
Received June 4, 2021, accepted July 19, 2021, date of publication July 26, 2021, date of current version August 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3099429

Efficient Features for Function Matching in
Multi-Architecture Binary Executables
SAMI ULLAH , WENHUI JIN , AND HEEKUCK OH , (Member, IEEE)
Department of Computer Science and Engineering, Hanyang University, Ansan 15588, South Korea

Corresponding author: Heekuck Oh (hkoh@hanyang.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT under
Grant NRF-2019R1A2C2003045.

ABSTRACT Binary-binary function matching problem serves as a plinth in many reverse engineering
techniques such as binary diffing, malware analysis, and code plagiarism detection. In literature, function
matching is performed by first extracting function features (syntactic and semantic), and later these features
are used as selection criteria to formulate an approximate 1:1 correspondence between binary functions.
The accuracy of the approximation is dependent on the selection of efficient features. Although substantial
research has been conducted on this topic, we have explored two major drawbacks in previous research.
(i) The features are optimized only for a single architecture and their matching efficiency drops for other
architectures. (ii) function matching algorithms mainly focus on the structural properties of a function,
which are not inherently resilient against compiler optimizations. To resolve the architecture dependency
and compiler optimizations, we benefit from the intermediate representation (IR) of function assembly
and propose a set of syntactic and semantic (embedding-based) features which are efficient for multi-
architectures, and sensitive to compiler-based optimizations. The proposed function matching algorithm
employs one-shot encoding that is flexible to small changes and uses a KNN based approach to effectively
map similar functions. We have evaluated proposed features and algorithms using various binaries, which
were compiled for x86 andARMarchitectures; and the prototype implementation is comparedwith Diaphora
(an industry-standard tool), and other baseline research. Our proposed prototype has achieved a matching
accuracy of approx. 96%, which is higher than the compared tools and consistent against optimizations and
multi-architecture binaries.

INDEX TERMS Binary diffing, efficient features, function matching, multi-architecture.

I. INTRODUCTION
An assembly function can have either a graphical repre-
sentation – like its control flow graph (CFG), call graph
(CG), data flow graph (DFG), etc. or a textual representation
– like its assembly code, intermediate representation (IR)
code, embedding vectors, etc. However, some research works
[1]–[3] also formulates a new graphical representation of
a function by merging the semantic or multiple structural
properties into a single comprehensive graphical structure.
Considering the NP nature of graph isomorphism, most of the
existing function matching research [4]–[8] extract syntac-
tic features from the structural representation and formulate
an approximate solution based on extracted features. The
accuracy of function matching is directly linked with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shahzad Mumtaz .

selection of efficient features that depict the approximation
accuracy. As a diverse feature set can boost the accuracy
of function matching, research works [6], [9], [10] extend
their feature set by extracting the semantic features from the
function assembly code. Research works like FOSSIL [11]
adopt an alternative approach to resolve graph isomorphism.
They opt to boost the efficiency of CFG matching (graph
based) but these techniques are computationally expensive
(NP class), not evaluated for the multi-architecture binary
matching problem, and out of the scope of this research.

Function matching research is shared by malware detec-
tion, code plagiarism/clone detection, and binary diffing.
Malware and code plagiarism detection research objectives
are to find code similarity thus their matching algorithm
even matches partially same functions. In contrast, the binary
diffing objective is to find similarity and differences [12]
between binary functions thus it first maps (phase I) the

104950 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5332-2914
https://orcid.org/0000-0002-4647-6261
https://orcid.org/0000-0002-2989-8737
https://orcid.org/0000-0003-2606-2405

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

similar functions, later finds the small differences in func-
tionality between the mapped functions and finally classifies
(phase II) them into exact vs partial functions. The function
matching part is common in plagiarism detection and binary
diffing (phase I) techniques, although different objectives.
Finding a higher number of true matches is linked with
the diversity of function features thus features efficiency
is critically important. Given two binaries, feature-based
function matching algorithms can find the same functions
with higher accuracy. However, function matching accuracy
drops; when functions are partially modified. For partially
changed functions, the accuracy of function matching could
be affected due to two types of changes (i) structural changes
in CFG (ii) semantic changes in assembly code. It is always
risky to match two structurally changed functions as there is
a probability that these functions might have real patch-based
changes, optimization-based changes, or multi-architectures.
To reduce the probability of false positives, most function
matching algorithms first map the same matches and later
map the partially changed functions. Similarly, there can be
slight changes in assembly code and thus setting the threshold
for sequence matching is risky; for the same reason given
above. There must be some semantic aware approach [13]
that can suppress the optimization introduced changes and
highlight the real patch-based changes.

