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Abstract 

During quality inspection in manufacturing, the gaze of a worker provides pivotal information for identifying surface defects of a 
pr oduct. Howev er, it is challenging to digitize the gaze information of workers in a dynamic environment where the positions and 

postures of the products and workers are not fixed. A robust, deep learning-based system, ISGOD (Inte gr ated System with w orker’s 
Gaze and Object Detection), is proposed, which analyzes data to determine which part of the object is observed by inte gr ating object 
detection and ey e-tr ac king information in d ynamic environments. The ISGOD emplo ys a six-dimensional pose estimation algorithm 

for object detection, considering the location, orientation, and rotation of the object. Ey e-tr ac king data w er e obtained fr om Tobii 
Glasses, which ena b le r eal-time video tr ansmission and ey e-movement tr ac king. A latency r eduction method is pr oposed to ov ercome 
the time delays between object detection and ey e-tr ac king information. Three evaluation indices, namely, gaze score , accur acy score , 
and concentration index are suggested for compr ehensi v e anal ysis. Tw o experiments w er e conducted: a r obustness test to confirm 

the suitability for real-time object detection and ey e-tr ac king, and a trend test to analyze the difference in gaze movement between 

experts and novices. In the future, the proposed method and system can transfer the expertise of experts to enhance defect detection 

efficiency significantly. 

Ke yw ords: quality inspection, eye-tracking, object detection, deep learning, system inte gr ation 
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. Introduction 

n the manufacturing field, gaze data, such as eye-tracking points
a ptur ed b y w ork ers’ gazes, are pi votal during quality inspection
ests (Mark et al., 2021 ; Zheng et al., 2022 ). Such gaze data facili-
ate the efficient identification of defects and play a crucial role
n determining the sequence of assembly and machinery opera-
ions (Luši ́c et al., 2016 ). For this r eason, man y r esearc hers hav e
nalyzed the pattern and sequence of human eye movements and
ollected gaze data such as gaze fixation, dwell time duration, and
xation count (Cristino et al., 2010 ; Kanan et al., 2015 ; Ooms et al.,
012 ; Wang et al., 2022 ). The collected data have been utilized for
he transfer of skills and kno w-ho w among w orkers, contributing
o more efficient manufacturing operations; ho w ever, this trans-

ission has often been informal and unstructured between indi-
iduals (Nakam ur a et al. , 2019 ; Ye et al. , 2023 ). 

Recentl y, to ov ercome these shortcomings, r esearc hers hav e
hifted their focus to w ar d digitalizing gaze data (Ahrens et al.,
023 ; Borgianni et al., 2018 ; Ghanbari et al., 2021 ; Ramac handr a
t al., 2021 ; Ren et al., 2023 ; Takahashi et al., 2018 ). For example,
adasivan et al. ( 2005 ) utilized eye movement to pre-train opera-
ors in the aircraft inspection process. Lus ̌ci ́c et al. ( 2016 ) delved
nto the distinctions between static and dynamic contexts by an-
l yzing eye-tr ac king data during manual pr oduct assembl y pr o-
esses. Ho w e v er, in the dynamic realm of manufacturing, mer el y
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r ac king an individual’s gaze is insufficient in the following two
a ys . First, effective data collection requires eye-tracking and the

dentification of specific points on the object. Next, the collection
nd analysis of gaze data must consider the changing positions
nd postures of both the workers and objects . T hese two problems
inder the immediate utility of data and complicate real-time and
ynamic applications. 

An effective analysis of eye-tracking data must encompass the
etection of moving objects and the changing conditions present

n manufacturing settings (Pr av een et al., 2010 ). To this end, this
tudy proposes a robust deep learning system named ISGOD (In-
egrated System with worker’s Gaze and Object Detection), which
erforms object detection with eye-tr ac king to determine which
art of the object is viewed. ISGOD is composed of the following
our modules: (i) collecting the module of image and gaze data
or an eye-tr ac king de vice, (ii) the detection module of objects
r om the ca ptur ed ima ges, (iii) the integr ation module between
ye-tr ac king data and object detection data, and (iv) an analysis
odule based on the proposed evaluation matrix. 
For the eye-tr ac king module, Tobii Pro Glass 3 was used to col-

ect human eye mo vements , encompassing gaze points , fixations ,
ie wing dur ation, head mov ement, and orientation (T. H. Li et al.,
020 ). The object detection module facilitates the six-dimensional
6D) pose estimation algorithm, which achieves high accuracy
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l License ( https://cr eati v ecommons.org/licenses/by-nc/4.0/ ), which permits 
e original work is pr operl y cited. For commercial r e-use, please contact 

https://doi.org/10.1093/jcde/qwae042
mailto:kmseo@hanyang.ac.kr
mailto:jik@hknu.ac.kr
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


Journal of Computational Design and Engineering, 2024, 11(3), 158–173 | 159 

Table 1: Comparison of literary review. 

Related research Type Characteristics Limitations 

Niemann et al. ( 2019 ) Eye tr ac king Analysis of quality inspection in automotive 
manufacturing using gaze data 

Necessitates subsequent human visual 
analysis 

Ulutas et al. ( 2020 ) Eye tr ac king Analysis of e ye-track ed data of quality assurance 
workers using Hidden Markov Models 

Limited to experimentation in static 
settings 

Jonas et al. ( 2021 ) Eye tr ac king Analysis of the impact of cleanliness in aircraft part 
visual inspection using gaze data 

Limited to experimentation in static 
settings 

Bukschat et al. ( 2020 ) Object detection De v elopment of a model to estimate position and 
orientation of objects in 3D space 

Requirement for large volumes of 
training data. 

Sampaio et al. ( 2021 ) Object detection De v elopment of a systematic method to effectiv el y 
train object detection models 

Requirement for detection of dynamic 
entities 
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across objects of varying sizes and offers r elativ el y swift com- 
putational efficiency, rendering it suitable for real-time detection 

applications (Jamie et al., 2013 ). The algorithm is also well suited 

for analyzing gaze data on objects by estimating their states, in- 
cluding their orientation, rotation, and location. An integrated 

module was de v eloped that consolidates the eye-tr ac king mod- 
ule with the object detection module, addressing any arising in- 
tegr ation c hallenges . T he r eal-time a pplication feasibility can be 
enhanced by resolving latency issues through algorithm warm-up 

and frame sampling methods. Finally, an analyzer module was de- 
signed to handle objects detected at varying sizes and rotational 
angles under dynamic conditions. A perspective transformation 

algorithm w as emplo y ed to streamline the anal ysis pr ocess, uni- 
fying the detection of objects of varying sizes within a dynamic 
environment. 

