − ω)] = ∑
k P(SF)(k; γ ; m f )ωk is the gener-

ating function of P(SF)(k; γ ; m f ), and evaluated as

�̃(γ , x) = (γ − 1)

(
γ − 2

γ − 1
x

)γ−1

�

(
1 − γ ,

γ − 2

γ − 1
x

)
,

with the incomplete � function �(s, y) ≡ ∫ ∞
y t s−1e−t dt . Note

that Eq. (3) are expected to be valid in the N0 → ∞
limit. One can approximate the tail part of Eq. (3) well by
P(SF)(k; γ ; m f ) 	 (γ − 1)(m f

γ−2
γ−1 )γ−1k−γ for large values of

k, which is consistent with the SF property of the static-model
networks [42]. The functional form of P(SF)(k; γ ; m f ) depends
on m f and the degree exponent γ .

We will call the reference distributions in Eqs. (2) and
(3) the PO and SF distributions, respectively. Both exhibit a
remarkable property; they maintain the functional form under
random node removal (θ = 0) such that Pf (k) = P(PO)(k; m f )
if starting from P0(k) = P(PO)(k; m0) and similarly Pf (k) =

064309-5



LEE, KIM, GOH, LEE, SON, AND LEE PHYSICAL REVIEW E 106, 064309 (2022)

FIG. 4. Mean degree 〈mf 〉 versus the fraction f of removed
nodes with three representative values of θ for (a) the static-model
SF networks [41] with γ = 2.5 and (b) the BA networks (γ = 3.0)
[19]. Simulation results (points) are obtained by averaging over 100
realizations, and the error bars, mostly as small as the size of the
symbol, indicate the standard deviation. Dashed lines represent the
results of the rate-equation approach given in Appendix B.

P(SF)(k; γ ; m f ) if P0(k) = P(SF)(k; γ ; m0). A sufficient condi-
tion for a degree distribution to display such invariance can
be derived as follows, which clarifies why this is the case
for the PO and SF distributions. For given f > 0 and θ = 0,
it is equally likely that every node has the fraction f of its
incident links removed, allowing us to evaluate the degree
distribution as Pf (k) = ∑

r�k P0(r)
(r

k

)
f r−k (1 − f )k from the

original degree distribution P0(k) [27], and find the generat-
ing function of Pf (k) represented as g f (ω) ≡ ∑

k Pf (k)ωk =
g0[ f + (1 − f )ω] with g0(ω) = ∑

k P0(k)ωk . Let us denote
the original degree distribution and its generating function
by P0(k; m0) and g0(ω; m0), respectively, to make explicit
their dependence on the mean degree m0. If the generating
function depends on ω and m0 only via m0(1 − ω) such
that g0(ω; m0) = �[(1 − ω)m0] with a function �(x), then
it follows that g f (ω; m0) = g0[ f + (1 − f )ω; m0] = �[(1 −
ω)(1 − f )m0] = �[(1 − ω)m f ] = g0(ω; m f ), where we use
the relation m f = m0(1 − f ). This is the case for the PO
and SF distributions, which have �(x) = e−x and �(x) =
�̃(γ , x), respectively.

It is of our main concern in the present study whether node
removal drives Pf (k) to the reference distributions and if so,
to which one of the two Pf (k) gets closer. In Refs. [36,37],
the convergence of the degree distribution of the original BA
networks towards the PO distribution was claimed under node
removal with θ = 0 and θ = −1 in our model framework.
Considering the SF distribution as well as the PO distribution
as the reference will enable us to better understand the conver-
gence. While we will use the original degree exponent in the

reference distribution P(SF)(k; γ ; m f ), the degree distribution
Pf (k) of the remaining subnetwork may follow a power law
with the degree exponent deviating from the original one as
discussed in Ref. [27], which empirically reported Pf (k) ∼
k−γ f with γ f slightly larger than γ in case of θ = 0. It is, how-
ever, beyond the scope of this paper to accurately measure the
altered degree exponent γ f , and we use the original exponent
γ for the reference distribution P(SF)(k; γ ; m f ) to focus on the
dichotomous distinction of Pf (k) between the PO and the SF
distribution.

