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Abstract

During quality inspection in manufacturing, the gaze of a worker provides pivotal information for identifying surface defects of a
product. However, it is challenging to digitize the gaze information of workers in a dynamic environment where the positions and
postures of the products and workers are not fixed. A robust, deep learning-based system, ISGOD (Integrated System with worker’s
Gaze and Object Detection), is proposed, which analyzes data to determine which part of the object is observed by integrating object
detection and eye-tracking information in dynamic environments. The ISGOD employs a six-dimensional pose estimation algorithm
for object detection, considering the location, orientation, and rotation of the object. Eye-tracking data were obtained from Tobii
Glasses, which enable real-time video transmission and eye-movement tracking. A latency reduction method is proposed to overcome
the time delays between object detection and eye-tracking information. Three evaluation indices, namely, gaze score, accuracy score,
and concentration index are suggested for comprehensive analysis. Two experiments were conducted: a robustness test to confirm
the suitability for real-time object detection and eye-tracking, and a trend test to analyze the difference in gaze movement between
experts and novices. In the future, the proposed method and system can transfer the expertise of experts to enhance defect detection
efficiency significantly.
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1. Introduction tracking an individual’s gaze is insufficient in the following two
ways. First, effective data collection requires eye-tracking and the
identification of specific points on the object. Next, the collection
and analysis of gaze data must consider the changing positions
and postures of both the workers and objects. These two problems
hinder the immediate utility of data and complicate real-time and
dynamic applications.

An effective analysis of eye-tracking data must encompass the
detection of moving objects and the changing conditions present
in manufacturing settings (Praveen et al., 2010). To this end, this
study proposes a robust deep learning system named ISGOD (In-
tegrated System with worker's Gaze and Object Detection), which
performs object detection with eye-tracking to determine which
part of the object is viewed. ISGOD is composed of the following
four modules: (i) collecting the module of image and gaze data
for an eye-tracking device, (ii) the detection module of objects
from the captured images, (iii) the integration module between
eye-tracking data and object detection data, and (iv) an analysis
module based on the proposed evaluation matrix.

For the eye-tracking module, Tobii Pro Glass 3 was used to col-
lect human eye movements, encompassing gaze points, fixations,
viewing duration, head movement, and orientation (T. H. Li et al,,
2020). The object detection module facilitates the six-dimensional
(6D) pose estimation algorithm, which achieves high accuracy

In the manufacturing field, gaze data, such as eye-tracking points
captured by workers’ gazes, are pivotal during quality inspection
tests (Mark et al.,, 2021; Zheng et al., 2022). Such gaze data facili-
tate the efficient identification of defects and play a crucial role
in determining the sequence of assembly and machinery opera-
tions (Lusic¢ et al.,, 2016). For this reason, many researchers have
analyzed the pattern and sequence of human eye movements and
collected gaze data such as gaze fixation, dwell time duration, and
fixation count (Cristino et al., 2010; Kanan et al., 2015; Ooms et al.,
2012; Wang et al., 2022). The collected data have been utilized for
the transfer of skills and know-how among workers, contributing
to more efficient manufacturing operations; however, this trans-
mission has often been informal and unstructured between indi-
viduals (Nakamura et al., 2019; Ye et al., 2023).

Recently, to overcome these shortcomings, researchers have
shifted their focus toward digitalizing gaze data (Ahrens et al,
2023; Borgianni et al., 2018; Ghanbari et al, 2021; Ramachandra
et al., 2021; Ren et al., 2023; Takahashi et al., 2018). For example,
Sadasivan et al. (2005) utilized eye movement to pre-train opera-
tors in the aircraft inspection process. Lus¢i¢ et al. (2016) delved
into the distinctions between static and dynamic contexts by an-
alyzing eye-tracking data during manual product assembly pro-
cesses. However, in the dynamic realm of manufacturing, merely
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Table 1: Comparison of literary review.

Related research Type

Characteristics

Limitations

Niemann et al. (2019) Eye tracking

Ulutas et al. (2020) Eye tracking
Jonas et al. (2021) Eye tracking
Bukschat et al. (2020) Object detection

Sampaio et al. (2021) Object detection

Analysis of quality inspection in automotive
manufacturing using gaze data

Analysis of eye-tracked data of quality assurance
workers using Hidden Markov Models

Analysis of the impact of cleanliness in aircraft part
visual inspection using gaze data

Development of a model to estimate position and
orientation of objects in 3D space

Development of a systematic method to effectively
train object detection models

Necessitates subsequent human visual
analysis

Limited to experimentation in static
settings

Limited to experimentation in static
settings

Requirement for large volumes of
training data.

Requirement for detection of dynamic
entities

across objects of varying sizes and offers relatively swift com-
putational efficiency, rendering it suitable for real-time detection
applications (Jamie et al.,, 2013). The algorithm is also well suited
for analyzing gaze data on objects by estimating their states, in-
cluding their orientation, rotation, and location. An integrated
module was developed that consolidates the eye-tracking mod-
ule with the object detection module, addressing any arising in-
tegration challenges. The real-time application feasibility can be
enhanced by resolving latency issues through algorithm warm-up
and frame sampling methods. Finally, an analyzer module was de-
signed to handle objects detected at varying sizes and rotational
angles under dynamic conditions. A perspective transformation
algorithm was employed to streamline the analysis process, uni-
tying the detection of objects of varying sizes within a dynamic
environment.

The evaluation matrix comprised metrics such as the gaze
score, accuracy score, and concentration index for comprehen-
sive analysis. The gaze score evaluates how far the gaze is from
the point of interest, and the accuracy score is the average of the
gaze scores across multiple points of interest. If the gaze aligns
precisely with the point of interest, it receives a high score, and
the score decreases as the distance from the point of interest in-
creases. The concentration index measures the ratio of the gaze
falling within the region of interest (ROI) of the point of interest to
the overall gaze.