The e v aluation matrix comprised metrics suc h as the gaze 
scor e, accur acy scor e, and concentr ation index for compr ehen- 
siv e anal ysis . T he gaze scor e e v aluates how far the gaze is fr om
the point of interest, and the accuracy score is the average of the 
gaze scor es acr oss m ultiple points of inter est. If the gaze aligns 
pr ecisel y with the point of interest, it receives a high score, and 

the scor e decr eases as the distance from the point of interest in- 
creases . T he concentration index measures the ratio of the gaze 
falling within the region of interest (ROI) of the point of interest to 
the ov er all gaze. 

Tw o experiments w er e conducted to demonstr ate the r obust- 
ness of the proposed system and to e v aluate the discr epancy 
among workers . T he first experiment, conducted to e v aluate the 
robustness of the system, organized the assessment into six sce- 
narios with four subjects, structured around the presence of ei- 
ther one or four defect points. Each scenario was compared quan- 
titativ el y using an e v aluation matrix. In this matrix, the gaze score 
is the primary measure, and the robustness of the system is de- 
termined by analyzing the average and variation in this score. For 
example, these e v aluation matrices did not show significant dif- 
fer ences, suc h as v ariances of 0.01, 0.05, and 0.07 for each case 
in Scenario 1, and it was confirmed that there was no significant 
differ ence e v en on the visualized heat ma p. 

The next experiment analyzed the differences in gaze patterns 
between four novice and four professional workers . T he position 

of the novice and professional gazes was expressed as a graph 

o ver time , resulting in a difference in gaze according to skill le v el.
In practical applications, significant disparities exist in the defect 
detection methods emplo y ed b y novices and professional w orkers.
This variation can be attributed to professionals learning more ef- 
ficient and accurate gaze routes over time compared to no vices .
Thr ough suc h gaze data collection, the str ategies of pr ofession- 
als can be effectiv el y comm unicated to novices (Nakam ur a et al.,
019 ). Ther efor e, stable gaze data collection in dynamic environ-
ents is essential. 
These experiments ensured a stable collection of gaze data in

 ynamic man ufacturing en vironments , enabling gaze analysis
hrough object detection. By facilitating the real-time analysis of 
aze points without the need for post-processing, two k e y issues
er e addr essed: the inability to detect dynamic objects and the
 hallenge of sync hr onizing gaze tr ac king with object location.
his advancement not only resolves these existing problems but 
lso paves the way for further analysis and application of expert
aze data. 

The remainder of this paper is structured as follows: Section 2
 e vie ws r elated works in the manufacturing field, and Section 3
escribes the proposed system architecture, which is segmented 

nto four modules. Section 4 discusses the experiments and re-
ults, showcasing the robustness and adaptability of the system.
ection 5 concludes the paper. 

. Related Work 

elow , T able 1 summarizes important results from major studies
n gaze tr ac king and object detection, and it r e vie ws the features
nd dr awbac ks of these studies. Additionall y, Fig. 1 shows a pho-
ogr a ph r elated to the r esearc h. 

In the manufacturing domain, one of the primary applications 
f gaze data and eye-tr ac king tec hnology is quality inspection.
iemann et al. ( 2019 ) le v er a ged gaze data to enhance inspec-

ion pr ocedur es during the painting sta ge of pr oduction. Their r e-
earch enabled workers to optimize the sequence of operations 
y examining the fixation order during inspections, as depicted in
ig. 1 a. Ad ditionally, this stud y facilitates the identification and
mpr ov ement of inspection processes, highlighting areas com- 

onl y ov erlooked b y inspectors. Ho w e v er, the gaze data collec-
ion process requires subsequent manual verification to ascertain 

hich parts of the object have been observed. This complicates
he analysis of continuous data streams and r equir es substantial
uman intervention. 

Ulutas et al. ( 2020 ) anal yzed eye-tr ac king data gather ed fr om
uality inspection personnel. The data were collected using 
n eye-tr ac king de vice during the inspection of v arious plastic
ontrol panels of the tumble dryer, as shown in Fig. 1 b. The
tudy delineated the differences between novice and profes- 
ional inspectors by e v aluating r ecorded eye-mov ement patterns.
urthermore, it was confirmed that there is a clear difference
n eye-movement patterns between experts and no vices . T he
nalysis of visual engagement within specified areas of inter- 
st (AOIs) employs sophisticated methods, such as the Hidden 

arkov Model. Ho w ever, a limitation of the experiment was the
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Figure 1: Quality inspection cases using eye-tr ac king skills. 
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tatic design and testing of AOIs, which presents challenges for
xtr a polation to dynamic real-world scenarios in which both
bjects and individuals are in motion. 

Jonas et al. ( 2021 ) implemented factor analysis utilizing eye-
r ac king tec hnology to examine the pr ocess of visuall y inspecting
ircraft parts . T his in vestigation in volv ed 50 pr ofessionals fr om
he industry who scrutinized the images and assessed the de-
icted features, as illustrated in Fig. 1 c. This study specifically
ocused on the variations in visual attributes observed during
he inspection of both clean and dirty blades. It was posited that
leaning blades prior to inspection significantly influenced the vi-
ual inspection outcomes. Ho w e v er, note that this experiment was
onducted using static images . T his limitation raises the possibil-
ty that the findings may differ in the dynamic context of visual
nspection. To effectiv el y gather eye-tr ac king data in the dynam-
call y c hanging conditions of a manufacturing site, it is crucial to
iscern not only the object being observed but also the specific
art of the object under scrutin y. Pr e vious r esearc h has pr edom-

nantly focused on post hoc analysis; ho w ever, integrating object
etection can address this challenge. 