There are various well-known binary diffing tools such as
Diaphora [10], BMAT [14], [15], and zynamics-BinDiff [5]
that could be analyzed to study the impact of function features
in a multi-architectures scenario. Unfortunately, BMAT and
BinDiff are not open-sourced and BinDiff binaries utilize
function name symbols thus it cannot be considered for a fair
analysis. In this research, we have explored Diaphora, which
is an industry-standard (open-sourced) binary diffing tool and
it uses the heuristics-based selection criteria for initial func-
tion matching and utilizes the sequence matching to find the
small difference in matched functions. In Diaphora, a heuris-
tic is defined as an SQL statement formulated from a single
or a few function features, which is used as selection criteria
to match functions in the 1:1 mapping phase. There are
51 heuristics in Diaphora, which covers most of the proposed
features in previous research works. We have empirically
analyzed and studied their individual impact on the function
matching accuracy. Diaphora has categorized its heuristics
into three types as shown in Table 1. Its function matching
algorithm selects heuristics from HEUR_TYPE_NO_FPS to
HEUR_TYPE_RATIO_MAX categories in sequential manner
and 1:1 map the functions. In our empirical analysis, we have
found that some heuristics in HEUR_TYPE_NO_FPS cate-
gory were over-trusted (Bytes hash, function hash, etc.) and
consequently caused many false positives (especially for the
functions with less than 10 instructions). Heuristics based on
textual properties (opcode, strings, etc.) are only optimized
for x86 architecture, and their performance drops signifi-
cantly for ARMcompiled binaries.Moreover, tightly stripped
binaries have very little symbolic information and most of
(60-70%) the function name symbols are stripped. For tightly

TABLE 1. Heuristic types and matching criteria in diaphora.

stripped binaries, the performance of some heuristics drops
significantly that were defined using function symbol-based
(e.g. function strings, sequence matching) features.

Techniques like discovRE [8], and VSkLCG [16] have pro-
posed efficient features for searching vulnerability functions
in cross-architecture scenario. Finding an exact 1:1 mapping
between cross-architecture functions is a complex problem
and most of the algorithms adopt a KNN based algorithm and
matched functions are reported as top 1%, to top 10% with
different settings of k parameters. The matching accuracy
for the top 1% is not significant and also, these works are
not evaluated for different compiler optimizations. However,
DeepBinDiff [3] proposes an embedding-based graphical
representation, which compares single architecture binaries
but resilient to cross-optimization level binaries comparison.

In brief, there could be four possible drawbacks in existing
function matching techniques.
• The features/heuristics might be fine-tuned only for
a single architecture and not optimal for multi-
architectures.

• Some features using symbolic information might not be
optimal for tightly stripped binaries

• Features might not be optimal for cross-optimization
levels

• In function matching algorithms, mostly heuristics are
used in sequential fashion i.e. one-by-one as selection
criteria. Prioritizing the best heuristic is challenging as
a single heuristic can never be 100 % accurate. Conse-
quently, the feature matching criteria is not flexible to
small changes in partially changed functions and cause
many false matching results.

This research aims to address the above-mentioned draw-
backs in function matching for multi-architectures and pro-
pose a general function matching technique that is efficient
towards these challenges. To cope with the first three chal-
lenges, we have critically analyzed Diaphora [10] features
and proposed efficient syntactic features that maintain their
efficiency for multi-architectures. Semantic features can be
important in the multi-architecture scenarios and possibly
boost the accuracy of function matching but they can also be
a bottleneck for stripped binaries if features rely on debug
information. In this research, we represent the assembly to an
intermediate representation using Radare2 ESIL and extract
semantic features, which are not dependent on symbolic
information thus suited for stripped binaries and also expand-
able to multi-architectures. We propose an embedding-based

VOLUME 9, 2021 104951

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

FIGURE 1. The overall workflow of the adopted methodology.

function representation that models assembly to a single
vector while being sensitive to the semantic relationships
among assembly tokens. This feature is not tightly dependent
on the structural information, thus resilient against compiler
optimizations. To cater to the fourth challenge, our function
matching algorithm utilizes a one-shot encoding mechanism
with distance-based selection criteria that treats all features
with the same priority and it is also computationally efficient.
Consequently, the distance-based selection criteria (with 10%
threshold) in the function matching algorithm is flexible to
partially changed function.