Two experiments were conducted to demonstrate the robust-
ness of the proposed system and to evaluate the discrepancy
among workers. The first experiment, conducted to evaluate the
robustness of the system, organized the assessment into six sce-
narios with four subjects, structured around the presence of ei-
ther one or four defect points. Each scenario was compared quan-
titatively using an evaluation matrix. In this matrix, the gaze score
is the primary measure, and the robustness of the system is de-
termined by analyzing the average and variation in this score. For
example, these evaluation matrices did not show significant dif-
ferences, such as variances of 0.01, 0.05, and 0.07 for each case
in Scenario 1, and it was confirmed that there was no significant
difference even on the visualized heat map.

The next experiment analyzed the differences in gaze patterns
between four novice and four professional workers. The position
of the novice and professional gazes was expressed as a graph
over time, resulting in a difference in gaze according to skill level.
In practical applications, significant disparities exist in the defect
detection methods employed by novices and professional workers.
This variation can be attributed to professionals learning more ef-
ficient and accurate gaze routes over time compared to novices.
Through such gaze data collection, the strategies of profession-
als can be effectively communicated to novices (Nakamura et al.,

2019). Therefore, stable gaze data collection in dynamic environ-
ments is essential.

These experiments ensured a stable collection of gaze data in
dynamic manufacturing environments, enabling gaze analysis
through object detection. By facilitating the real-time analysis of
gaze points without the need for post-processing, two key issues
were addressed: the inability to detect dynamic objects and the
challenge of synchronizing gaze tracking with object location.
This advancement not only resolves these existing problems but
also paves the way for further analysis and application of expert
gaze data.

The remainder of this paper is structured as follows: Section 2
reviews related works in the manufacturing field, and Section 3
describes the proposed system architecture, which is segmented
into four modules. Section 4 discusses the experiments and re-
sults, showcasing the robustness and adaptability of the system.
Section 5 concludes the paper.

2. Related Work

Below, Table 1 summarizes important results from major studies
on gaze tracking and object detection, and it reviews the features
and drawbacks of these studies. Additionally, Fig. 1 shows a pho-
tograph related to the research.

In the manufacturing domain, one of the primary applications
of gaze data and eye-tracking technology is quality inspection.
Niemann et al. (2019) leveraged gaze data to enhance inspec-
tion procedures during the painting stage of production. Their re-
search enabled workers to optimize the sequence of operations
by examining the fixation order during inspections, as depicted in
Fig. 1a. Additionally, this study facilitates the identification and
improvement of inspection processes, highlighting areas com-
monly overlooked by inspectors. However, the gaze data collec-
tion process requires subsequent manual verification to ascertain
which parts of the object have been observed. This complicates
the analysis of continuous data streams and requires substantial
human intervention.

Ulutas et al. (2020) analyzed eye-tracking data gathered from
quality inspection personnel. The data were collected using
an eye-tracking device during the inspection of various plastic
control panels of the tumble dryer, as shown in Fig. 1b. The
study delineated the differences between novice and profes-
sional inspectors by evaluating recorded eye-movement patterns.
Furthermore, it was confirmed that there is a clear difference
in eye-movement patterns between experts and novices. The
analysis of visual engagement within specified areas of inter-
est (AOIs) employs sophisticated methods, such as the Hidden
Markov Model. However, a limitation of the experiment was the
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(b) Employee’s eye movement in assembly line

Figure 1: Quality inspection cases using eye-tracking skills.

static design and testing of AQIs, which presents challenges for
extrapolation to dynamic real-world scenarios in which both
objects and individuals are in motion.

Jonas et al. (2021) implemented factor analysis utilizing eye-
tracking technology to examine the process of visually inspecting
aircraft parts. This investigation involved 50 professionals from
the industry who scrutinized the images and assessed the de-
picted features, as illustrated in Fig. 1c. This study specifically
focused on the variations in visual attributes observed during
the inspection of both clean and dirty blades. It was posited that
cleaning blades prior to inspection significantly influenced the vi-
sual inspection outcomes. However, note that this experiment was
conducted using static images. This limitation raises the possibil-
ity that the findings may differ in the dynamic context of visual
inspection. To effectively gather eye-tracking data in the dynam-
ically changing conditions of a manufacturing site, it is crucial to
discern not only the object being observed but also the specific
part of the object under scrutiny. Previous research has predom-
inantly focused on post hoc analysis; however, integrating object
detection can address this challenge.

Object detection algorithms must possess the capability not
only to discern the location of objects but also to determine
their orientation and angle of rotation accurately. Bukschat et al.
devised an EfficientPose algorithm that estimates the position
and orientation of objects within 3D spaces (Bukschat et al., 2020).
However, this algorithm requires extensive training data for effec-
tive learning. The insufficient amount of data from the Linemod
benchmark dataset was supplemented using data augmentation
(Hinterstoisser et al., 2011). However, if the amount of data cannot
be increased in this manner, a new dataset must be created
manually, including labeling the orientation of objects, which is
a challenging task requiring considerable time and workforce.
Sampaio et al. employed Computer-Aided Design (CAD) models
to produce synthetic images that were dynamic in the real world,
thereby streamlining the training process for object detection
models and simplifying data acquisition across diverse fields
(Sampaio et al., 2021).

(c) Engine blade fault detection process

This study introduces an integrated object detection and eye-
tracking system designed to utilize worker gaze data directly, elim-
inating the requirement for additional post-processing. For object
detection, the system employs a 6D pose estimation algorithm
that can detect the direction, rotation, and positions. Furthermore,
Unity creates a comprehensive dataset of training image back-
grounds that reflect real-world environments (Lee et al., 2021). This
method allows the proposal of a system capable of reliably col-
lecting and analyzing gaze data even in dynamic manufacturing
environments.