Object detection algorithms must possess the capability not
nly to discern the location of objects but also to determine
heir orientation and angle of r otation accur atel y. Buksc hat et al .
evised an EfficientPose algorithm that estimates the position
nd orientation of objects within 3D spaces (Bukschat et al., 2020 ).
o w e v er, this algorithm r equir es extensiv e tr aining data for effec-

ive learning. The insufficient amount of data from the Linemod
enchmark dataset was supplemented using data augmentation
Hinterstoisser et al., 2011 ). Ho w e v er, if the amount of data cannot
e increased in this manner, a new dataset must be created
anually, including labeling the orientation of objects, which is
 challenging task requiring considerable time and w orkfor ce.
ampaio et al . emplo y ed Computer-Aided Design (CAD) models
o produce synthetic images that were dynamic in the real world,
her eby str eamlining the tr aining pr ocess for object detection

odels and simplifying data acquisition across diverse fields
Sampaio et al., 2021 ). 
This study introduces an integrated object detection and eye-
r ac king system designed to utilize worker gaze data dir ectl y, elim-
nating the r equir ement for additional post-pr ocessing. For object
etection, the system employs a 6D pose estimation algorithm
hat can detect the dir ection, r otation, and positions. Furthermor e,
nity creates a comprehensive dataset of training image back-
r ounds that r eflect r eal-world envir onments (Lee et al., 2021 ). This
ethod allows the proposal of a system capable of reliably col-

ecting and analyzing gaze data e v en in dynamic manufacturing
n vironments . 

. Proposed System Architecture 

his section describes the ov er all structur e of the proposed sys-
em for analyzing worker gazes . T he system dynamically detects

oving objects and integrates the worker’s gaze coordinates to
etermine the specific part of the object on which the gaze is fo-
used. T he o v er all structur e of the pr oposed system is illustr ated
n Fig. 2 . The proposed system incorporates four distinct modules
or digitizing the position of the target object and the operator’s
aze information. The integration module introduces a method
or minimizing latency. In addition, the analysis module describes
n algorithm designed to compare and analyze the positions of
arious objects in 3D space. 

First, the target object was observed using a wearable de-
ice, Tobii Pro Glasses3. The device is responsible for storing
nd transmitting real-time video and acts as an eye-tracking
odule . T he eye-tr ac king r esults ar e tr ansmitted to the integr a-

ion module, whereas the real-time video data are forw ar ded to
he object detection module to identify objects within the video
tream. 

The object detection module employs a 6D pose estimation al-
orithm, which is a modification of the EfficientPose algorithm,
or seamless detection in dynamic en vironments . T he algorithm
s trained on the target object before being used in the system and
tilizes both real-world and implemented images for training. The
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Figure 2: ISGOD structure. 

 

 

 

 

 

Figure 3: 6D pose: X, Y, Z, yaw, pitch, and roll. 
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module processes the received images for object recognition and 

subsequently sends the identified information to the integration 

module. Consequentl y, within the integr ation module, the r esults 
of object detection and gaze tr ac king obtained fr om these two sys- 
tems were combined to finalize the de v elopment of the proposed 

system. 
In addition, an analysis module is necessary when using the 

proposed system for analysis. As dynamic objects are detected,
the coordinates , angles , rotation of the object, and the r elativ e po- 
sition of the gaze at that moment vary. To address this, an ad- 
ditional algorithm that standardizes the size and position of all 
objects was implemented, enabling more accurate gaze compar- 
isons. In addition, owing to its modular arc hitectur e, the system 

offers ease for future modifications or redesigns (Kang et al., 2021 ).

3.1. Object detection module 

There is a general tendency to use depth data collected with an 

RGB-D camera to estimate the 6D pose (He et al., 2020 ). Ho w e v er,
in this study, a method of dir ectl y estimating the 6D pose using 
only RGB data was used for fast real-time recognition (Son & Ko,
2022 ; Yin et al., 2021 ). In the proposed system, object detection is 
ac hie v ed by implementing an algorithm based on the Efficient- 
Pose fr ame work. EfficientPose, a detailed deep learning architec- 
tur e, is ca pable of determining the class of single or multiple ob- 
jects within a single-shot RGB image while also estimating their 
2D bounding boxes and rotational angles (roll, pitch, and yaw) 
across the three axes. 

The algorithm operates as follows: initially, it acquires an in- 
put ima ge fr om a camer a or another ima ging de vice to extr act 
featur es fr om this ima ge . T his phase is critical for analyzing and 

inter pr eting the shape and structural attributes of an object to 
obtain essential information. Subsequently, using these extracted 

features, the algorithm estimates the 6D pose of an object in Fig. 3 .
The term “6D” pertains to both the position and rotation within a 
3D space, thereby defining the spatial coordinates and the direc- 
tional orientation of the object. After successfully determining the 
position and orientation of the object, the algorithm finalizes the 
object detection process by computing the bounding box of the 
object. 

3.1.1. 6D pose estimation ar c hitecture 
This study used a modified EfficientPose model arc hitectur e to 
estimate the 6D pose by reflecting the structural characteristics 
of an object, as shown in Fig. 4 (J. Y. Kim et al., 2022 ). This archi- 
tecture includes an EfficientNet bac kbone, a bidir ectional featur e 
 yramid netw ork (BIFPN), and lo w er subnetw orks . T he backbone
mploys EfficientNet, a convolutional neural network architec- 
ur e r enowned for its superior accur acy and computational ef-
ciency r elativ e to existing ConvNet models (Z. Li et al., 2021 ). In
act, EfficientNet-B7 recorded a top-1 accuracy of 84.4% and a top-
 accuracy of 97.1% on the ImageNet dataset, demonstrating its
a pability to r ealize a model that is 8.4 times smaller in size and
.1 times faster than traditional ConvNet architectures (Tan & Le,
019 ). For the neck, a BIFPN is utilized to enhance the detection
ccuracy of objects of various sizes . T he head comprises a clas-
ifier for object type recognition, a bounding box for determining
he position of the object, and a r egr essor for angle estimation. 

The complete loss function utilized for training the 6D pose es-
imation arc hitectur e, whic h is specificall y engineer ed for 6D pose
ecognition, is composed of three distinct components: L class for 
lassification loss, L bbox for bounding box r egr ession loss, and L TR 

or transformation loss, as explained in equation ( 1 ). Furthermore,
he variable influence of each constituent loss is regulated by the
yper par ameter λ. 

Loss = λclass · L class + λbbox · L bbox + λTR · L TR . (1) 

The classification loss L class , used in EfficientDet to classify the
lasses of objects is a modified cr oss-entr opy loss function known
s the Focal Loss function (Tan et al., 2020 ). It was de v eloped to ad-
ress the class imbalance problem, which is a challenge in model
r aining wher e the “negativ e” class significantl y outnumbers the
positive” class . T he estimated probability P t corresponds to the
ikelihood that a given instance is classified as a for egr ound class
y a deep learning model. The term a t is a weight that balances
he positive and negative classes. In addition, a modulating factor
xpressed as ( 1 − P t ) 

y is incor por ated to mitigate the imbalance
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Figure 4: 6D pose estimation network arc hitectur e. 

