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Abstract: In the convergence–confinement method, the longitudinal deformation profile (LDP) serves
as a graphical representation of the actual tunnel convergence (both ahead of and behind the face);
therefore, it is considered important for determining the distance of support installation from the
face or the timing after excavation in this method. The LDP is a function of the rock mass quality,
excavation size, and state of in situ stresses; thus, obtaining the LDP according to the rock mass
conditions is essential for analyzing the complete behavior of convergence during tunnel excavation.
The famous LDP shows that the best fit for the measured values of tunnel internal displacement
reported simply expresses the ratio of the preceding displacement as approximately 0.3. This can
lead to an error when predicting the ratio of the preceding displacement while neglecting the rock
conditions; consequently, a complete tunnel behavior analysis cannot be realized. To avoid such
error, the finite difference method software FLAC 3D is used to develop an expanded longitudinal
deformation profile (ELDP) according to the rock mass conditions. The ELDP is represented by
graphs featuring different shapes according to the rock mass rating (RMR), and the empirical formula
of the LDP best fitted for the tunnel convergence measurement values is expanded. This expanded
LDP formula is proposed in a generalized form, including the parameters α and β from the empirical
equation. These parameters α and β are expressed as functions of the RMR and initial stress. Statistical
analysis results of the 3D numerical analysis of 35 cases were analyzed in the ranges of α = 0.898–2.416
and β = 1.361–2.851; this result is based on the empirical formula of Hoek (1999) (α = 1.1, β = 1.7),
which was expanded in the current study according to the rock quality and initial stress conditions.

Keywords: tunnel; longitudinal deformation profile; numerical analysis; FLAC; convergence

1. Introduction

Tunnel excavations generate displacements/convergence owing to the redistribution
of stresses at the excavation periphery. Such convergence/deformation in tunnels is an
important factor for evaluating tunnel behavior. Tunnel deformations depend on the
rock mass properties and excavation-induced stress environments. Analyzing tunnel
convergence is considered important for implementing appropriate excavation and support
measures. The longitudinal deformation profile (LDP) is a graph that longitudinally
represents the radial displacement of the ground around the tunnel during excavation;
it is used to determine the unsupported tunnel distance from the excavation face and
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considered important for determining the support installation distance and timing in the
convergence–confinement method (CCM) [1].

This method (CCM) is widely used in road, hydropower, mining and nuclear waste
repository projects that normally involve tunneling and underground excavations. The
CCM can be used to estimate the load acting on a support installed behind the tunnel face
and to control the displacement at the tunnel excavation face to ensure tunnel stability. The
principle of the CCM has been discussed by several previous researchers [1–3]. The CCM
involves three curves: (1) the LDP, (2) the ground reaction curve (GRC), and (3) the support
characteristic curve (SCC); these are illustrated in Figure 1.
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A brief description of each point shown in Figure 1 is as follows and a list of nomen-
clature for symbols is given in Appendix A:

1. Longitudinal deformation profile

• Point F: Convergence in the tunnel face
• Point I: Convergence at a location separated by distance L from the back of the

tunnel face, u0
r .

2. Ground reaction curve

• Point O: Initial state, pi = σ0, ur = 0
• Point M: Final point of reach if there are no support members, pi = 0, ur = um

r
• Point E: When a plastic area is created around the tunnel excavation surface,

pi = pcr
i

• Point N: Virtual ground pressure when installing the support members.

3. Support characteristic curve

• Point K: The time of installing the support members, ps = 0, ur = u0
r

• Point D: Status of ground pressure exerted by the additional excavation after
installing the support members, ps = pD

s
• Point R: Yield of support members, ps = pmax

s .