3. Proposed System Architecture

This section describes the overall structure of the proposed sys-
tem for analyzing worker gazes. The system dynamically detects
moving objects and integrates the worker’s gaze coordinates to
determine the specific part of the object on which the gaze is fo-
cused. The overall structure of the proposed system is illustrated
in Fig. 2. The proposed system incorporates four distinct modules
for digitizing the position of the target object and the operator’s
gaze information. The integration module introduces a method
for minimizing latency. In addition, the analysis module describes
an algorithm designed to compare and analyze the positions of
various objects in 3D space.

First, the target object was observed using a wearable de-
vice, Tobii Pro Glasses3. The device is responsible for storing
and transmitting real-time video and acts as an eye-tracking
module. The eye-tracking results are transmitted to the integra-
tion module, whereas the real-time video data are forwarded to
the object detection module to identify objects within the video
stream.

The object detection module employs a 6D pose estimation al-
gorithm, which is a modification of the EfficientPose algorithm,
for seamless detection in dynamic environments. The algorithm
is trained on the target object before being used in the system and
utilizes both real-world and implemented images for training. The
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Figure 2: ISGOD structure.

module processes the received images for object recognition and
subsequently sends the identified information to the integration
module. Consequently, within the integration module, the results
of object detection and gaze tracking obtained from these two sys-
tems were combined to finalize the development of the proposed
system.

In addition, an analysis module is necessary when using the
proposed system for analysis. As dynamic objects are detected,
the coordinates, angles, rotation of the object, and the relative po-
sition of the gaze at that moment vary. To address this, an ad-
ditional algorithm that standardizes the size and position of all
objects was implemented, enabling more accurate gaze compar-
isons. In addition, owing to its modular architecture, the system
offers ease for future modifications or redesigns (Kang et al., 2021).

3.1. Object detection module

There is a general tendency to use depth data collected with an
RGB-D camera to estimate the 6D pose (He et al.,, 2020). However,
in this study, a method of directly estimating the 6D pose using
only RGB data was used for fast real-time recognition (Son & Ko,
2022; Yin et al., 2021). In the proposed system, object detection is
achieved by implementing an algorithm based on the Efficient-
Pose framework. EfficientPose, a detailed deep learning architec-
ture, is capable of determining the class of single or multiple ob-
jects within a single-shot RGB image while also estimating their
2D bounding boxes and rotational angles (roll, pitch, and yaw)
across the three axes.

The algorithm operates as follows: initially, it acquires an in-
put image from a camera or another imaging device to extract
features from this image. This phase is critical for analyzing and
interpreting the shape and structural attributes of an object to
obtain essential information. Subsequently, using these extracted
features, the algorithm estimates the 6D pose of an object in Fig. 3.
The term “6D” pertains to both the position and rotation within a
3D space, thereby defining the spatial coordinates and the direc-
tional orientation of the object. After successfully determining the
position and orientation of the object, the algorithm finalizes the
object detection process by computing the bounding box of the
object.

3.1.1. 6D pose estimation architecture

This study used a modified EfficientPose model architecture to
estimate the 6D pose by reflecting the structural characteristics
of an object, as shown in Fig. 4 (J. Y. Kim et al., 2022). This archi-
tecture includes an EfficientNet backbone, a bidirectional feature

: 4
‘,?? 3 Pitch

Figure 3: 6D pose: X, Y, Z, yaw, pitch, and roll.

pyramid network (BIFPN), and lower subnetworks. The backbone
employs EfficientNet, a convolutional neural network architec-
ture renowned for its superior accuracy and computational ef-
ficiency relative to existing ConvNet models (Z. Li et al., 2021). In
fact, EfficientNet-B7 recorded a top-1 accuracy of 84.4% and a top-
5 accuracy of 97.1% on the ImageNet dataset, demonstrating its
capability to realize a model that is 8.4 times smaller in size and
6.1 times faster than traditional ConvNet architectures (Tan & Le,
2019). For the neck, a BIFPN is utilized to enhance the detection
accuracy of objects of various sizes. The head comprises a clas-
sifier for object type recognition, a bounding box for determining
the position of the object, and a regressor for angle estimation.

The complete loss function utilized for training the 6D pose es-
timation architecture, which is specifically engineered for 6D pose
recognition, is composed of three distinct components: L, for
classification loss, Lyney for bounding box regression loss, and Ltg
for transformation loss, as explained in equation (1). Furthermore,
the variable influence of each constituent loss is regulated by the
hyperparameter x.

L0SS = Aclass * Lclass + Abbox * Lbbox + ATR * LTR- (1)

The classification loss Ly, used in EfficientDet to classify the
classes of objects is a modified cross-entropy loss function known
as the Focal Loss function (Tan et al., 2020). It was developed to ad-
dress the class imbalance problem, which is a challenge in model
training where the “negative” class significantly outnumbers the
“positive” class. The estimated probability P; corresponds to the
likelihood that a given instance is classified as a foreground class
by a deep learning model. The term a; is a weight that balances
the positive and negative classes. In addition, a modulating factor
expressed as (1 —P)’ is incorporated to mitigate the imbalance
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Figure 4: 6D pose estimation network architecture.
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Figure 5: 6D pose estimation algorithm loss graph.

between straightforward and complex examples, thereby refining
the focus of the model and improving its performance for more
challenging instances within the training data.

B o p ify=1
Loass = FL(R) = —a:(1 = B)"log(R). P - 1 — p otherwise

2

The bounding box regression loss, represented by Lypo, employs
a smooth L1 loss, which enhances the precision of object localiza-
tion. In the context of bounding box regression for the target class
u, let t represent the ground-truth values and v denote the corre-
sponding predicted values. This relationship is represented by the
following equations: t* = (t¥, t)‘,{ th, t;l*), U = (Ux, Uy, Uy, Up).