Figure 5: 6D pose estimation algorithm loss gr a ph. 
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etw een straightforw ar d and complex examples, thereb y refining
he focus of the model and improving its performance for more
hallenging instances within the training data. 

L class = F L ( P t ) = −a t ( 1 − P t ) 
τ log ( P t ) , P t = 

{ 

p i f y = 1 
1 − p otherwise 

. 

(2) 

The bounding box r egr ession loss, r epr esented b y L bbox emplo ys
 smooth L1 loss, which enhances the precision of object localiza-
ion. In the context of bounding box r egr ession for the target class
 , let t r epr esent the gr ound-truth v alues and v denote the corr e-
ponding predicted values . T his relationship is represented by the
ollowing equations: t u = ( t u x , t 

u 
y, t u w , t 

u 
h ) , v = ( u x , u y , u w , u h ) . 

L bbox ( t 
u , v ) = 

∑ 

i ∈ x,y ,w ,h 

smooth L 1 ( t u i − v i ) , smooth L 1 ( x ) 
{

0 . 5 x 2 i f | x | < 1 
| x | − 0 . 5 otherwise 

.

(3) 

Transformation loss, L TR defined by an L2 loss framework, is
tilized to recognize the pose of the object, which is expressed
s r elativ e positional coordinates and rotational angles in space
ith r efer ence to the coordinate system of the camer a. The tr ans-

ation vector T f is a 3D vector from set R 

3 x1 containing elements
 x , t y , and t z , whic h ar e aligned with the ground truth position of
he object. Similarly, the rotation vector R f , expressed in the com-
act Rodrigues form within R 

3X1 , encapsulates the ground truth
rientation. The translation and rotation vectors, T f and R f , re-
pectiv el y, denote the predicted pose parameters that are essen-
ial for the estimation process of the model. Furthermore, the set
 f consists of 3D model points, typically presented as point-cloud
ata, wher eas m f r epr esents the count of these points, whic h ar e
actored into the loss computation. 

L TR = 

1 
m f 

∑ 

M l ∈ M f 

min 

x 2 ∈ M f 

| (R f x 1 + T f 
) − (

R̄ f x 2 + T̄ f 
) | 2 . (4)

During training, using the given loss function, we saw the loss
 alues dr op ov er time , as Fig. 5 shows . T his steady decrease in loss
eans the algorithm is getting better at making accurate predic-

ions. Consequently, this suggests that the reliability of the pro-
osed loss function impr ov es as training advances. 

.1.2. Learning environment 
n this study, a high-performance computational fr ame w ork w as
ssembled to facilitate the training and assessment of cutting-
dge deep learning arc hitectur es . T he foundational system infras-
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Table 2: Specific learning environment. 

Type Product Version 

OS Windows 10 Education 19 042.1826 
GPU driver NVIDIA GPU driver 30.0.14.7168 
NVIDIA GPU computing 
toolkit 

CUDA 11.2 

Pr ogr aming langua ge Python 3.8 
Deep learning fr ame work Tensorflow 2.5.0 
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tructur e oper ated on the Windows 10 Education platform and 

other information, such as language and driver versions, are listed 

in Table 2 . 

3.2. Eye-tracking module 

In this study, the Tobii Pro Glass 3 was used for real-time gaze 
tr ac king and ima ge acquisition. This wear able eye tr ac k er is ade pt 
at integrating into a wide range of settings and unobtrusiv el y ca p- 
tures the viewpoint of the wearer. The device is equipped with a 
built-in scene camera that provides live visual feedback from the 
user’s perspective (T. H. Li et al., 2020 ). This feature is instrumental 
in concurr entl y gathering both visual field data and images and is 
an essential component of this study for compr ehensiv e anal ysis.
The device has also been proven to be reliable in various studies 
(Jonas et al. ( 2021 )). 

Ho w e v er, using the pr ogr am of Tobii Pr o Glasses 3 was finan- 
ciall y pr ohibitiv e and lac ked the fr eedom to be used in this algo- 
rithm. Ther efor e, information fr om Tobii Pro Glasses 3 was uti- 
lized in the module, following the structure depicted in Fig. 6 .
We also needed to integrate the device into the system, which 
F igure 6: Netw orking comm unication structur es. 

Figur e 7: T hree primary latency of ISGOD. 
ould cause problems with communication. For this purpose, we 
ir elessl y connected the glasses to a PC and imported the data

nto Python using the Real-Time Str eaming Pr otocol (RTSP). This
rotocol is pivotal for establishing a stable communication link,
hich is essential for effectively streaming live visual and gaze 
ata into the proposed Python-based analysis system (Muham- 
ad et al., 2013 ). The primary role of the RTSP in this configura-

ion was to ensure the seamless transfer of real-time data from
he glasses, thereby facilitating the efficient and continuous ac- 
uisition of eye-tr ac king and visual data, whic h is crucial for the
 esearc h objectiv es of this study. 

.3. Integr a ted module 

or real-time analysis of a worker’s gaze upon object detection,
t is essential to integrate the two modules above to determine
hich part of the object is being observed by the worker. In other
 or ds, the integration module outputs a real-time display by com-
ining the bounding box information pr ocur ed fr om the object
etection module with the current gaze coordinates provided by 
he eye-tr ac king module. Howe v er, because the system le v els and
 har acteristics differ, it is challenging to implement and integrate
hem into one environment (Ham et al., 2018 ; B. S. Kim et al., 2020 ;
ran et al., 2014 ). This section discusses troubleshooting during the
ntegration of these two modules. 