For a quantitative measure for the difference between two
distributions, we follow the approach of Refs. [36,37] and
employ the KL divergence [39] or the relative entropy, which
represents how a distribution P(k) is different from a ref-
erence distribution P(ref)(k). It is defined by S(P‖P(ref) ) ≡∑

k P(k) ln[P(k)/P(ref)(k)], corresponding to the expected
logarithmic difference between P(k) and P(ref)(k) with the
weight P(k). Note that here we evaluate the entropy to de-
cide to which of the ER and the static-model SF network a
subnetwork is closer. It in general does not allow us to capture
the subnetwork’s inherent degree-exponent value. The relative
entropy is always nonnegative, i.e., S(P‖P(ref) ) � 0, as known
as Gibbs’ inequality [50,51], and the equality holds if and
only if the two distributions are identical, i.e., P(k) = P(ref)(k)
for all k at which P(k) > 0. Smaller values of S imply more
resemblance between the two distributions. In this work, we
compute the following two relative entropies:

S(PO)
f ≡

∑
k

Pf (k) ln

[
Pf (k)

P(PO)(k; m f )

]
,

(4)

S(SF)
f ≡

∑
k

Pf (k) ln

[
Pf (k)

P(SF)(k; γ ; m f )

]
,

to measure how similar the node-removed subnetworks’ de-
gree distributions are to the one for the ER random graph
[40] and for the static-model SF networks [41], respectively.
In addition, the KL divergence plays a similar role to the
log-likelihood ratio of the data—nodes’ degrees in the re-
maining subnetworks—for the empirical distribution Pf (k)
and either of the two reference distributions P(PO)(k; m f ) or
P(SF)(k; γ ; m f ) [20].

As a practical note, the relative entropies in Eq. (4)
do not become singular even if Pf (k) = 0 for some k be-
cause limx→0+ x ln x = 0 but diverge if P(PO)(k; m f ) = 0 or
P(SF)(k; γ ; m f ) = 0 while Pf (k) �= 0 for some k. Therefore,
the reference distributions positive for every possible k are
desirable to prevent such singularity. The PO and the SF dis-
tribution are positive for all k � 0, but the BA model [19,52]
may involve the minimum degree kmin since its degree distri-
bution is defined only for k � kmin. As an alternative distance
measure, we employ the Wasserstein distance, which is not
subject to the asymmetry of the relative entropy, and imple-
ment the same analysis, obtaining the qualitatively consistent
results as presented in Appendix C.

C. Classification of degree distributions

For initial visual inspection, we overlay the PO distribution
P(PO)(k; m f ) and the SF distribution P(SF)(k; γ ; m f ) for given
m f on the empirical data in Fig. 3. As discussed in Sec. III A,
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FIG. 5. Relative entropies 〈S(PO)
f 〉 and 〈S(SF)

f 〉 versus the fraction f of removed nodes with (a)–(c) the static-model SF networks with γ = 2.5
and (d)–(f) the BA networks as the original networks. Each column stands for a removal process with given θ as (a), (d) the hub-preferential
removal (θ = −1), (b), (e) the random removal (θ = 0), and (c), (f) the hub-protecting removal (θ = 1). In the hub-preferential removal
process, we mark the notable crossing points f ∗ by the purple circles where S(PO)

f = S(SF)
f occurs. The points represent the node-removal

simulation results, and the dashed lines represent the rate-equation results.

except for the case of hub-preferential removal with θ = −1
up to f = 0.75, the empirical distributions Pf (k) look closer
to the SF distribution than to the PO distribution. However, the
distributions for θ = −1 and f = 0.75 illustrated in Figs. 3(a)
and 3(d) are closer to the PO than to the SF distribution.

For a systematic characterization of the distributions, we
present the relative entropies as functions of f in Fig. 5. Most
importantly, S(SF)

f is almost always smaller than the entropy

S(PO)
f except for the case of the hub-preferential removal with

θ = −1 [Figs. 5(a) and 5(d)]. For the original BA networks,
S(PO)

f decreases as f increases for all the considered values of
θ , and therefore one can be impressed that the degree distribu-
tion evolves under node removal towards the PO distribution
[36,37]. However, the S(SF)

f of the original BA networks also
decreases with f , except for a slight increase near f = 1 with
θ = 1. Moreover, S(SF)

f remains smaller than S(PO)
f for θ = 0

and θ = 1. For either of the two original SF networks, the
comparison of S(PO)