) .
Lppox (t*, V) = Z smoothyy (t' — vj) , smoothy 1 (x) {O'SX if W<1

iex,yw,h

(3)

Transformation loss, Lt defined by an L2 loss framework, is
utilized to recognize the pose of the object, which is expressed
as relative positional coordinates and rotational angles in space
with reference to the coordinate system of the camera. The trans-
lation vector Ty is a 3D vector from set R**! containing elements

|x] — 0.5 otherwise "

ty, ty, and t;, which are aligned with the ground truth position of
the object. Similarly, the rotation vector Ry, expressed in the com-
pact Rodrigues form within R¥*!, encapsulates the ground truth
orientation. The translation and rotation vectors, T? and RT re-
spectively, denote the predicted pose parameters that are essen-
tial for the estimation process of the model. Furthermore, the set
M consists of 3D model points, typically presented as point-cloud
data, whereas my represents the count of these points, which are
factored into the loss computation.

xzer

During training, using the given loss function, we saw the loss
values drop over time, as Fig. 5 shows. This steady decrease in loss
means the algorithm is getting better at making accurate predic-
tions. Consequently, this suggests that the reliability of the pro-
posed loss function improves as training advances.

3.1.2. Learning environment

In this study, a high-performance computational framework was
assembled to facilitate the training and assessment of cutting-
edge deep learning architectures. The foundational system infras-
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Table 2: Specific learning environment.

Type Product Version
oS Windows 10 Education 19042.1826
GPU driver NVIDIA GPU driver 30.0.14.7168
NVIDIA GPU computing ~ CUDA 11.2
toolkit

Programing language Python 3.8
Deep learning framework Tensorflow 25.0

tructure operated on the Windows 10 Education platform and
other information, such as language and driver versions, are listed
in Table 2.

3.2. Eye-tracking module

In this study, the Tobii Pro Glass 3 was used for real-time gaze
tracking and image acquisition. This wearable eye tracker is adept
atintegrating into a wide range of settings and unobtrusively cap-
tures the viewpoint of the wearer. The device is equipped with a
built-in scene camera that provides live visual feedback from the
user’s perspective (T. H. Li et al., 2020). This feature is instrumental
in concurrently gathering both visual field data and images and is
an essential component of this study for comprehensive analysis.
The device has also been proven to be reliable in various studies
(Jonas et al. (2021)).

However, using the program of Tobii Pro Glasses 3 was finan-
cially prohibitive and lacked the freedom to be used in this algo-
rithm. Therefore, information from Tobii Pro Glasses 3 was uti-
lized in the module, following the structure depicted in Fig. 6.
We also needed to integrate the device into the system, which

[wireless connection :

could cause problems with communication. For this purpose, we
wirelessly connected the glasses to a PC and imported the data
into Python using the Real-Time Streaming Protocol (RTSP). This
protocol is pivotal for establishing a stable communication link,
which is essential for effectively streaming live visual and gaze
data into the proposed Python-based analysis system (Muham-
mad et al., 2013). The primary role of the RTSP in this configura-
tion was to ensure the seamless transfer of real-time data from
the glasses, thereby facilitating the efficient and continuous ac-
quisition of eye-tracking and visual data, which is crucial for the
research objectives of this study.

3.3. Integrated module

For real-time analysis of a worker’s gaze upon object detection,
it is essential to integrate the two modules above to determine
which part of the object is being observed by the worker. In other
words, the integration module outputs a real-time display by com-
bining the bounding box information procured from the object
detection module with the current gaze coordinates provided by
the eye-tracking module. However, because the system levels and
characteristics differ, it is challenging to implement and integrate
them into one environment (Ham et al., 2018; B. S. Kim et al., 2020;
Tranetal.,, 2014). This section discusses troubleshooting during the
integration of these two modules.

3.3.1. Integrated module structure

The integration process of the eye-tracking module with the ob-
ject detection module is shown in Fig. 7. Initially, when the tar-
get object was observed through Tobii Glasses, two distinct types
of data were captured: image and gaze data. The image data are
relayed to the object detection module, whereas the gaze data

[Real Time Streaming Protocol

WIFI | @ - RTSP]
------------------- B iy
[Tobii Glasses] [Desktop PC] [Python]
Figure 6: Networking communication structures.
Integrated Gaze and Object Detection

Object Detection Module Integrated Module

14 sec -2 2 |

— A J — C

Imagé-p:;c;;;ssing f Object detection - - -
latency latency Trained Object Detection Model
6D pose estimation
Eye Tracking Module

Tobii Pro Glasses 3

. E e
1 ! :
[ —
Tobii connection latency : {

Image Frame Sampling for
Optimizing Latency

Figure 7: Three primary latency of ISGOD.
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Figure 8: Two primary delaying causes and solutions.

are transmitted to the integration module. Subsequently, the ob-
ject detection module, which employs a pre-trained algorithm on
the image frames, generates an output encompassing the bound-
ing box, rotation, and depth information of the object. Ultimately,
the task of merging information from each module is essential,
which consequently introduces a delay due to the integration of
disparate data sources. Three primary sources of delay were iden-
tified: image processing latency (A), Tobii connection latency (B),
and object detection latency (C). Latency B originates from the
communication between the Tobii Glasses and the PC. In contrast,
latency C is a consequence of the computational requirements of
the 6D pose estimation algorithm, mainly owing to its capability
to handle multi-object and dynamic object detection.

3.3.2. Latency reduction method

The delay known as latency A in this study comes from how long
it takes for the algorithm to start working on the image. This la-
tency is a result of the time lag between the transmission of the
image frame from the gaze-tracking module and processing by
the algorithm of the object detection module. To address this is-
sue, as shown in Fig. 8, two primary causes were identified, and
the corresponding solutions were implemented. The delay known
as latency A in this study comes from how long it takes for the
algorithm to start working on the image. This latency is a result
of the time lag between the transmission of the image frame from
the gaze-tracking module and processing by the algorithm of the
object detection module. To address this issue, as shown in Fig. 8,
two primary causes were identified, and the corresponding solu-
tions were implemented.