The complexities of tunnel behavior are dependent on the geological and ground con-
ditions, excavation method, and installed support. Many researchers have used numerical
analysis methods to evaluate tunnel behaviors, because these methods can ideally model
the tunnel excavation process under various conditions and assess the LDP efficiently.
Panet [4] analyzed the convergence during tunnel excavation using axisymmetric finite
element analyses under elastic, plastic, and perfect elastoplasticity failure conditions and
proposed an equation for convergence. Hoek [5] reported that the deformation due to
tunnel excavation first occurs at the front of the excavation surface, resulting in approx-
imately one-third of the total displacement at the excavation surface; this was found to
vary according to the ratio of the rock mass strength to the in situ stress. Vlachopoulos
and Diederich [3] performed a numerical analysis on various ground conditions based
on the Hoek–Brown model and proposed a robust formula to estimate the longitudinal
deformation profile (LDP) using plastic radius as a parameter. Alejano et al. [6] presented a
new approach to calculate the simplified approximation formula of the plastic area and
the LDP according to the GSI under strain-softening rock mass conditions. Rooh et al. [7]
presented a new type of LDP using numerical simulations and regression analyses; this
profile was a function of the GSI and tunnel cover depth.

Determining the LDP during tunnel excavations according to the rock mass conditions
is essential for thorough tunnel behavior analyses. Hoek [8] proposed an empirical formula
for the LDP that exhibited the best fit for the tunnel convergence measurements reported
by Chern et al. [9]; however, these values are only applicable to the rock conditions at
a particular site. As a result, the parameters are fixed and cannot be considered for
different ground conditions. The Hoek’s LDP showed that the best fit for the measured
values of tunnel internal displacement reported simply expresses the ratio of the preceding
displacement as approximately 0.3. This can lead to an error when predicting the ratio of
the preceding displacement while neglecting the rock conditions; consequently, a complete
tunnel behavior analysis cannot be realized.

This paper proposes an expanded longitudinal deformation profile (ELDP) that con-
siders different rock masses and initial stress conditions. FLAC 3D (ver. 5.00) was used for
numerical analyses. The ELDP presented herein is represented graphically according to
the RMR value and initial stress conditions. Based on 35 cases, the ELDP is represented
using a graph with different shapes according to the RMR value and the initial stress
conditions. The LDP empirical formula proposed by Hoek [8], which showed the best fit
for instrumental tunnel convergence values as reported by Chern et al. [9], is expanded
into a generalized form.
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2. Literature Review of Longitudinal Deformation Profile

The LDP is a graph that expresses the amount of convergence at the tunnel wall as a
function of the distance from the tunnel face. Figure 2 presents the concept of a longitudinal
cross-section and the LDP for an unsupported tunnel with the excavation radius R. At a
distance x from the tunnel face, the convergence displacement is ur. On increasing the
distance x from the tunnel face, the convergence displacement converges to um

r . Ahead of
the excavation face, negative values of x indicate that the rock mass has begun to deform
ahead of the excavation face and measureable displacement is reduced to its minimum
value at a distance of about one-half a tunnel diameter ahead of the advancing tunnel face.
This implies that longitudinal displacement occurs in front of the tunnel face when tunnel
excavation is conducted. Thus, LDP analyses considering the preceding displacement are
essential for a complete assessment of the tunnel excavation behavior.
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Panet and Guenot [4] proposed convergence displacement according to the tunnel
distance in the following fractional function form by using finite element analysis:

ur

um
r

= 0.28 + 0.72

[
1−

(
0.84

0.84 + x/RT

)2
]

(1)

where ur = radial displacement at a distance x from the face;
um

r = maximum radial displacement;
RT = tunnel radius.