.3.1. Integrated module structure 
he integration process of the eye-tracking module with the ob-

ect detection module is shown in Fig. 7 . Initially, when the tar-
et object was observ ed thr ough Tobii Glasses, two distinct types
f data were captured: image and gaze data. The image data are
elayed to the object detection module, whereas the gaze data
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F igure 8: Tw o primary dela ying causes and solutions . 
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r e tr ansmitted to the integr ation module. Subsequentl y, the ob-
ect detection module, which employs a pr e-tr ained algorithm on
he ima ge fr ames, gener ates an output encompassing the bound-
ng box, rotation, and depth information of the object. Ultimately,
he task of merging information fr om eac h module is essential,
hic h consequentl y intr oduces a delay due to the integr ation of
isparate data sources . T hree primary sources of delay were iden-
ified: ima ge pr ocessing latenc y (A), Tobii connection latenc y (B),
nd object detection latency (C). Latency B originates from the
ommunication between the Tobii Glasses and the PC. In contrast,
atency C is a consequence of the computational r equir ements of
he 6D pose estimation algorithm, mainly owing to its capability
o handle multi-object and dynamic object detection. 

.3.2. Latenc y r eduction method 

 he dela y known as latency A in this study comes from how long
t takes for the algorithm to start working on the image . T his la-
ency is a result of the time lag between the transmission of the
ma ge fr ame fr om the gaze-tr ac king module and pr ocessing by
he algorithm of the object detection module. To address this is-
ue, as shown in Fig. 8 , two primary causes were identified, and
he corresponding solutions were implemented. The delay known
s latency A in this study comes from how long it takes for the
lgorithm to start working on the image . T his latency is a result
f the time lag between the transmission of the image frame from
he gaze-tr ac king module and processing by the algorithm of the
bject detection module. To address this issue, as shown in Fig. 8 ,
wo primary causes were identified, and the corresponding solu-
ions were implemented. 

The first issue pertains to the algorithm initialization. The al-
orithm r emains inactiv e until it r eceiv es an ima ge fr ame fr om
he gaze-tr ac king module. Consequentl y, the initial oper ation of
he object detection algorithm includes both pr epar ation time and
ctual processing time. To alleviate this problem, a strategy of pre-
ctivating the algorithm with dummy data was employed to elim-
nate pr epar ation dela ys . 

The second issue is time sync hr onization. Tobii Glass oper ates
t an actual FPS of 25, sending 25 frames per second to the ob-
ect detection module. As shown in Fig. 9 , the fr ame-pr ocessing
equence begins with object detection in the first frame. Subse-
uent fr ames, suc h as Fr ames 2 and 3, m ust wait until the pr o-
essing of Frame 1 is complete . T his sequential processing leads
o the accumulation of waiting times. To resolve this, a sampling

ethod that selects the frame closest to the completion of the
urr ent fr ame fr om the waiting fr ames for algorithm a pplication
as adopted. This a ppr oac h effectiv el y addr esses the continuous
uildup of latency. 

.4. Analyzer module 

s illustrated in the left segment of Fig. 10 , the size and position
f eac h r ecognized ima ge v ary according to the location of the op-
rator. The implementation of an analyzer module is necessary to
onfirm and analyze these discrepancies accurately. This module
tandardizes the r epr esentation of objects across different frames,
s shown on the right side of Fig. 10 . 

To analyze eye gaze data from the eye-tracking module and de-
ect object data through the object detection module, a sequence
f the perspective transfer algorithm of the analyzer module was
ndertak en, as de picted in Fig. 11 . The sequence dia gr am illus-
r ates the oper ation of the anal yzer module . T he eye-tr ac king

odule continuousl y ca ptur es ima ges until the recording session
n the Tobii Glasses is concluded and subsequentl y tr ansmits the
ata to the object detection module. Once the recording was con-
luded, the analyzer module collected the data of the detected ob-
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F igure 9: F rame sampling for latenc y impr ov ement. 

Figure 10: Applying analyzer module. 

Figure 11: Analyzer module sequence diagram. 
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jects and arranged the coordinates of the vertices for each square 
in a specified sequence . T his alignment is a pr er equisite for per- 
forming perspective transformation. Following this, the module 
computes a transformation matrix, denoted as “H”, which is used 

to convert the coordinates of the detected square to a standard- 
ized squar e form. Concurr entl y, the eye-tr ac king module pr ocur es 
the eye gaze data and applies the perspective transformation us- 
ing matrix “H” on the gaze points. Once all the data were han- 
dled, the analyzer module worked out the av er a ge scor es and how 

m uc h they varied by looking at where people were supposed to 
look compared with where they actually looked. It also figured 

out how accurate the gaze was by c hec king how many gaze points 
matched up with the correct spots. 
. Experiments 

igure 12 shows the two principal experiments conducted in this
tudy. Experiment 1 assessed the robustness of the proposed al-
orithm. T his experiment in volv ed scenarios in whic h both the
bserver and object were stationary (i), situations in which the
bserver was stationary while the object alone was in motion (ii),
nd cases in which both the observer and object were moving (iii).
n a dynamic environment, objects can be rotated 360 degrees and
ipped upside down or backw ar ds. In contrast, in static environ-
ents, they must remain stationary. Humans can also use their

rms to move objects in dynamic en vironments , and their neck
nd eyes to detect objects. Howe v er, in a static envir onment, onl y
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F igure 12: Tw o experiments scenarios: system r obustness and discr epancy e v aluation. 

Figure 13: A square plate as a target object. 
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Figure 14: An e v aluation matrix for system robustness. 

a

 

 

p  

e

 

 

(

 

 

 

fi  

T  

w  

o  

g  

a

 

 

A  

d  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/11/3/158/7665756 by H

anyang U
niversity user on 30 M

ay 2024
he subject’s eyes can be used to detect objects. Evaluation met-
ics were defined for the experiment, and the a verage , variance ,
nd accuracy of these scores were compared to demonstrate the
obustness of the system in a dynamic environment. Experiment 2
ocused on tr ac king the eye mov ements of novice and pr ofessional
orkers in conditions in which both the operator and object were

n motion. The analysis was conducted by visualizing the gaze po-
itions on an object o ver time , pro viding insights into the differing
bserv ational str ategies of novice and pr ofessional oper ators. 

The experimental design was predicted using a square plate, as
hown in Fig. 13 . The dimensions of the object were configured as
6.5 cm in width, 26.5 cm in length, and 1 cm in height. This object
as arbitr aril y selected to facilitate the experimental pr ocedur e
nd could be adapted to accommodate different objects. 

.1. Experiment 1: e v alua tion of system 

robustness 

n this, an experiment is delineated to assess the robustness of
he system. First, an e v aluation matrix was established, follo w ed
y a detailed description of the experimental scenarios. Subse-
uently, an experiment was conducted, yielding results that were
ubjected to analysis, culminating in a discussion. 