The first issue pertains to the algorithm initialization. The al-
gorithm remains inactive until it receives an image frame from
the gaze-tracking module. Consequently, the initial operation of

the object detection algorithm includes both preparation time and
actual processing time. To alleviate this problem, a strategy of pre-
activating the algorithm with dummy data was employed to elim-
inate preparation delays.

The second issue is time synchronization. Tobii Glass operates
at an actual FPS of 25, sending 25 frames per second to the ob-
ject detection module. As shown in Fig. 9, the frame-processing
sequence begins with object detection in the first frame. Subse-
quent frames, such as Frames 2 and 3, must wait until the pro-
cessing of Frame 1 is complete. This sequential processing leads
to the accumulation of waiting times. To resolve this, a sampling
method that selects the frame closest to the completion of the
current frame from the waiting frames for algorithm application
was adopted. This approach effectively addresses the continuous
buildup of latency.

3.4. Analyzer module

As illustrated in the left segment of Fig. 10, the size and position
of each recognized image vary according to the location of the op-
erator. The implementation of an analyzer module is necessary to
confirm and analyze these discrepancies accurately. This module
standardizes the representation of objects across different frames,
as shown on the right side of Fig. 10.

To analyze eye gaze data from the eye-tracking module and de-
tect object data through the object detection module, a sequence
of the perspective transfer algorithm of the analyzer module was
undertaken, as depicted in Fig. 11. The sequence diagram illus-
trates the operation of the analyzer module. The eye-tracking
module continuously captures images until the recording session
on the Tobii Glasses is concluded and subsequently transmits the
data to the object detection module. Once the recording was con-
cluded, the analyzer module collected the data of the detected ob-
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Figure 9: Frame sampling for latency improvement.
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Figure 10: Applying analyzer module.

Eye Tracking Object Detection
Module Module

loop [Until the end of recording]

Record images

—

D Detecting object

Analyzer
Module

loop [Repeat for all the data]

Detected object data

Eye gaze data

Figure 11: Analyzer module sequence diagram.

jects and arranged the coordinates of the vertices for each square
in a specified sequence. This alignment is a prerequisite for per-
forming perspective transformation. Following this, the module
computes a transformation matrix, denoted as “H”, which is used
to convert the coordinates of the detected square to a standard-
ized square form. Concurrently, the eye-tracking module procures
the eye gaze data and applies the perspective transformation us-
ing matrix “H” on the gaze points. Once all the data were han-
dled, the analyzer module worked out the average scores and how
much they varied by looking at where people were supposed to
look compared with where they actually looked. It also figured
out how accurate the gaze was by checking how many gaze points
matched up with the correct spots.

Calculate performance metrics
/ Compare with the answers and compute average score and variance

Calculate accuracy
/ Calculate the ratio of correct to incorrect (outside the box) answers

Sort vertices

/ [(Bottom, Left), (Bottom, Right), (Top, Left), (Top, Right)]
Get perspective transformation

/ Calculate the perspective transformation matrix ‘H*
Transform perspective

/ Apply transformation matrix ‘H’ to gaze points

4. Experiments

Figure 12 shows the two principal experiments conducted in this
study. Experiment 1 assessed the robustness of the proposed al-
gorithm. This experiment involved scenarios in which both the
observer and object were stationary (i), situations in which the
observer was stationary while the object alone was in motion (ii),
and cases in which both the observer and object were moving (iii).
In a dynamic environment, objects can be rotated 360 degrees and
flipped upside down or backwards. In contrast, in static environ-
ments, they must remain stationary. Humans can also use their
arms to move objects in dynamic environments, and their neck
and eyes to detect objects. However, in a static environment, only
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Experiments 1 : System Robustness

a. Observer Stationary
Object Stationary

b. Observer Stationary
Object Moving

c. Observer Moving
Object Moving

Experiments 2 : Discrepancy Evaluation

9 ~
a. Novice’s Eye b. Professional’s Eye

Figure 12: Two experiments scenarios: system robustness and discrepancy evaluation.

Figure 13: A square plate as a target object.

the subject’s eyes can be used to detect objects. Evaluation met-
rics were defined for the experiment, and the average, variance,
and accuracy of these scores were compared to demonstrate the
robustness of the system in a dynamic environment. Experiment 2
focused on tracking the eye movements of novice and professional
workers in conditions in which both the operator and object were
in motion. The analysis was conducted by visualizing the gaze po-
sitions on an object over time, providing insights into the differing
observational strategies of novice and professional operators.

The experimental design was predicted using a square plate, as
shown in Fig. 13. The dimensions of the object were configured as
26.5 cmin width, 26.5 cm in length, and 1 cm in height. This object
was arbitrarily selected to facilitate the experimental procedure
and could be adapted to accommodate different objects.

4.1. Experiment 1: evaluation of system
robustness

In this, an experiment is delineated to assess the robustness of
the system. First, an evaluation matrix was established, followed
by a detailed description of the experimental scenarios. Subse-
quently, an experiment was conducted, yielding results that were
subjected to analysis, culminating in a discussion.