f and S(SF)
f reveals that all the way up to

f → 1 with θ = 0 or θ = 1, the Pf (k) distribution is never
closer to P(PO)(k; m f ) than to P(SF)(k; γ ; m f ) [see Figs. 5(b),
5(c), 5(e), and 5(f)]. This argument is stronger than it seems.
Although the degree exponent could be effectively changed
[27] during the node-removal process as we mentioned earlier,
the Pf (k) distribution is found to be closer to P(SF)(k; γ ; m f )
with the original exponent γ than to P(PO)(k; m f ), implying
that in reality it must be even closer to the SF distribution with

a more fine-tuned degree exponent γ f . However, extracting
the most likely value of γ f is beyond our research scope and
not a major concern of this study. Throughout this paper, we
are keen to identify the subnetworks’ similarity to either the
ER or static-model SF network.

Looking more closely at the case of random node removal
with θ = 0 shown in Figs. 5(b) and 5(e), we observe that the
behavior of S(SF)

f as a function of f depends on the random-
graph model that generated the original network, but the main
conclusion is shared that the degree distributions converge
closer to the SF distribution rather than the PO one. When
the original network is the static-model network [41], the
degree distribution of the subnetworks maintains its original
functional form, which results in S(SF)

f almost constant with
increasing f at a relatively low value [Fig. 5(b)] as expected
from the discussion on its invariance in Sec. III B. We remark
that S(SF)

f is small but not zero even for f = 0 as a realization
of the finite static-model network may have its degree distri-
bution deviating slightly from Eq. (3), which is expected to
be valid in the N0 → ∞ limit as mentioned. The original BA
networks find S(SF)

f decreasing with f [Fig. 5(e)] meaning that
the random node removal makes the remaining subnetwork
resemble the static-model SF networks [42]. It is also consis-
tent with previous reporting that the degree distribution of the
BA model is relatively stable under random omission of nodes
or links such that γ f 	 γ f =0 = 3 [27].
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Under the hub-protecting removal (θ = 1), the original
static-model networks have S(SF)

f increasing with f [Fig. 5(c)].
More hubs and more nodes of low degree are found than
expected in the static model for given mean degree [Fig. 3(c)].
We see again that S(SF)

f remains smaller than S(PO)
f , implying

that the SF distribution describes better the degree distribution
than the PO one does. The original BA networks first get
closer to and then slightly away from the SF distribution with
the original degree exponent, i.e., S(SF)

f decreases first and
increases later with f . Nevertheless, S(SF)

f < S(PO)
f for all f ,

meaning that the degree distribution is always closer to the SF
distribution than to the PO distribution [Fig. 5(f)]. The obser-
vation of S(SF)

f < S(PO)
f with both original networks for θ = 1

is understandable, as the hub-protecting procedure effectively
tends to preserve the tail part of the power-law distribution.
Although it is not exactly the same procedure, the snowball
sampling reported in Ref. [27] effectively samples the hubs
first (in terms of removal that would correspond to removing
the hubs later) by consecutively following the neighboring
links, and yields more heterogeneous distributions character-
ized by γ f < γ .

Finally, when we remove nodes in a hub-preferential man-
ner, the hubs are eliminated in the early stage, weakening the
tail part of the distribution so that for the fraction f large
enough, the distribution becomes closer to P(PO)(k; m f ) than
to P(SF)(k; γ ; m f ). See Figs. 5(a) and 5(d). Based on numerical
simulations, we pinpoint the crossing point f ∗ [marked by
big filled circles in Figs. 5(a) and 5(d)] where the distribution
starts to be closer to P(PO)(k; m f ) than to P(SF)(k; γ ; m f ). The
crossing point constitutes a boundary for the classification
of degree distributions. We extensively explore the crossover
point f ∗(θ ) beyond which S(PO)

f is smaller than S(SF)
f with each

network, and we obtain the regime diagram with respect to
the fraction f of removed nodes and the hub-protection level
parameter θ in Fig. 1 with f ∗(θ ) giving the boundary between
the PO and the SF regime, where the degree distribution is
closer to the PO and the SF distribution, respectively.