Corbetta et al. [10] proposed an empirical formula in the form of an exponential
function as follows:

ur

um
r

= 0.29 + 0.71
[
1− exp(−1.5(x/RT))

0.7
]

(2)

Panet [11] conducted a finite element analysis under elastic conditions and proposed a
convergence displacement relationship formula according to tunnel distance, as expressed
below. This expression can only be applied to the rear of the tunnel face, as indicated in
Figure 3 in the form of a dashed line.

ur

um
r

= 0.25 + 0.75

[
1−

(
0.75

0.75 + x/RT

)2
]

(3)

Carranza-Torres and Fairhurst [3] presented an improved empirical formula proposed
by Hoek [8], as expressed in Equation (4). This empirical formula is best fitted with the
sigmoid curve function measured by Chern et al. [9] for the Mingtam Power Cavern project
(Figure 3). The empirical formula of Hoek [8] is applicable to both the front and rear of the
tunnel face.

ur

um
r

=

[
1 + exp

(
−x/RT

1.10

)]−1.7
(4)
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The proposed LDP calculation formula is a function of the excavation distance and
does not consider the parameters for the ground conditions. Unlu and Gecek [12] proposed
normalized radial displacements using numerical analyses and statistical regression to
account for the effect of Poisson’s ratio on circular tunnels under elastic ground conditions.
Unlu and Gercek [12] believed that it was difficult to obtain a good correlation for express-
ing the normalized LDP in the form of a single sigmoid curve when curve fitting the results
of tunnel air displacement obtained via numerical analyses. Moreover, they proposed a
formula for determining the LDP by dividing it into two parts, as shown in Figure 4, based
on the tunnel face.
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Ua =
ur

um
r

= u0 + Aa[1− exp(−BaX∗)] for X∗ ≤ 0 (5)

Ub =
ur

um
r

= u0 + Ab

[
1−

[
Bb

(Bb + X∗)

]2
]

for X∗ ≥ 0 (6)

where X∗ = |x|/RT , x = distance from the face, and RT = tunnel radius;
u0 = normalized pre-deformation (u0 = 0.22ν+ 0.19);
Aa, Ba, Ab and Bb are the statistical constants dependent on Poisson’s ratio;
Aa = −0.22ν− 0.19, Ba = 0.73ν+ 0.81;
Bb = −0.22ν+ 0.81, Bb = 0.39ν+ 0.65.

Vlachopoulos and Diederichs [3] analyzed the normalized maximum plastic zone,
RP/RT , generated around the rock during the excavation of a circular tunnel; they proposed
a new form of the LDP formula, indicating the relationship between u0/um

r and RP/RT .
The convergence displacement at the tunnel face (X∗ = x/RT = 0) u∗0 is expressed as
follows:

u∗0 =
u0

um
r

=
1
3

exp(−0.15R∗) (7)

where R∗ = RP/RT ;
RP = maximum plastic radius;
RT = tunnel radius.

The normalized maximum plastic zone and the relational expressions of ur/um
r as a

function of RP/RT are as follows:

u∗ =
ur

um
r

= u∗0 · exp(X∗) for X∗ ≤ 0(in the rockmass) (8)

u∗ =
ur

um
r

= 1− (1− u∗0)· exp
(
−3X∗

2R∗

)
for X∗ ≤ 0 (in the tunnel) (9)

where X∗ = x/RT .
Rooh et al. [7] performed numerical and regression analyses on circular tunnels using

the tunnel diameter, geological strength index (GSI), and overburden depth, and they
proposed an S-shaped logistic function:

ur

um
r

= 1 +
1

1 + m· exp(−n·X)
(10)

where X∗ = x/D;
x = distance from the face;
D = tunnel diameter.

According to the GSI range, m and n can be expressed as follows:

m =

{
0.74× exp

(
23.69·h0.4

D1.6·GSI0.8

)
for GSI < 20

1.85 for GSI ≥ 20
(11)

n =

{
1.73× ln

(
GSI0.9

h0.7

)
− 1.36 for GSI < 60

4.3 for GSI ≥ 60
(12)

3. Numerical Simulation

To assess the impact of the rock quality and the initial stress conditions on LDP around
the tunnel, FLAC 3D numerical simulation was performed. For variable geology under
different stress conditions, it was obvious to choose the FLAC 3D continuum model to
study displacements at locations around the tunnel. The numerical simulations were done
to present the LDP considering the rock mass conditions and the initial stress state. The
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overall shape of the analysis model is shown in Figure 5. The modeling dimensions are X =
27.5 m, Y = 80.0 m, and Z = 55.0 m, and the tunnel diameter is 5 m.
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3.1. Constitutive Model and Failure Criterion