.1.1. Evaluation matrix 

his study initially established an e v aluation matrix, as depicted
n Fig. 14 , to assess the proximity of gaze points to the ROI of the
bject in addition to the ratio of points within to those outside the
OI. 

Assuming the detection of a square object, the gaze coordinates
rojected onto the object, i.e., post-perspective transformation,
re defined as gaze k in equation ( 5 ): 

Gaz e k = ( X k , Y k ) . (5)

Furthermore, the set of coordinates representing the critical
oints on the object to be observed is expressed as A nswer to
quation ( 6 ): 

Answer = 

{
( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) 

}
. (6)

The vicinity of Answer n extends to Interest_Score as per equation
 7 ) and is designated as the ROI n , denoted as in equation ( 8 ): 

Int erest _ Score = C ( constant ) (7)

ROI n = 

{ 
( x, y ) | ( x − x n ) 

2 + ( y − y n ) 
2 ≤ Int erest _ Scor e 2 

} 
. (8)

Consequentl y, Gaze_Score k as expr essed in equation ( 9 ), quanti-
es the closeness of a gaze point to the point of interest, Answer n .
his score is designed to measure the precision of gaze alignment,
here a score closer to 1 indicates a direct match with the point
f interest, signifying high accuracy, while a score closer to 0 sug-
ests a greater distance from the target point, indicating lo w er
ccuracy. 

Gaze _ Scor e k = 

Int erest _ Score −
√ 

( X k − x n ) 
2 + ( Y k − y n ) 

2 

Int erest _ Score 
. (9)

T he a v er a ge of these Gaze_Score k fr om 1 to K is defined as the
ccuracy_Score in equation ( 10 ). This metric serves as an ov er all in-
icator of gaze accuracy across multiple points of interest, offer-

ng a compr ehensiv e vie w of the participant’s focus and precision
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Table 3: Experiment 1 scenarios. 

Target point Observer Object 

Scenario 1–1 1 dot Stationary Stationary 
Scenario 1–2 1 dot Stationary Moving 
Scenario 1–3 1 dot Moving Moving 
Scenario 1–4 4 dots Stationary Stationary 
Scenario 1–5 4 dots Stationary Moving 
Scenario 1–6 4 dots Moving Moving 

 

 

 

Table 4: Evaluation matrix of Scenarios 1–1, 1–2, and 1–3. 

Average Variance Concentr a tion(%) 

Scenario 1–1 0.84 0.01 99.38 
Scenario 1–2 0.67 0.05 91.88 
Scenario 1–3 0.65 0.07 88.12 
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Accuracy _ Score = 

1 
K 

K ∑ 

k =1 

Gaze _ Scor e k . (10) 

Finall y, the pr oportion of Gaze k points falling inside the ROI rel- 
ative to those outside the ROI is defined as the Concentration_Index 
in equation ( 11 ): 

Concent rat ion _ I nd ex = 

N inside 

N outside + N inside 
, N inside 

{
1 , i f in ROI 
0 , otherwise 

. 

(11) 

4.1.2. Scenario 
The parameters used in Experiment 1 are listed in Table 3 . The 
experimental parameters were categorized into three distinct 
classes: target point of the object, mobility of the observer, and 

mobility of the object. Initiall y, r epr esenting the object on a 50 × 50 
coordinate plane, the target points on the object are demarcated.
This included a central point at (25, 25), and four peripheral points 
located in the upper right (40, 40), lo w er right (40, 10), lo w er left (10,
10), and upper left (10, 40) quadrants. Following this initial setup,
the experiment divides the same observer into various cases to 
compar e differ ences. Despite the limitation of the number of ob- 
server, the detailed insights gained from each participant can still 
support robust research findings (Sharma et al., 2020 ). 

The experimental setup was categorized based on the state of 
motion of the observers and objects . T his encompasses scenarios 
wher e both observ ers r emain stationary and the object is station- 
ary, scenarios where the observer is stationary while the object 
is moving, and scenarios where there is concurrent movement of 
both the observer and the object. In addition, ther e wer e a total of 
four subjects performing the scenarios, and the results, excluding 
heat maps, utilized the av er a ge of the eight subjects’ e v aluation 

metrics. Consequentl y, anal yses wer e conducted according to the 
defined scenario assessment metrics for Scenarios 1–1, 1–2, and 1–
Figure 15: Heat map of Scenarios 1–1, 1–2, and 1–3. 
, follo w ed b y analogous comparisons for Scenarios 1–4, 1–5, and
–6. 

.1.3. Experimental results 
he experimental findings are illustrated using a heat map in
ig. 15 . This visualization r e v eals that the dispersion of gaze points
n Scenario 1–2 is slightly more pronounced than in Scenario 1–1,
ith Scenario 1–3 displaying the highest le v el of dispersion. Suc h
 dispersion is an expected consequence of the dynamic nature
f the experiment, in which objects and observers are in motion,
eading to a broader gaze distribution. 

To provide an evaluation matrix, the scores for each scenario,
ased on the designated e v aluation index, ar e listed in Table 4 .
cenario 1–1 registers an average score of 0.84 with a variance
f 0.01 and a concentration index rate of 99.38%. In comparison,
cenario 1–2 yields an av er a ge scor e of 0.67, a v ariance of 0.05, and
 concentration index rate of 91.88%. Finally, Scenario 1–3 attains
n av er a ge scor e of 0.65, v ariance of 0.07, and concentr ation index
ate of 88.12%. 

The experimental results are depicted using a heat map, as il-
ustrated in Fig. 16 . The visual plot indicates a gradual increase in
he variance of the gaze points, with Scenario 1–5 showing slightly

or e v ariance than Scenario 1–4 and Scenario 1–6 exhibiting the
ighest variance . T his incr ease in v ariance, especiall y compar ed
ith Scenarios 1–1, 1–2, and 1–3, is attributed to the r equir ement

or the plate to be moved and the four points to be observed alter-
ately. 

The e v aluation matrix for eac h scenario, according to the de-
ned metrics, is presented in Table 5 . Scenario 1–4 achieves an av-
r a ge scor e of 0.59, a v ariance of 0.08, and a concentr ation index
ate of 82.50%. Scenario 1–5 had a mean score of 0.55, a variance
f 0.12, and a concentration index rate of 74.06%. Lastly, Scenario
–6 records a mean score of 0.46, a variance of 0.13, and a concen-
ration index rate of 63.75%. 
 30 M

ay 2024
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Figure 16: Heat map of Scenarios 1–4, 1–5, and 1–6. 