The degree distribution with a smaller degree exponent has
a fatter tail than that with a larger degree exponent, and thus
one might expect the PO regime, located for sufficiently large
f and negative θ , to be narrower if the original degree distri-
bution has a smaller degree exponent. Comparing the regime
diagram between the original SF networks with γ = 2.5 and
3, however, we find that the PO regime is larger for γ = 2.5
than for γ = 3 as shown in Fig. 1 and in Appendix A. Such
a counterintuitive result originates in the different impacts
of a hub-preferential removal for the degree distribution de-
pending on the degree exponent in heterogeneous networks.
Note that we obtain the qualitatively same results using the
Wasserstein distance in Appendix C.

The exact boundary between the PO and the SF regime
would rely on the aforementioned altered degree exponent
γ f for S(SF)

f and the type of entropy measures (e.g., one can
use other measures such as f -divergence [53]). Again, we
would like to stress that our main interest is if the degree
distribution of SF networks is modified enough to be identified
as completely different types of distributions such as the PO
distribution as a result of node removal with different levels of
hub preference. Our conclusion is that a certain small value of
θ combined with a large value of fraction of removed nodes

(summarized in the regime diagram in Fig. 1) is required for
the degree distribution of the node-removed network to be
classified as the PO distribution. In the SF regime with the
parameters below those thresholds, the degree distributions re-
main closer to the SF distribution, another invariant reference
distribution identified in the present study.

To check the finite-size effect, we have varied the system
size N (the number of nodes) between 103 and 105 and com-
pared the regime diagrams. First, for the values of θ where
both the PO and SF regimes exist, the crossing point f ∗ of
the relative-entropy curves becomes smaller and eventually
saturated as N increases. In other words, for larger values of
N , the PO regime becomes larger in the regime diagram, and
one can presumably expect the establishment of the boundary
curves in the thermodynamic limit N → ∞. To complement
these simulation-based results, we take the rate-equation ap-
proach [36,37,47,54] and obtain by numerical integration the
degree distribution approximated in the thermodynamic limit
as shown in Appendix B. Using the result, we compute the
regime diagrams, the mean degrees, and the relative entropies,
which are shown in Figs. 1, 4, and 5. As the correlation of the
degrees of adjacent nodes is neglected in the rate-equation ap-
proach, the obtained results for the original BA networks show
deviations from the simulation results, e.g., in Fig. 1(b). In
addition, the degree distributions are obtained up to a finite
maximum degree, which brings a nonzero relative entropy
with respect to the SF distribution even for the original static-
model networks as shown in Fig. 5(b). See Appendix B for
more details.

Finally, to verify the robustness of our qualitatively differ-
ent results between the hub-protecting and hub-preferential
removal processes (θ > 0 versus θ < 0), we have extended
our analysis to selected values of θ in the range of θ < −1 and
θ > 1. The phase boundary f ∗(θ ) decreases as θ decreases be-
yond −1 while it remains at 1 for θ > 0. In the most extreme
case of hub-protecting or hub-preferential removal strategies
corresponding to θ → ∞ or θ → −∞, respectively, one de-
terministically (except for inevitable stochasticity in the order
of removal of multiple nodes with exactly the same degree
[47]) removes the node with the smallest or largest degree
at each time step, respectively. The case of θ → ∞ in fact
corresponds to the well-known k-core decomposition process
[55], where nodes are sequentially removed in ascending or-
der of degree. Our simulation results suggest that f ∗(θ →
∞) → 1 and f ∗(θ → −∞) approaches 0, implying that the
SF (PO) regime dominates such extreme hub-protecting (hub-
preferential) removal process. In other words, our main result
for the range θ ∈ [−1, 1] is naturally extended to the most
extreme cases of hub-protecting or hub-preferential processes,
i.e., the completely SF-dominating regime holds for θ > 0 and
the size of PO regime increases as θ decreases for θ < 0.

D. Giant component under general node removal processes

The existence of a giant connected component (GCC) is a
necessary condition for the overall functioning of a networked
system. Therefore, the fraction of nodes included in the GCC
has been utilized as an elementary measure of how well a
system can work while nodes are removed by failure or attack
[29] and as the central order parameter in the percolation

064309-8



DEGREE DISTRIBUTIONS UNDER GENERAL NODE … PHYSICAL REVIEW E 106, 064309 (2022)