The behavior of the rock was evaluated using the Mohr–Coulomb failure criterion
expressed for an elastic–perfectly plastic material. The Mohr–Coulomb failure criterion
is expressed as a function of the normal stress and the shear stress acting on the failure
surface. As the normal stress acting on the failure surface of the rock mass increases, the
shear resistance of the fracture surface increases. The Mohr–Coulomb failure criterion is
well reflected in these rock strength characteristics, and it is expressed as a relatively simple
formula. Therefore, it is widely used as a yield condition in ground analyses.

3.2. Rock Mass Conditions for the 3D Numerical Analyses

Rock mass classification, which qualitatively and quantitatively indicates the condition
of a rock mass, is currently acknowledged as a mandatory adjunct when evaluating rock
mass environments for engineering purposes. Although well-known classification systems
have been applied in various engineering projects such as mining, slopes, dam foundations,
and tunnel-boring machines (TBMs), they have been developed, refined, and updated
for tunnel support design [13]. Numerous rock mass classifications have been developed,
such as the RQD, RMR, Q-system, and GSI. In this study, RMR was adopted as a way
of expressing the rock mass condition. The RMR classification was first proposed by
Bieniawski [14], and it has since been modified several times. Its features and structures
have also been modified significantly [15–17].

The change in the LDP curve according to the rock mass conditions was analyzed via
numerical analyses, and the rock mass conditions were defined by dividing the RMR value
in 5–20 intervals. Numerical modeling numbers were classified into 35 cases from A-1 to
G-6, including the initial stress conditions. Table 1 lists the rock mass properties and the
initial stresses of the rock mass for the numerical analyses.

The rock mass properties obtained from the Korean railway construction site (Figure 6)
were used as input values for the numerical analysis. The Songjeong Tunnel, which features
an extension of 10 km, is located at this construction site. The Ulsan and Ocheon faults
are in the area where the Songjeong railway tunnel is planned; these are large faults that
extend for approximately 50 km and intersect with the Yeonil tectonic line, which has a
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50-m-wide brittle layer. The distribution of rock quality on the project site is generally poor;
mudstone and andesite are noted at the starting point, whereas most of the remaining
section features granite distributed along the tunnel alignment.
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Table 1. Numerical modeling data for evaluating the LDP under different rock mass qualities and
initial stress conditions.

Input Data

RMR V IV III II I

5 10 15 30 50 70 90

Rock mass property
Elastic modulus, E (MPa) 50 100 500 1500 5000 14,000 20,000

Cohesion, c (kPa) 80 100 150 500 1000 3000 5000
Internal friction angle Φ (◦) 30 30 30 33 35 40 45

Initial stress, P0 (MPa)
P0 = 3 MPa A-1 B-1 C-1 D-1 E-1 F-1 G-1
P0 = 5 MPa A-2 B-2 C-2 D-2 E-2 F-2 G-2
P0 = 10 MPa A-3 B-3 C-3 D-3 E-3 F-3 G-3
P0 = 15 MPa A-4 B-4 C-4 D-4 E-4 F-4 G-4
P0 = 20 MPa A-5 B-5 C-5 D-5 E-5 F-5 G-5

3.3. Results of Analyses

Numerical analyses were performed using FLAC 3D, and the LDP curves were ob-
tained according to the rock mass properties (RMR) and initial stress (Po) conditions
(Figure 7). In Figure 7, the x-coordinate represents the distance from the tunnel excavation
face, while the y-coordinate denotes the normalized deformation for the final deformation
caused by tunnel excavation. As the tunnel excavation advances, the preceding deforma-
tion occurs ahead of the face. The ratio of the preceding displacement is defined as the
normalized displacement (ur/um