A. APPROACH OVERVIEW
The overall workflow of the proposed methodology is shown
in Figure 1. Given a set of binaries, we initially perform
the binary analysis using Radare2 and represent binary func-
tions with their intermediate representation code that assist
to resolve the multi-architecture problem. As a first first
step, we extract the syntactic features (i.e. numeric (tally)
and structural features) from each binary function and con-
catenate them to a single vector, which we call as one-shot
encoding vector. As a second step, we filter and process the
IR tokens from binary functions to generating training corpus,
and train the gensim model that learns the embedding vector
against each token in corpus. (Section III-G). The training
process learns the semantic relationship among IR tokens and
further helps to suppress the differences caused by differ-
ent architectures and optimization levels. Once we have the
embedding vectors against each token, we model each func-
tion to its equivalent vectorized representation that is used as
a feature (section III-G2). Step 1 and Step 2 run in parallel
and both output a feature vector, which are used as an input
to function matching algorithm. As a step 3, we compare the
function’ feature vectors and find the matched functions. The
complete details are in section IV.

To evaluate the proposed solution, we have implemented
a prototype utility and compared it with Diaphora [10],
Reveal [9], DeepBinDiff [3] and other baseline works for
function matching. The evaluation parameters are the count

of true positives, false positives for the matched functions,
and count of unmatched functions (false negatives). Multi-
ple experiments have been performed using XNU kernels,
Coreutils, and OpenSSL binaries, which were compiled for
multi-architectures. The proposed utility outperforms in most
evaluation parameters, among compared tools: making it
a practically useable solution for multi-architecture binary
comparison.

The contributions of this paper are as follows:
• Proposed efficient features for function matching, which
are efficient for binaries compiled for multi-architecture
and cross-optimization levels.

• Proposed a vectorized one-shot encoding algorithm that
achieves the function matching accuracy of ≈96%.

• Implementation1 of proposed features and techniques.

II. RELATED WORK
In this section, we describe the underlying research related
to function matching. Function matching has been used in
various reverse engineering techniques either partially or as a
full-stack approach.

A. BINARY DIFFING
Function matching is partially utilized in a binary diff-
ing technique. A binary diffing technique first formulates
a 1:1 mapping between binary functions and later classi-
fies them into exact, partial, or no-match. Function match-
ing is used in the 1:1 mapping phase and serves as the
backbone for binary diffing techniques. Existing research
focuses on finding efficient structural features that can bet-
ter approximate the graph-isomorphism problem. The first
technique was proposed by Flake [4], which was later
extended by his colleagues Dullien and Rolles [7] and
implemented in their tool zynamics-BinDiff [5]. Zynamics-
BinDiff employs the feature vectors; extracted at the basic
block level, to locate perfect matches and they also endeavor
to reconstruct the CFG for matching against optimizations.

1https://github.com/sami2316/bindiff_efficient_features

104952 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

Bourquin et al. [17] refine Dullien’s work by proposing
extending features and utilize the bipartite graphs in their
function matching algorithm. Eschweiler et al. [8] extract a
set of syntactical features with an aim to boost up the function
analysis and computation in matching algorithms. There are
some works such as BinSlayer and discovRE [8], [16], [17],
which mainly focus to refine CFG that eventually boosts
up the CFG isomorphism for multi-architectures but these
techniques are brittle to instruction-level changes and not
evaluated for cross-compilation levels.