FIG. 6. Relative size of the GCC, 〈G/Nf 〉, versus the fraction f
of removed nodes for (a) the static-model SF networks [41] with
γ = 2.5 and (b) the BA networks [19]. Here G is the number of nodes
included in the GCC and Nf = N0(1 − f ) is the total number of
remaining nodes with N0 the original number of nodes. The average
and the standard deviation over 100 realizations are represented by
the points and the error bars. The dashed lines represent the results
obtained by applying the generating function method [30,38] to the
degree distributions from the rate-equation approach as detailed in
Appendix B.

properties of networks [30–34]. In particular, the behavior of
the relative size of the GCC is indicative of distinct types of
networks; the GCC emerges at the critical mean degree equal
to one, mc = 1, for the ER random graph [30,40] while the
percolation threshold mc remains zero (always percolating as
long as m > 0) for SF networks with γ � 3 and increases
from 0 to 1 continuously as γ increases from 3 to infinity
[4,31,42].

The classification of the type of the degree distribution
can help understand the possibly different behaviors of the
GCC under attack depending on the level of hub protection
parameterized by θ in our node-removal scheme. If an original
SF network with γ � 3 is changed to the random-graph-like
structure at some point of f , we can expect that the GCC
shrinks before reaching f → 1. That is precisely what hap-
pens in Fig. 6 for θ = −1 in both the original static-model
networks with γ = 2.5 and the BA networks with γ = 3. On
the contrary, in the range of θ where the SF regime is pre-
served throughout f , the GCC is well preserved up to f → 1,
also clearly shown in Fig. 6. See Fig. 2 for the fragmented
structures different depending on θ .

IV. SUMMARY AND DISCUSSIONS

We have explored the degree distribution of the node-
removed subnetworks originating from SF networks, under
the general node-removal processes with different levels of
hub preference or protection. By taking the relative entropy as
an inspection tool to distinguish between the PO and SF dis-
tribution, we have systematically characterized the resultant
degree distribution in wide ranges of hub-preference and the
fraction of removed nodes. In particular, we have specified the
regime where the degree distribution is actually closer to the
PO distribution than to the SF distribution, beyond the finding
of its asymptotic approaching to the PO distribution [36,37],
but only for the hub-preferential removal scheme with θ < 0.
For θ � 0, we have discovered that the resultant distribution
is always closer to the SF distribution than to the PO distribu-
tion, which is consistent with the random sampling scheme
[27] (θ = 0). Besides the relative entropy to quantify the

relative distance between the distributions, we have observed
the change of GCC throughout the node-removal processes to
verify the modified structures.

As real networks are always under potential failure and/or
intentional attack, characterizing the degree distribution of
networks under various types of node-removal processes is
crucial as the degree distribution is by far one of the most fun-
damental structural properties that govern the dynamical and
functional aspects of networks. Although our simple scheme
cannot capture all of the complicated scenarios in reality, we
believe that inspecting a wide range of different levels of
hub-preference and the fraction of removed nodes is a first
step to proceed. A natural extension can be the link removal
process introduced in Ref. [56], where the nonrandom case
θ �= 0 can be realized in various ways to reflect different pos-
sible scenarios. In addition, one can try different power-law
degree distributions from those considered in this work. As
mentioned in Sec. III B, there are various forms of the degree
distributions of SF networks, including the BA model [19]
and the configuration model [38]. A node- or link-removal
strategy to preserve the functional form of an arbitrary de-
gree distribution can be questioned, which is challenging and
deserves careful consideration as a future work. Finally, the
journey to the breakdown of networks in terms of percolation
theory is definitely worth further investigation, as we have
a whole toolkit to apply throughout f including the iden-
tification of the percolation threshold, the estimation of the
critical exponents, and more comprehensive finite-size scaling
analysis, etc., the results of which will be reported elsewhere.
Beyond the scope of degree distribution, the percolation anal-
ysis would wide open the door to characterize the networks
with partial loss in general.
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APPENDIX A: STATIC-MODEL NETWORKS WITH γ = 3

We perform the same analyses as in the main text for the
removal of nodes of the original static-model networks [41]
with γ = 3 (the same exponent as the BA model), to see
whether different network models can make a difference in
the obtained results. We present the results in Fig. 7, which
demonstrate that the main results are not changed. But some
measures show a difference. The measures affected mainly
by the strength of the hub nodes (the tail part of the degree
distribution), such as the regime diagram, the shape of the
degree distribution, the mean degree, and the relative size of
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FIG. 7. Results for the original static-model SF networks [41] with the degree exponent γ = 3. Shown are (a) the regime diagram, (b),
(c) the degree distributions of the remaining subnetworks for θ = −1 and θ = 0, (d) the mean degree 〈mf 〉 as a function of the fraction f of
removed nodes, (e)–(g) the relative entropies 〈S(PO)

f 〉 and 〈S(SF)
f 〉 as functions of f , and (h) the relative size of the GCC, 〈G/Nf 〉.