4.1.1. Evaluation matrix

This study initially established an evaluation matrix, as depicted
in Fig. 14, to assess the proximity of gaze points to the ROI of the
object in addition to the ratio of points within to those outside the
ROL

Assuming the detection of a square object, the gaze coordinates
projected onto the object, i.e., post-perspective transformation,

Tracking Tracking
. O
. * (=)
N
’ .. e
* ( * )
: N
Gaze, Answer Interest_Score
TN TR
“x ()
A 4 \__/
Vo a5
* ) [ = /\
N4 AN
ROI, Gaze_Scorey

Figure 14: An evaluation matrix for system robustness.

are defined as gaze, in equation (5):

Gazep = (X, Ye). )

Furthermore, the set of coordinates representing the critical
points on the object to be observed is expressed as A nswer to
equation (6):

Answer = {(x1,y1), (X2,¥2) ..., (xn, yn)} - (6)

The vicinity of Answer, extends to Interest_Score as per equation
(7) and is designated as the ROI,, denoted as in equation (8):

Interest_Score =C  (constant) (7)

ROL = 1 (x,y) | (x — xa)? + (y — yn)? < Interest_Score®} . 3
y y—y

Consequently, Gaze_Scorey as expressed in equation (9), quanti-
fies the closeness of a gaze point to the point of interest, Answer,.
This score is designed to measure the precision of gaze alighment,
where a score closer to 1 indicates a direct match with the point
of interest, signifying high accuracy, while a score closer to 0 sug-
gests a greater distance from the target point, indicating lower
accuracy.

Interest_Score — \/(Xk — %)’ + (Y — yn)°

Gaze_Score, =
- k Interest_Score

©)

The average of these Gaze_Scorey from 1 to K is defined as the
Accuracy_Score in equation (10). This metric serves as an overall in-
dicator of gaze accuracy across multiple points of interest, offer-
ing a comprehensive view of the participant’s focus and precision
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Table 3: Experiment 1 scenarios.

Table 4: Evaluation matrix of Scenarios 1-1, 1-2, and 1-3.

Target point  Observer Object Average Variance Concentration(%)
Scenario 1-1 1dot Stationary Stationary Scenario 1-1 0.84 0.01 99.38
Scenario 1-2 1 dot Stationary Moving Scenario 1-2 0.67 0.05 91.88
Scenario 1-3 1dot Moving Moving Scenario 1-3 0.65 0.07 88.12
Scenario 1-4 4 dots Stationary Stationary
Scenario 1-5 4 dots Stationary Moving
Scenario 1-6 4 dots Moving Moving
in following the intended gaze path. 3, followed by analogous comparisons for Scenarios 1-4, 1-5, and

1K 1-6.
Accuracy_Score = = > Gaze_Scorey. (10)

k=1

Finally, the proportion of Gaze, points falling inside the ROI rel-
ative to those outside the ROI is defined as the Concentration_Index
in equation (11):

1, if inROI

N inside
» Ninsige 0, otherwise "

Concentration_Index = — 25
N outside + N inside

(11)

4.1.2. Scenario

The parameters used in Experiment 1 are listed in Table 3. The
experimental parameters were categorized into three distinct
classes: target point of the object, mobility of the observer, and
mobility of the object. Initially, representing the object on a 50 x 50
coordinate plane, the target points on the object are demarcated.
This included a central point at (25, 25), and four peripheral points
located in the upper right (40, 40), lower right (40, 10), lower left (10,
10), and upper left (10, 40) quadrants. Following this initial setup,
the experiment divides the same observer into various cases to
compare differences. Despite the limitation of the number of ob-
server, the detailed insights gained from each participant can still
support robust research findings (Sharma et al., 2020).

The experimental setup was categorized based on the state of
motion of the observers and objects. This encompasses scenarios
where both observers remain stationary and the object is station-
ary, scenarios where the observer is stationary while the object
is moving, and scenarios where there is concurrent movement of
both the observer and the object. In addition, there were a total of
four subjects performing the scenarios, and the results, excluding
heat maps, utilized the average of the eight subjects’ evaluation
metrics. Consequently, analyses were conducted according to the
defined scenario assessment metrics for Scenarios 1-1, 1-2, and 1—

Scenario 1-1
Observer Stationary Object Stationary

Scenario 1-2
Observer Stationary Object Moving

4.1.3. Experimental results

The experimental findings are illustrated using a heat map in
Fig. 15. This visualization reveals that the dispersion of gaze points
in Scenario 1-2 is slightly more pronounced than in Scenario 1-1,
with Scenario 1-3 displaying the highest level of dispersion. Such
a dispersion is an expected consequence of the dynamic nature
of the experiment, in which objects and observers are in motion,
leading to a broader gaze distribution.

To provide an evaluation matrix, the scores for each scenario,
based on the designated evaluation index, are listed in Table 4.
Scenario 1-1 registers an average score of 0.84 with a variance
of 0.01 and a concentration index rate of 99.38%. In comparison,
Scenario 1-2 yields an average score of 0.67, a variance of 0.05, and
a concentration index rate of 91.88%. Finally, Scenario 1-3 attains
an average score of 0.65, variance of 0.07, and concentration index
rate of 88.12%.

The experimental results are depicted using a heat map, as il-
lustrated in Fig. 16. The visual plot indicates a gradual increase in
the variance of the gaze points, with Scenario 1-5 showing slightly
more variance than Scenario 1-4 and Scenario 1-6 exhibiting the
highest variance. This increase in variance, especially compared
with Scenarios 1-1, 1-2, and 1-3, is attributed to the requirement
for the plate to be moved and the four points to be observed alter-
nately.

The evaluation matrix for each scenario, according to the de-
fined metrics, is presented in Table 5. Scenario 1-4 achieves an av-
erage score of 0.59, a variance of 0.08, and a concentration index
rate of 82.50%. Scenario 1-5 had a mean score of 0.55, a variance
of 0.12, and a concentration index rate of 74.06%. Lastly, Scenario
1-6 records a mean score of 0.46, a variance of 0.13, and a concen-
tration index rate of 63.75%.

Scenario 1-3
Observer Moving Object Moving

0 0
25
10 A 10 A
20
o 207 15 w207
G # 3
> >
30 A 10 30 1
40 4 5 40 A
T T T T 0 T T
0 10 20 30 40 0 10 20
X-axis X-axis

Figure 15: Heat map of Scenarios 1-1, 1-2, and 1-3.