Table 5: Evaluation matrix of Scenarios 1–4, 1–5, and 1–6. 

Average Variance Concentr a tion(%) 

Scenario 1–4 0.59 0.08 82.50 
Scenario 1–5 0.55 0.12 74.06 
Scenario 1–6 0.46 0.13 63.75 
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Table 6: Experiment 2 scenarios. 

Target 
point Subject Observer/Object 

Scenario 2–1 4 dots Novice A Mo ving/Mo ving 
Scenario 2–2 4 dots Professional B Mo ving/Mo ving 
Scenario 2–3 8 dots Novice C Mo ving/Mo ving 
Scenario 2–4 8 dots Professional D Mo ving/Mo ving 
Scenario 2–5 4 dots Novice E Mo ving/Mo ving 
Scenario 2–6 4 dots Professional F Mo ving/Mo ving 
Scenario 2–7 8 dots Novice G Mo ving/Mo ving 
Scenario 2–8 8 dots Professional H Mo ving/Mo ving 
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.1.4. Discussion 

hrough the execution of experiments across six scenarios, it was
scertained that gaze data can be effectiv el y gather ed, e v en in dy-
amic contexts where both objects and observers are in motion.
e v ertheless, as the scenarios became more dynamic, there was
 slight decrease in the av er a ge accounting scor e, an incr ease in
ariance, and a reduction in the concentration index rate . T his
r end is likel y due to the difficulty in maintaining a steady gaze
n complex en vironments , especially when either the observer or
he object is in motion, compared with a stationary setting. Con-
equentl y, the scor es wer e influenced by gaze points that deviated
rom the correct target. Despite these variations in the evaluation

atrix scores, the heat maps provided a precise analysis of which
r eas wer e observ ed, indicating that the dynamic nature of the
cenarios did not significantly impede the ability to analyze the
ocus areas of observation. 

.2. Experiment 2: discrepancy e v alua tion 

he preceding section focused on examining the robustness of the
ystem, effectiv el y demonstr ating its ability to integr ate gaze in-
ormation collection with object detection. In this section, we in-
roduce an experimental scenario designed to leverage the capa-
ilities of the proposed system. 

.2.1. Scenario 
e conducted experiments with eight participants: Novice A, Pro-

essional B, Novice C, Professional D, Novice E, Professional F,
ovice G, and Professional H, delineating eight specific scenarios

hat involved either a novice or a professional observer. Subse-
uently, segmenting the observer group into distinct subsets al-

o w ed for a detailed examination of the variations among them
Atkins et al., 2012 , Khan et al., 2012 ). Despite the small sample
ize, the detailed observations and analyses derived from the pro-
osed eye-tr ac king system pr ovided essential insights that r ein-
orced the credibility of the research outcomes (Sharma et al.,
020 , Tien et al ., 2012 ). Following this, we analyzed and discussed
he observed gaze patterns across these scenarios , pro viding in-
ights derived from the data. Through this analysis, we aimed to
emonstrate the versatility of the system and focus on showcas-

ng its potential applications in various contexts. 
The parameters used in Experiment 2 are listed in Table 6 . The

xperiment involved eight groups: A, B, C, D, E, F, G, and H. The
cenarios w ere bifur cated based on the assumption that the tar-
et plate had either four or eight defects . T he specific locations of
hese defects are illustrated in Fig. 17 , with Fig. 17 a depicting the
cenario with four defect points and Fig. 17 b showing eight defect
oints. 

Additionall y, gaze anal ysis for both the observ er and object was
onducted in scenarios where both were moving. To facilitate a
traightforw ar d analysis of the scenarios, the target object was
egmented into 25 sections arranged from top left to bottom right,
s shown in Fig. 18 . Finall y, befor e conducting the actual exper-
ment, we performed a baseline experiment where we assigned
ach subject to look at the sections in a specified order and ver-
fied that they looked at the sections according to the scenario.
he results sho w ed that four of the subjects looked at each sec-
ion in the specified order, confirming that the eye-tr ac king de vice
orr ectl y worked. 

.2.2. Experimental results 
igure 19 a presents the gaze-point analysis of Novice A, while
ig. 19 b showcases that of Professional B. The gr a phs illustr ate the
patial focus of eac h observ er’s gaze ov er time. The x -axis r epr e-
ents time in seconds, and the y -axis denotes the sections of the
bject being observed. The red circles in the graphs indicate the
oments when each observer detected a defect in the area. From

ig. 19 a, it is evident that Novice A took approximately 37 s to
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Figure 17: Target points on object. 

Figure 18: 25 Sections on object. 
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identify all four defects. Lacking prior knowledge about the de- 
fects , No vice A a ppear ed to methodicall y inspect the entir e ar ea 
sequentiall y. Notabl y, Sections 3 and 20 wer e initiall y scrutinized 

for an extended duration; ho w ever, defects w ere not initially iden- 
tified in these sections, necessitating subsequent reexamination. 
Conv ersel y, Pr ofessional B completed the entire inspection in ap- 
pr oximatel y 21 s, and all defects were identified within approxi- 
mately 13 s. Rather than following a sequential pattern, Profes- 
sional B’s inspection str ategy involv ed a mor e spor adic a ppr oac h,
cr ossing differ ent ar eas to scan the entir e section. This a ppr oac h 

highlights a more efficient inspection methodology, possibly stem- 
ming from professional experience and a strategic understanding 
of defect detection. 
Figure 19: Time-based section gr a phs for Novice A and Professional B. 
In Fig. 20 , Novice C as depicted in Fig. 20 a, exhibits a pattern
imilar to that of Novice A in Fig. 19 a. The total inspection du-
ation for Novice C was 55 s, with the identification of all eight
efects occurring at the 51 s mark. This pattern demonstrates 
hat Novice C conducted a compr ehensiv e c hec k of v arious sec-
ions, such as Sections 1, 15, and 19, and r e visited certain ar eas
o confirm the presence of defects . Moreo ver, it is noticeable that
ovice C spent a longer time in each area than its professional
ounter parts. Pr ofessional D finished the inspection in 26 s and
ound all the defects in 24 s, as you can see in Fig. 20 b. Profes-
ional D quic kl y c hec ked eac h section and found defects fast,
pending less time looking at each one. Ho w e v er, it was also ob-
erv ed that Pr ofessional D had to r e visit certain ar eas, suc h as part
, for a second inspection, indicating that e v en experienced pro-
essionals may need to double-c hec k certain sections to ensure
horoughness. 