GCC, turn out to be similar between the static model and the
BA model sharing the same original degree exponent. The
same is true for the relative entropy with respect to the PO
distribution. However, the functional behaviors of the relative
entropy with respect to the SF distribution exhibit differences
between the two model networks even if they share the same
degree exponent.

To be specific, in Fig. 7(a), the boundary between the PO
and the SF regime for the static model is almost overlapped
with that obtained for the BA networks in Fig. 1(b). The
variations of the degree distribution and the mean degree with
f for the static model are also quite similar to the BA model
results [compare Figs. 7(b), 7(c), and 7(d) to Figs. 3(d), 3(e),
and 4(b), respectively]. Also, the relative size of the GCC is
similar to the case of the BA model [compare Fig. 7(h) and
Fig. 6(b)], which makes sense since the degree exponent γ is
the key control parameter for the percolation problem.

When it comes to the relative entropies of the degree distri-
bution of the remaining subnetworks with respect to the two
reference distributions, their behavior is not always similar
between both original networks. The relative entropy S(PO)

f
with respect to the PO distribution decreases with f almost
in the same manner between the static model and the BA
model. However, the behaviors of the relative entropy S(SF)

f
with respect to the SF distribution are different between them.
Rather, the static-model networks with γ = 3 [Figs. 7(e), 7(f),
and 7(g)] and γ = 2.5 [Figs. 5(a), 5(b), and 5(c)] share similar
behaviors of S(SF)

f . When θ = 1 (hub-protecting removal),

S(SF)
f increases with f for the static-model networks with

γ = 3 while it decreases with f for the BA networks. Com-
pare Fig. 7(g) and Fig. 5(f). When θ = 0 (random removal),
S(SF)

f is almost flat for the static model but it decreases with
f for the BA networks, as compared between Fig. 7(f) and
Fig. 5(e). Also in case of θ = −1, the behavior of S(SF)

f for
the static model with γ = 3 [Fig. 7(e)] is more similar to

that for the static model with γ = 2.5 [Fig. 5(a)] than to the
BA model with γ = 3 [Fig. 5(d)]. These discrepancies of the
behaviors of the S(SF)

f between the static model and the BA
model suggest that the alteration of the degree distribution
during node removal, characterized by the relative entropy,
depends on various structural properties including the degree
exponent and the correlation of adjacent nodes’ degrees.

APPENDIX B: RATE EQUATION OF DEGREE
DISTRIBUTIONS FOR GENERAL NODE

REMOVAL PROCESSES

Here we present the rate equation of the degree distribution
[36,37,47,54] for the general node removal process, the nu-
merical solutions to which provide the approximated regime
diagram and relative entropies in the thermodynamic limit;
thus they complement the simulation results obtained for a
finite system size.

Let us consider a network composed of N nodes and L =
Nm0/2 links, represented by the adjacency matrix elements
ai j . At every discrete time step τ = 0, 1, 2, . . ., a given node
of degree k is selected with probability

qk (τ ) = (k + 1)−θ∑
i∈Isurv (τ )[ki(τ ) + 1]−θ

(B1)

and removed, where Isurv(τ ) is the set of surviving nodes at
τ and ki(τ ) = ∑

j∈Isurv (τ ) ai j is the degree of node i that only
counts its surviving neighbors at τ . Note that qk (τ ) in Eq. (B1)
is the same as q f (k) in the main text with f and τ related
by f = τ/N . Going from τ to τ + 1, the number Nk (τ ) ≡∑

i∈Isurv (τ ) δki (τ ),k of the surviving nodes of given degree k will
decrease by one if a node of degree k is removed. Also, as the
neighbors of a removed node commonly lose a link and their
degrees decrease by one, Nk (τ ) will increase (decrease) by the
expected number of the nodes with degree k + 1 (degree k)
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adjacent to the removed node, respectively. Therefore, Nk (τ )
varies with time step τ as