r ) at the face. The LDP in this study shows that as the
RMR decreases, the ratio of the preceding displacement decreases, and the displacement
converges gradually behind the excavation face. This LDP trend is similar to that reported
by previous studies [3].
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Notably, the LDP presented herein was found to differ from that reported by Hoek [8],
which is indicated by a dotted line in Figure 7. The rock mass deformation ahead of the
excavation face was found to be less than that determined by Hoek [8]. Furthermore,
according to the RMR (expressed as groups A to F), different shapes of the LDP are
presented. The LDP proposed by Hoek [8] showed a trend similar to that of the proposed
LDP only at x/RT = 5 behind the excavation face, when the RMR was grade V (groups A,
B, and C). This indicates that the LDP formula of Hoek [8] represents the measured values
for a specific site, and thus, it cannot reflect various rock conditions.

It should be noted that according to the LDP analysis results obtained in this study,
the ratio of the preceding displacement varies from 0.1 to 0.35 according to the change in
rock conditions. The LDP of Hoek [8], which showed the best fit for the measured values
of tunnel internal displacement reported by Chern et al. [9], simply expresses the ratio of
the preceding displacement as approximately 0.3 (Figure 3). This can lead to an error when
predicting the ratio of the preceding displacement while neglecting the rock conditions;
consequently, a complete tunnel behavior analysis cannot be realized. When the initial
stress increased, the LDP tended to move toward the right, and this tendency became more
dominant under the condition of poor rock quality (Figure 8). This is attributed to the effect
of increasing the plastic area around the excavation surface of the tunnel as the initial stress
increases. It means that under high-stress conditions, the rock mass around the tunnel
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deforms more as compared with low-stress conditions. Furthermore, poor-quality rocks
have low load-carrying capacity as compared to strong rocks. Therefore, poor-quality rocks
deform more under high-stress conditions.

Figure 8 shows the LDP under different initial stress conditions for the same rock
mass quality. For RMR = 10, 30, and 50, the LDP changes as the initial stress increases
(Figure 8a–c); however, for RMR = 70, there is no change in the LDP with respect to the
changes in the initial stress (Figure 8d). Even under the condition of RMR = 90, the same
trend as that under RMR = 70 was observed, and therefore, the results are not included
in the paper. This is likely due to the effect of the increase in the plastic zone when the
initial stress increases under poor rock quality. In fractured rock conditions where joints
are developed, the LDP should be considered important because it is affected by both the
rock quality and the initial stress conditions.
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4. Regression Analysis Results

Regression analysis methods were used to generalize the LDP curves obtained via the
numerical analysis. The empirical formula for the LDP proposed by Hoek [8] (Equation
(4)) can be generalized as Equation (13) containing two parameters (α, β):

ur

um
r

=

[
1 + exp

(
−x/RT

α

)]−β

(13)

where α, β = parameters related to rock mass conditions, α and β = f (RMR, p0);
ur = radial displacement at distance x from the face;
um

r = maximum radial displacement;
x = distance from the face;
RT = tunnel radius.

Parameters α and β are functions of the RMR and initial stress state (p0) indicating
a rock mass condition, as determined via the numerical analysis results. The values of
α and β in Equation (13) were obtained using regression analysis. Regression analysis
was performed using MATLAB, and the results are listed in Table 2. The analysis was
performed in the range of α = 0.898–2.416 and β = 1.361–2.851 depending on the rock
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quality and the initial stress conditions. These results were obtained using the extended
values at α = 1.1 and β = 1.7 of the empirical equation for the LDP proposed by Hoek [8],
which showed the best fit for the tunnel internal displacement measurements reported
by Chern et al. [9]. The value of α is proportional to the RMR and tends to be inversely
proportional to the initial stress. The value of β exhibits a tendency to decrease with an
increase in the RMR; however, it shows no clear correlation with the initial stress.

Figure 9 presents the results of the regression analysis for α and β. The correlation was
excellent, and the parameters for Equation (13) were analyzed as shown in Equations (14)
and (15):

α = 0.305 ln(Po/RMR1.5) + 2.419 (14)

β = 2.926 exp(−0.01 RMR). (15)
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Table 2. Regression analysis results for α and β.