Based on the results of the previous experiments, we wanted
o increase the reliability of the results by conducting additional
xperiments on a total of four people . T he r esults for eac h novice
nd expert did not show the same trends as the pr e vious experi-
ents, but in most cases, the experts spent significantly less time

o detect defects than the novices and were more efficient at se-
ecting detection zones. 

In Fig. 21 , which shows the results of a four-defect detection
xperiment, the novice detected a defect in about 30 s and im-
ediately terminated the experiment, while the expert detected 

 defect in about 15 s, but after further detection, the expert com-
ty user on 30 M
ay 2024
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Figure 20: Time-based section gr a phs for Novice C and Professional D. 

Figure 21: Time-based section gr a phs for Novice E and Professional F. 

Figure 22: Time-based section gr a phs for Novice G and Professional H. 
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leted the experiment in about 20 s. In Fig. 22 , which shows the
esults of an experiment with eight defect detections, the novice
ompleted the defect detection in about 45 s, but the experiment
nded at 51 s after c hec ked for any missed areas. In contrast, ex-
erts completed the defect detection and concluded the experi-
ent in a ppr oximatel y 27 s . T he differences in results from one

xperiment to another happened because each person checked
or defects in their own way and order. Ther efor e, it was deter-
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mined that additional experiments contributed to the system’s 
reliability. 

4.2.3. Discussion 

The implemented system, as demonstr ated thr ough four distinct 
scenarios in Experiment 2, provides insights into the gaze patterns 
of expert observers . T he system enabled analysis of the entire in- 
spection duration and highlighted the differences in gaze charac- 
teristics between novice and professional observers . T he no vices 
tended to inspect each section more thoroughly, spending more 
time on av er a ge in each area. By contrast, professionals allocated 

a shorter duration per section, indicating a more efficient inspec- 
tion strategy. 

The gaze data difference in the presence of kno w-ho w is dis- 
cussed. Ho w e v er, mana ging human error is difficult, especially 
in dynamic settings where both the observer and the object are 
in motion. Such conditions may lead to unintended gaze move- 
ments, thus complicating the accuracy of gaze tr ac king and anal- 
ysis . T his factor necessitates additional considerations in the sys- 
tem to inter pr et gaze data under fluctuating circumstances accu- 
r atel y. Furthermor e, v ariations in inspection order and method- 
ology can be observ ed, e v en among pr ofessionals. Eac h individual 
may adopt a unique a ppr oac h to the task, underscoring the neces- 
sity of gathering and analyzing gaze data from a broad spectrum 

of gaze samples . T his method helps us fully appreciate the range 
of inspection techniques and accurately assess how experts use 
their gaze. 

Especially since our experiments were conducted with a lim- 
ited number of participants, there is a potential issue in ade- 
quatel y ca pturing the v ariations acr oss individuals and le v els of 
expertise . Moreo ver, by utilizing our system to expand the number 
of various dynamic scenarios, there lies the potential for gaining 
many insights through different analytical techniques, highlight- 
ing the possibility for more extensive analysis and understanding 
of gaze behavior across different conditions and expertise levels. 

5. Conclusions 

This study presents a system designed for real-time object de- 
tection and eye-tr ac king in dynamic en vironments , with the ob- 
jectiv e of anal yzing worker gaze . T he system integrates two spe- 
cialized modules: one for object detection and another for eye- 
tr ac king. These modules work concurr entl y and allow the sim ul- 
taneous performance of both functions . T he system’s effective- 
ness in variable settings has been confirmed through tests assess- 
ing its stability and by comparing how experts and beginners dif- 
fer in their eye-movement patterns. 

In the proposed integrated system, object detection was con- 
ducted using a 6D pose estimation algorithm, and gaze tr ac king 
was performed using Tobii Glasses . T he 6D pose estimation algo- 
rithm is adept at detecting the 6D aspects of an object, such as po- 
sition, rotation, and angle . T he structured loss function within this 
algorithm ensures optimal parameter selection. Tobii Glasses are 
emplo y ed for real-time gaze tr ac king and pr ocessing of both im- 
age and gaze data. Subsequently, to integrate these two modules,
the delay that occurs during integration was solved. The main 

pr oblems wer e algorithm initialization and time sync hr onization,
and the delay time was reduced using dummy data and image 
frame sampling. 

A robustness experiment of the integrated system for reliabil- 
ity was conducted for six scenarios by judging the dynamic pres- 
ence/absence of workers and objects when there were one and 

four defect points. Although the accuracy and variance in com- 
plex envir onments wer e gener all y lo w er than those in static set- 
ings, the differ ences wer e not substantial, indicating the capabil-
ty of the system to collect and analyze gaze data effectiv el y. In
d dition, a second discre pancy e v aluation experiment confirmed
he difference in work proficienc y betw een experts and no vices .
he differences in gaze data according to the presence of expertise
er e anal yzed. These experiments should be follo w ed up with ad-
itional experiments using other wearable devices other than Tobi 
lasses to derive generalized performance of the system. Ho w e v er,
he purpose of this study is to demonstrate feasibility rather than
erformance of the system, which will be addressed in future re-
earch. 

The ability of the system to analyze worker gaze information in
 dynamic environment was demonstrated. This research lays the 
r oundwork for futur e systems aimed at facilitating the transfer
f expertise among w orkers. Ho w e v er, it did not delve into detailed
aze anal yses, suc h as how expert gaze patterns change during
ccurate defect detection or which areas novices should specifi- 
ally avoid. While this study did not provide a direct methodology
or the transfer of expert gaze information to no vices , it pa ves the
ay for future endeavors. Upcoming r esearc h will aim to enable
ovices to attain expert-le v el pr oficienc y b y emplo ying technolo-
ies such as augmented reality or voice guidance for an immer-
ive learning experience through in-depth analysis of gaze pat- 
erns . Moreo ver, there is a plan to develop algorithms specifically
esigned for analyzing expert gaze patterns, enhancing the under- 
tanding of efficient gaze analyzing strategies. Additionally, if the 
bject detection algorithm is trained on a div erse arr a y of objects ,
t will enable the tr ac king of gaze points acr oss v arious items in

ore manufacturing en vironments . 
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