Karamitas and Kehagias [9], [18] extends the CFG feature
vector for vertices and edges that can better classify digraphs.
They also employ Markov lumping technique to get a transi-
tion matrix and use it as a feature along with other features
in their function matching algorithm. There are a few tech-
niques that mainly focus on the textural features for function
matching. David et al. [6] decomposes a function assembly
to strands and computes the similarity ratio based on strands
composition. Diaphora [10] is a current industry standard and
an open-source binary diffing tool; which incorporates all
previously researched features into a single tool. It employs
different sets of features, which are computed over function
CFGs and plain assembly text. Its diverse feature set can
better match unique functions in two executables.

B. BINARY CODE CLONES
Nowadays, code reusability is a norm in the software
development process. Many techniques have been devel-
oped to find code clones, which lay the foundation for
applications like refactoring, detecting bugs, and protecting
intellectual property. Finding the clones is comparatively
easy [19], when the source code is available. For bina-
ries like firmware, finding the clones at the binary level is
challenging [20]. Dullien et al. [21] formulate a correlation
technique by defining five function features that can map
the code clones. Saebjornsen et al. [22] model the assem-
bly instruction by extending the tree similarity framework
based on clustering of characteristic vectors. They focus
on assembly instruction features and preserve its structural
information. Hemel et al. [23] define textual features, which
are unique and used in their binary clone search algorithm.
Their major focus was to find the code license abuses at the
binary level and they have also implemented a tool called
BAT. Chandramohan et al. [24], [25] extract the function
call traces from CFG and semantic features from the assem-
bly code of a function and propose a clone searching solution
that is scalable and resilient in matching cross-architecture
binaries. Alrabaee et al. [1], [2], [11] formulate a new graph-
ical representation by first extracting the semantic features
and then merging them into a joint data structure. Their
new representation is comprehensive and effective against
single architecture but not evaluated for multi-architecture
and cross-optimization levels compiled binaries.

In the malware domain, Farhadi et al. [26], [27] model the
code regions in assembly code, and their region compari-
son algorithm generate binary vectors, which are partitioned

and hashed for comparison. Cesare et al. [28] defines string-
based features by splitting them to n-grams. The minimum
distance between feature vectors is used as a selection crite-
rion to find themalware clone. Their features depend on func-
tion strings, which makes it inefficient for tightly stripped
binaries. Xin Hu et al. [29] employ instruction-level features
to compute graphs similarity and propose a multi-resolution
indexing scheme that is scalable to large malware databases.

There are many other neural network-based techniques [3],
[30]–[36], which propose a neural network-based solution
to find the code similarity between binary functions. These
techniques are featureless and assembly representations are
learned by the neural network. Neural network-based tech-
niques are trained in a supervised fashion, which are depen-
dent on the labeled datasets. Labeling binary functions for
comparison is a tedious job and there is no labeled dataset in
the public domain. Hence, the neural network techniques can-
not be effectively expandable for unseen multi-architecture
assembly data and their usability is limited.

In brief, various function features approaches have been
proposed in the literature but most of them are not evaluated
for multi-architectures and cross-optimization levels. The
textual features are mostly based on function strings, which
are not available in tightly stripped binaries. Consequently,
these features affect the function matching accuracy. In this
research, we have proposed efficient structural features and
semantic-aware textual features that are persistently efficient
for multi-architectures and resilient to optimization levels.

III. FEATURES
To address the drawbacks in function matching for multi-
architectures (section I), we have derived eight efficient fea-
ture vectors; by extracting the spatial, structural, and semantic
features of a binary function. For each function in a binary
executable, these feature vectors are extracted and the seven
of them are concatenated to a single feature vector (of dimen-
sion 1× 226) that we call a one-shot encoding vector. How-
ever, a function vector (of dimension 1 × 400) is a compact
and unique feature, which is compared as a single unit in
our function matching algorithm. In the following section,
we explain our proposed feature vectors one by one.

A. TALLY VECTOR
In this section, we exploit the spatial properties of a binary
function and propose a feature vector that preserves the spa-
tial properties of a function. Spatial features are mostly the
count of syntactic or semantic properties of a function. Most
of the spatial features are already reported in the previous
research [2], [9], [16]. We acknowledge their contribution
and in this research, we have shorted listed the following
spatial features that are a logical step towards a complete
solution.