Nk (τ + 1) − Nk (τ ) = −Nk (τ )qk (τ ) + (k + 1)Nk+1(τ )

× q̃k+1(τ ) − kNk (τ )q̃k (τ ), (B2)

where we introduce the probability that a neighboring node of
a node of degree k is selected and removed at τ

q̃k (τ ) =
∑

k′ Nkk′ (τ )qk′ (τ )∑
k′ Nkk′ (τ )

, (B3)

where Nkk′ (τ ) is the number of links connecting nodes of
degree k and k′ at time τ (counted twice if k �= k′),

Nkk′ (τ ) ≡
∑

i, j∈Isurv (τ )

ai jδki (τ ),kδk j (τ ),k′ . (B4)

To consider the limit N → ∞, we introduce a timelike
continuous variable f = limN→∞ τ/N indicating the fraction
of removed nodes and define the fraction of the surviving
nodes of degree k,

D f (k) ≡ lim
N→∞

Nk (τ = f N )

N
, (B5)

and the fraction of links connecting nodes with degrees k
and k′,

D f (k, k′) ≡ lim
N→∞

Nkk′ (τ = f N )

2L
. (B6)

Note that these two functions are not summed to one but to
the total fraction of the surviving nodes 1 − f and the total
fraction of the links connecting the surviving nodes, respec-
tively. Once the equation for D f (k) that we will present below
is solved, the degree distribution in the main text Pf (k) =
limN→∞[Nk (τ = f N )/

∑
k′ Nk′ (τ = f N )] can be obtained by

using the relation

Pf (k) = D f (k)∑
k′ D f (k′)

= D f (k)

1 − f
. (B7)

The equation for D f (k) is obtained by replacing Nk (τ ) by
ND f (k) and using the expansion Nk (τ + 1) = ND f +df (k) 	
ND f (k) + ∂D f (k)/∂ f with df = N−1 in Eq. (B2), which is
given by

∂

∂ f
D f (k) = −D f (k)r f (k) + (k + 1)D f (k + 1)r̃ f (k + 1)

− kD f (k)r̃ f (k), (B8)

in a similar form to Eq. (B2) with

r f (k) ≡ lim
N→∞

Nqk (τ = f N ) = (k + 1)−θ∑
k′ D f (k′)(k′ + 1)−θ

,

r̃ f (k) ≡ lim
N→∞

Nq̃k (τ = f N ) =
∑

k′ D f (k, k′) r f (k′)∑
k′ D f (k, k′)

, (B9)

meaning the rate that a node of degree k is removed and
the rate that a neighbor of a node of degree k is removed,
respectively.

A problem in solving Eq. (B2) or Eq. (B8) for Nk (τ ) or
D f (k) is that it depends on an unknown two-point function

Nkk′ (τ ) or D f (k, k′) through q̃k (τ ) or r̃ f (k), which in turn
depends upon a three-point function, etc. To truncate the hier-
archy, we take the approximation that

Nkk′ (τ ) = kk′Nk (τ )Nk′ (τ )

2L(τ )
, (B10)

where L(τ ) = (1/2)
∑

k kNk (τ ) is the number of links con-
necting the surviving nodes, or equivalently

D f (k, k′) = kk′D f (k)D f (k′)
(1 − f ) m0 m f

, (B11)

with m f = ∑
k kPf (k) = (1 − f )−1 ∑

k kD f (k). These ap-
proximations are valid when the degrees of adjacent nodes
are not correlated, being independent of each other. Inserting
Eq. (B11) into Eq. (B9), we find that r̃ f (k) is represented in
terms of D f (k) as

r̃ f (k) ≡
∑

k′ k′ D f (k′) (k′ + 1)−θ∑
k′ k′D f (k′)

∑
k′′ D f (k′′)(k′′ + 1)−θ

= r̃ f , (B12)

which is independent of k.
For D f (k), we numerically solve Eq. (B8) with r f (k)

given in Eq. (B9) and r̃ f given in Eq. (B12). Choosing
a sufficiently small value of df = 10−7 and a large value
of kmax = 105, we compute recursively D f +df (k) = D f (k) +
df ∂D f (k)/∂ f from D f (k) for all k � kmax with the bound-
ary condition D f (kmax + 1) = 0 [47]. The degree distribution
Pf (k) is then obtained from D f (k) by Eq. (B7), i.e., Pf (k) =
D f (k)/