0
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x
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Scenario 1-4
Observer Stationary Object Stationary

Scenario 1-5
Observer Stationary Object Moving

Scenario 1-6
Observer Moving Object Moving
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Figure 16: Heat map of Scenarios 1-4, 1-5, and 1-6.

Table 5: Evaluation matrix of Scenarios 1-4, 1-5, and 1-6.
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Table 6: Experiment 2 scenarios.

Average Variance Concentration(%)
Scenario 1-4 0.59 0.08 82.50
Scenario 1-5 0.55 0.12 74.06
Scenario 1-6 0.46 0.13 63.75

4.1.4. Discussion

Through the execution of experiments across six scenarios, it was
ascertained that gaze data can be effectively gathered, even in dy-
namic contexts where both objects and observers are in motion.
Nevertheless, as the scenarios became more dynamic, there was
a slight decrease in the average accounting score, an increase in
variance, and a reduction in the concentration index rate. This
trend is likely due to the difficulty in maintaining a steady gaze
in complex environments, especially when either the observer or
the object is in motion, compared with a stationary setting. Con-
sequently, the scores were influenced by gaze points that deviated
from the correct target. Despite these variations in the evaluation
matrix scores, the heat maps provided a precise analysis of which
areas were observed, indicating that the dynamic nature of the
scenarios did not significantly impede the ability to analyze the
focus areas of observation.

4.2. Experiment 2: discrepancy evaluation

The preceding section focused on examining the robustness of the
system, effectively demonstrating its ability to integrate gaze in-
formation collection with object detection. In this section, we in-
troduce an experimental scenario designed to leverage the capa-
bilities of the proposed system.

4.2.1. Scenario

We conducted experiments with eight participants: Novice A, Pro-
fessional B, Novice C, Professional D, Novice E, Professional F,
Novice G, and Professional H, delineating eight specific scenarios
that involved either a novice or a professional observer. Subse-
quently, segmenting the observer group into distinct subsets al-
lowed for a detailed examination of the variations among them
(Atkins et al.,, 2012, Khan et al., 2012). Despite the small sample
size, the detailed observations and analyses derived from the pro-
posed eye-tracking system provided essential insights that rein-
forced the credibility of the research outcomes (Sharma et al,
2020, Tien et al., 2012). Following this, we analyzed and discussed

Target

point Subject Observer/Object
Scenario 2-1 4 dots Novice A Moving/Moving
Scenario 2-2 4 dots Professional B Moving/Moving
Scenario 2-3 8 dots Novice C Moving/Moving
Scenario 2-4 8 dots Professional D Moving/Moving
Scenario 2-5 4 dots Novice E Moving/Moving
Scenario 2-6 4 dots Professional F Moving/Moving
Scenario 2-7 8 dots Novice G Moving/Moving
Scenario 2-8 8 dots Professional H Moving/Moving

the observed gaze patterns across these scenarios, providing in-
sights derived from the data. Through this analysis, we aimed to
demonstrate the versatility of the system and focus on showcas-
ing its potential applications in various contexts.

The parameters used in Experiment 2 are listed in Table 6. The
experiment involved eight groups: A, B, C, D, E, F, G, and H. The
scenarios were bifurcated based on the assumption that the tar-
get plate had either four or eight defects. The specific locations of
these defects are illustrated in Fig. 17, with Fig. 17a depicting the
scenario with four defect points and Fig. 17b showing eight defect
points.

Additionally, gaze analysis for both the observer and object was
conducted in scenarios where both were moving. To facilitate a
straightforward analysis of the scenarios, the target object was
segmented into 25 sections arranged from top left to bottom right,
as shown in Fig. 18. Finally, before conducting the actual exper-
iment, we performed a baseline experiment where we assigned
each subject to look at the sections in a specified order and ver-
ified that they looked at the sections according to the scenario.
The results showed that four of the subjects looked at each sec-
tion in the specified order, confirming that the eye-tracking device
correctly worked.

4.2.2. Experimental results

Figure 19a presents the gaze-point analysis of Novice A, while
Fig. 19b showcases that of Professional B. The graphs illustrate the
spatial focus of each observer’s gaze over time. The x-axis repre-
sents time in seconds, and the y-axis denotes the sections of the
object being observed. The red circles in the graphs indicate the
moments when each observer detected a defect in the area. From
Fig. 19a, it is evident that Novice A took approximately 37 s to
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Figure 17: Target points on object.
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Figure 18: 25 Sections on object.

identify all four defects. Lacking prior knowledge about the de-
fects, Novice A appeared to methodically inspect the entire area
sequentially. Notably, Sections 3 and 20 were initially scrutinized
for an extended duration; however, defects were not initially iden-
tified in these sections, necessitating subsequent reexamination.
Conversely, Professional B completed the entire inspection in ap-
proximately 21 s, and all defects were identified within approxi-
mately 13 s. Rather than following a sequential pattern, Profes-
sional B’s inspection strategy involved a more sporadic approach,
crossing different areas to scan the entire section. This approach
highlights a more efficient inspection methodology, possibly stem-
ming from professional experience and a strategic understanding
of defect detection.

(a) Novice A 4 dots

Section
=

Time (sec)

Figure 19: Time-based section graphs for Novice A and Professional B.

(b) 8 dots on plate

In Fig. 20, Novice C as depicted in Fig. 20a, exhibits a pattern
similar to that of Novice A in Fig. 19a. The total inspection du-
ration for Novice C was 55 s, with the identification of all eight
defects occurring at the 51 s mark. This pattern demonstrates
that Novice C conducted a comprehensive check of various sec-
tions, such as Sections 1, 15, and 19, and revisited certain areas
to confirm the presence of defects. Moreover, it is noticeable that
Novice C spent a longer time in each area than its professional
counterparts. Professional D finished the inspection in 26 s and
found all the defects in 24 s, as you can see in Fig. 20b. Profes-
sional D quickly checked each section and found defects fast,
spending less time looking at each one. However, it was also ob-
served that Professional D had to revisit certain areas, such as part
4, for a second inspection, indicating that even experienced pro-
fessionals may need to double-check certain sections to ensure
thoroughness.