1) Edges: The number of all edges in a function’s CFG.
2) Vertices: The number of all unique vertices in a func-

tion’s CFG.

VOLUME 9, 2021 104953

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

3) In-Degree: The number of caller functions to a func-
tion.

4) Out-Degree: The number of function calls in a function.
5) Arguments: The number of arguments in a function

signature.
6) Instructions: The number of instructions in a functions

assembly.
7) Cyclomatic Complexity: The number of unique paths

in a CFG of function.
8) Cyclomatic Cost: The execution cost per cycle of a

function.
9) Code References: The number of references from in-

question function to code section. Code references are
usually the function call or jump instructions.

10) Data References: The number of references from in-
question function to data section. Data references are
usually the pointer to strings.

We extract the above count-based features for a given
function and concatenate them to a single vector that we call
a tally vector. These ten features combined together can be
seen as a unique signature of an in-question function. Our
tally vector is represented as follows.

[#E, #V , #ID, #OD, #A, #I , #CCom,

×#CCos, #CR, #DR]

Each function can be represented by its control flow graph
(CFG = 〈V , E〉) that reflects to its structural properties. The
aforementioned tally vector can filter many similar functions
but at the same time, its pruning power is limited and can
introduce inaccuracies in the matching process. To resolve
such imperfection, we extract the structural features solely
related to edges, vertices, and their relationship among them
that preserve the uniqueness of a CFG. In the following
sections, we explain our structural features in detail.

B. EDGE TYPE VECTOR
A CFG consists of vertices and edges that define the rela-
tionship among vertices. Following the graph theory, edges
(in a function’s CFG = 〈V , E〉) can be classified into
four following categories: using a depth-first search (DFS)
traversal.

1) Tree Edge: Consider there exists a DFS traversed topo-
logical sort of graph CFG = 〈V , E〉). An edge (u, v)
satisfying the conditions that (u, v) ∈ E and depth(v) =
depth(u)+ 1, is called as tree edge. All green edges in
Figure 2 are tree edges.

2) Forward Edge: An edge (u, v) is a forward edge, if the
depth(v) > depth(u) + 1; that is v is pointing to a
descendant vertex but it is not the part of the DFS tree.
An edge from vertex 1 to vertex 8 is a forward edge,
as shown in Figure 2.

3) Back Edge: The edge (u, v) is back edge, if the
depth(v) < depth(u); that is v is pointing to an ancestor
edge but not the part of DFS tree. An edge from vertex
6 to vertex 2 is a back edge.

4) Cross Edge: If an edge (u, v) connects two vertices
such that there is not any ancestor or descendant rela-
tionship. In other words, edge vertices belong to two
different DFS sub-trees. An edge from vertex 5 to
vertex 4 is a cross edge.

We iterate through the in-question function CFG in a DFS
fashion while analyzing the edge types and count each edge
type. Our edge type feature vector is the count of each four
edge types and it is represented as follows.

[#T , #F, #B, #C]→ [7, 1, 1, 1]

FIGURE 2. An example for CFG edges classification types.

C. VERTEX TYPE VECTOR
In a function’ CFG, basic blocks are defined as vertices that
can be classified based on their functionality. We follow the
taxonomy of vertices followed by Tarjan [37] and Karami-
tas [9]. A vertex V in a function CFG = 〈V , E〉 can be
classified into the following seven categories.

1) Entry: Given a function CFG, the vertices which are
the root nodes in a function CFG or execution entry
points are entry vertices. In a CFG, the basic blocks
containing function prologue are entry vertices. There
can be single or multiple entry vertices.

2) Exit: The vertices which are the exit nodes in a function
CFG or the basic blocks containing the epilogue of a
function assembly. Mostly these basic blocks end with
RET instructions. There can be multiple exit vertices in
a function CFG.

3) Traps: The vertices which have a single edge looping
into itself but do not have any descendent vertices or
outgoing edges to other vertices. Traps vertices can
mostly be the last vertex in CFG paths.

4) Self-Loops: The vertices which have a single edge
looping into itself but also may have descendent ver-
tices or outgoing edges to other vertices. Traps are also
self-loops but the reverse is not true.

5) Loop Heads: The vertices which are the starting point
of a loop.