∑kmax
k′=0 D f (k′). Note that Pf (k) indicates the fraction

of nodes of degree k among the surviving nodes and satisfies∑kmax
k=0 Pf (k) = 1.
With the obtained Pf (k), we compute the mean degrees

(Fig. 4) and the relative entropies (Fig. 5) as functions of
f , and obtain the regime diagrams from the results (Fig. 1).
These numerical solutions show a good agreement with the
simulation results when the original networks are the static-
model SF networks, implying that the degree correlations are
indeed negligible. However, there is some deviation between
the numerical and simulation results for the BA networks,
probably due to their significant degree correlations between
the adjacent nodes.

Another caveat of the numerical solutions is that due
to the large but finite value of kmax = 105, the measured
value of m f = ∑kmax

k=0 kPf (k) is smaller than the value that
would be measured with kmax → ∞. Its remarkable conse-
quence is that even an original SF network does not have a
zero relative entropy S(SF) with respect to the SF distribu-
tion at f = 0 [Figs. 5(a)–5(c)]; an initial network with the
degree distribution P0(k) = P(SF)(k; γ ; m(orig)

0 ) is compared
with the reference SF reference distribution P(SF)(k; γ ; m0 �
m(orig)

0 ) of a slightly smaller mean degree with the difference
estimated as m(orig)

0 − m0 = ∑∞
k=kmax+1 kP(SF)(k; γ ; m(orig)

0 ) ∼
k2−γ

max . Furthermore, we note that due to the limitation of com-
puting resource and time, we compute the SF distribution
according to Eq. (3) for k � 103 and adopt the asymptotic
behaviors P(SF)(k; γ ; m f ) 	 (γ − 1)(m f

γ−2
γ−1 )γ−1k−γ for k >

103 as given in Ref. [42]. For the original BA networks
with mean degree 2n, we take their exact degree distribu-
tion P(BA)(k; 2n) = 2n(n + 1)/k(k + 1)(k + 2) [57] for all
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FIG. 8. The Wasserstein distance 〈W (SF)
f 〉 and 〈W (ER)

f 〉 versus the fraction f of removed nodes with the static-model SF networks with
(a)–(c) γ = 2.5 and (g)–(i) γ = 3, and (d)–(f) the BA networks as the original networks. Each column stands for a removal process with given
θ as (a), (d), (g) the hub-preferential removal (θ = −1), (b), (e), (h) the random removal (θ = 0), and (c), (f), (i) the hub-protecting removal
(θ = 1). In the hub-preferential removal process, we mark the notable crossing points f ∗ by the purple circles where 〈W (PO)

f 〉 = 〈W (SF)
f 〉 occurs.

The points represent the node-removal simulation results, and the dashed lines represent the rate-equation results.

kmin = n � k � kmax = 105. Finally, we calculate the size of
the giant component Fig. 6 using a formal generating function
method [30,38].

APPENDIX C: THE WASSERSTEIN DISTANCE
AS AN ALTERNATIVE

The relative entropy, S(P||Q), adopted to quantify the dis-
tance between two distributions P and Q, is asymmetric under
the exchange of P and Q. It might have affected our results.
To check the robustness of our results, we perform the same
analyses as in the main text with the 1-Wasserstein distance

[58] formulated as

W (PO)
f ≡

∑
k

|Cf (k) − C(PO)(k; m f )|,

W (SF)
f ≡

∑
k

|Cf (k) − C(SF)(k; γ ; m f )|, (C1)

where the C(k) is the cumulative distribution computed as
C(k) ≡ ∑

k′�k P(k′). In Eq. (C1) is the areal difference be-
tween the two cumulative distributions and is the unweighted
sum unlike the relative entropy. We display the results based
on the Wasserstein distance in Fig. 8, in parallel with those
based on the relative entropy in Fig. 5. Interestingly, all the
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tendencies observed in Fig. 5 are reproduced in Fig. 8, sug-
gesting that the asymmetry of the relative entropy is irrelevant
to our main results. Furthermore, we still detect the crossover

from the SF to the PO regime under the hub-preferential
removal except for the fact that we encounter the crossing
point f ∗ earlier than the case of the relative entropy.
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