Based on the results of the previous experiments, we wanted
to increase the reliability of the results by conducting additional
experiments on a total of four people. The results for each novice
and expert did not show the same trends as the previous experi-
ments, but in most cases, the experts spent significantly less time
to detect defects than the novices and were more efficient at se-
lecting detection zones.

In Fig. 21, which shows the results of a four-defect detection
experiment, the novice detected a defect in about 30 s and im-
mediately terminated the experiment, while the expert detected
a defectin about 15 s, but after further detection, the expert com-

(b) Professional B 4 dots

Section
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0 3 6 9 12 15 18 21 2 27 0 E) 36

Time (sec)
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Figure 20: Time-based section graphs for Novice C and Professional D.
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Figure 21: Time-based section graphs for Novice E and Professional F.
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Figure 22: Time-based section graphs for Novice G and Professional H.

pleted the experiment in about 20 s. In Fig. 22, which shows the
results of an experiment with eight defect detections, the novice
completed the defect detection in about 45 s, but the experiment
ended at 51 s after checked for any missed areas. In contrast, ex-

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
Time (sec)

perts completed the defect detection and concluded the experi-
ment in approximately 27 s. The differences in results from one
experiment to another happened because each person checked
for defects in their own way and order. Therefore, it was deter-
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mined that additional experiments contributed to the system’s
reliability.

4.2.3. Discussion

The implemented system, as demonstrated through four distinct
scenarios in Experiment 2, provides insights into the gaze patterns
of expert observers. The system enabled analysis of the entire in-
spection duration and highlighted the differences in gaze charac-
teristics between novice and professional observers. The novices
tended to inspect each section more thoroughly, spending more
time on average in each area. By contrast, professionals allocated
a shorter duration per section, indicating a more efficient inspec-
tion strategy.

The gaze data difference in the presence of know-how is dis-
cussed. However, managing human error is difficult, especially
in dynamic settings where both the observer and the object are
in motion. Such conditions may lead to unintended gaze move-
ments, thus complicating the accuracy of gaze tracking and anal-
ysis. This factor necessitates additional considerations in the sys-
tem to interpret gaze data under fluctuating circumstances accu-
rately. Furthermore, variations in inspection order and method-
ology can be observed, even among professionals. Each individual
may adopt a unique approach to the task, underscoring the neces-
sity of gathering and analyzing gaze data from a broad spectrum
of gaze samples. This method helps us fully appreciate the range
of inspection techniques and accurately assess how experts use
their gaze.

Especially since our experiments were conducted with a lim-
ited number of participants, there is a potential issue in ade-
quately capturing the variations across individuals and levels of
expertise. Moreover, by utilizing our system to expand the number
of various dynamic scenarios, there lies the potential for gaining
many insights through different analytical techniques, highlight-
ing the possibility for more extensive analysis and understanding
of gaze behavior across different conditions and expertise levels.

5. Conclusions

This study presents a system designed for real-time object de-
tection and eye-tracking in dynamic environments, with the ob-
jective of analyzing worker gaze. The system integrates two spe-
cialized modules: one for object detection and another for eye-
tracking. These modules work concurrently and allow the simul-
taneous performance of both functions. The system’s effective-
ness in variable settings has been confirmed through tests assess-
ing its stability and by comparing how experts and beginners dif-
fer in their eye-movement patterns.

In the proposed integrated system, object detection was con-
ducted using a 6D pose estimation algorithm, and gaze tracking
was performed using Tobii Glasses. The 6D pose estimation algo-
rithm is adept at detecting the 6D aspects of an object, such as po-
sition, rotation, and angle. The structured loss function within this
algorithm ensures optimal parameter selection. Tobii Glasses are
employed for real-time gaze tracking and processing of both im-
age and gaze data. Subsequently, to integrate these two modules,
the delay that occurs during integration was solved. The main
problems were algorithm initialization and time synchronization,
and the delay time was reduced using dummy data and image
frame sampling.

A robustness experiment of the integrated system for reliabil-
ity was conducted for six scenarios by judging the dynamic pres-
ence/absence of workers and objects when there were one and
four defect points. Although the accuracy and variance in com-
plex environments were generally lower than those in static set-

tings, the differences were not substantial, indicating the capabil-
ity of the system to collect and analyze gaze data effectively. In
addition, a second discrepancy evaluation experiment confirmed
the difference in work proficiency between experts and novices.
The differences in gaze data according to the presence of expertise
were analyzed. These experiments should be followed up with ad-
ditional experiments using other wearable devices other than Tobi
glasses to derive generalized performance of the system. However,
the purpose of this study is to demonstrate feasibility rather than
performance of the system, which will be addressed in future re-
search.

The ability of the system to analyze worker gaze information in
a dynamic environment was demonstrated. This research lays the
groundwork for future systems aimed at facilitating the transfer
of expertise among workers. However, it did not delve into detailed
gaze analyses, such as how expert gaze patterns change during
accurate defect detection or which areas novices should specifi-
cally avoid. While this study did not provide a direct methodology
for the transfer of expert gaze information to novices, it paves the
way for future endeavors. Upcoming research will aim to enable
novices to attain expert-level proficiency by employing technolo-
gles such as augmented reality or voice guidance for an immer-
sive learning experience through in-depth analysis of gaze pat-
terns. Moreover, there is a plan to develop algorithms specifically
designed for analyzing expert gaze patterns, enhancing the under-
standing of efficient gaze analyzing strategies. Additionally, if the
object detection algorithm is trained on a diverse array of objects,
it will enable the tracking of gaze points across various items in
more manufacturing environments.
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