P0 = 3 MPa A-1 B-1 C-1 D-1 E-1 F-1 G-1

α 1.94 1.89 1.81 1.33 0.91 0.90 0.90
β 2.82 2.72 2.51 1.69 1.37 1.36 1.36

P0 = 5 MPa A-2 B-2 C-2 D-2 E-2 F-2 G-2

α 2.05 1.99 1.88 1.51 0.96 0.90 0.90
β 2.85 2.85 2.73 1.83 1.41 1.36 1.36

P0 = 10 MPa A-3 B-3 C-3 D-3 E-3 F-3 G-3

α 2.18 2.16 2.03 1.84 1.43 0.90 0.90
β 2.70 2.78 2.86 2.18 1.74 1.36 1.36

P0 = 15 MPa A-4 B-4 C-4 D-4 E-4 F-4 G-4

α 2.29 2.20 2.15 1.90 1.60 0.91 0.90
β 2.70 2.68 2.79 2.43 1.87 1.36 1.36

P0 = 20 MPa A-5 B-5 C-5 D-5 E-5 F-5 G-5

α 2.42 2.31 2.00 1.95 1.80 0.92 0.90
β 2.74 2.70 2.65 2.62 2.01 1.37 1.36

5. Conclusions

This paper proposed a longitudinal deformation profile (LDP) considering the rock
quality and the initial stress conditions. For LDP analysis, a numerical analysis method
using FLAC 3D was employed, and 35 analysis results were evaluated by combining the
RMR and the initial stress conditions. This study expanded the empirical equation for the
LDP proposed by Hoek [8], which showed the best fit for the measured values of tunnel
internal displacement reported by Chern et al. [9]. This previous study can lead to an error
in forecasting the ratio of the preceding displacement while ignoring the rock conditions.
Due to this, a comprehensive tunnel behavior analysis cannot be understood. To avoid
such error, an expanded longitudinal deformation profile (ELDP) is developed according
to the rock mass conditions. The results of this study can be summarized as follows:

1. An LDP equation considering tunnel excavation conditions was proposed in a gen-
eralized form, including the parameters α and β from the empirical equation put
forth by Hoek [8]. The parameters are expressed as a function of the RMR and the
initial stress, where α is a log function and β is an exponential function with excellent
correlation coefficient.

ur

um
r

=

[
1 + exp

(
−x/RT

α

)]−β

(16)

where α = 0.305 ln(Po/RMR1.5) + 2.419; β = 2.926 exp(−0.01 RMR).
2. For the empirical formula of Hoek [8], which showed the best fit for the tunnel internal

displacements reported by Chern et al. [9], the values of α and β were 1.1 and 1.7,
respectively. However, in the present study, α = 0.898–2.416 and β = 1.361–2.851
depending on the rock quality and the initial stress conditions.

3. The ratio of the preceding displacement was analyzed in the range of 0.1 to 0.35. When
the rock quality was poor, the LDP varied according to the initial stress condition.
However, for an RMR of 70 or more, the LDP remained the same regardless of the
initial stress conditions. These results are considered to be related to the plastic area
formed according to the quality of the rock.
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Appendix A. A List of Nomenclature for Symbols

Symbol Description

x distance from the face

u0
r

radial displacement at a location separated by distance from the back of the
tunnel face

pi initial state of support pressure
σ0 initial state of wall pressure
ur radial displacement at a distance x from the tunnel face
pcr

i critical state of support pressure
ps uniform pressure
pD

s final loaded pressure
pmax

s maximum pressure
um

r maximum radial displacement
RT tunnel radius

Ua and Ub normalized radial displacement
Aa, Ba, Ab and Bb statistical constants dependent on Poisson’s ratio

RP maximum plastic radius
α and β parameters related to rack mass conditions, consist of RMR and p0 function
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