6) Loop Tails: The vertices which are the ending point of
a loop.

104954 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

TABLE 2. Possibilities of basic block in-degree and out-degree
combinations.

7) Normal: All vertices in a function CFG including those
that do not fall in any of the above categories.

We iterate through in-question function CFG in DFS fash-
ion and count the each above defined vertex types. Our
vertices type feature vector is the count of each type and
represented as follows:

[#N , #En, #Ex, #T , #SL, #LH , #LT]

Although the above features play an important role for the
feature comparison, they are not sufficient as they do not
capture the topological relationship in a CFG. To capture the
topology of CFG, we have proposed the following two simple
but reliable features.

D. VERTEX DEGREE VECTOR
A CFG can also be represented as a set of basic blocks (ver-
tices) and connections (edges) among them. A basic block
can have a single or multiple connections coming in (i.e.
vertex parents) or connections going out (i.e. vertex chil-
dren) that define the in-degree and out-degree of a basic
block [38]. In this research, we have empirically ana-
lyzed the Apple kernel binaries and noticed that the major-
ity (96%) of in-degree and out-degree values range from
0 to 3. To abstract the basic blocks in-degree and out-
degree relationship, we have considered only the range from
0-3 that result into 16 possible combinations. To incorporate
more than 3 connections, we abstract ≥3 as 3; as shown
in Table 2.

Our vertex degree vector is the count of each 16 combi-
nations mentioned in 2. We iterate through the CFG in DFS
fashion and update the following degree vector.

[D00, #D00, #D01, #D02, #D03, #D10,

×#D11, #D12, . . .#D33]

E. DIGRAPH DOMINANCE RELATIONSHIP (DDR)
The vertex type, edge type and vertex degree feature do not
give insight into the actual layout of a CFG. Consider the case
shown in Figure 3, both digraph have same vertices classifi-
cation vector [7, 1, 4, 0, 1, 0, 0], edges type vector [6, 0, 0, 0]
and vertices degree vector. Merely using classification based
features are not feasible to discriminate the cases like shown
in Figure 3. It can be seen that Figure 3 digraphs have different
layouts and differ in their dominance relationship. To cope
with such cases, we first build the Dominator Relationship

Tree (DRT) against each function CFG, by visiting the CFG
in DFS fashion and then generate a binary string by using
a simple rule that when we enter a vertex, we add 1 to the
binary string and add 0 when we leave the vertex. As shown
in Figure 3, DRT based binary strings for both digraphs differ
by at least four points and thus such cases can be uniquely
represented.

FIGURE 3. Immediate dominator tree relationship.

Our previous features are in vector space but theDRTbased
binary string cannot be directly fitted in our model due to the
following challenges.

• Each function has a different length CFG. Therefore,
the outcome of DRT based binary string would be of
different length. In the function matching algorithm,
we need to compare a single function to all other un-
matched functions that require a feature vector that must
be of fixed length. If we take the longest binary string
length to generate vectors and perform zero padding for
smaller size binary strings, the outcome would be sparse
vectors.

• Due to compiler optimizations (under same optimiza-
tion level), the basic blocks might be repositioned in a
CFG. The layout representation feature must consider
such changes but simple sequence based binary string
comparison either cannot discriminate such changes or
produce false positives.

We have analyzed the real world binaries (XNU kernel
binaries) and found that majority of (98%) the function DRT
based binary string length lies in the 0-600 range. The his-
togram of DRT strings length is shown in Figure 4.
In order to deal with the varying length of DRT binary

strings, we have considered the 768 (selected after empirical
evaluation) as its representation value against all functions.
We transform the DRT binary strings to an equivalent vector-
ized form and zero pad the vectors with length less than 768.
Asmost of the functions lie in 0-150 range, somany functions
DRT vectors will be sparse. To cope with the sparsity chal-
lenge, we have leveraged from the locality sensitive hashing
research [38], [39] that preserve the semantic relationship as
opposed to the cryptographic hashing schemes and proposed
the following two hashing based vectors that solve the above
challenges.

VOLUME 9, 2021 104955

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

FIGURE 4. Histogram of DRT based binary strings length.

1) PIECEWISE HASHING
DRT vectors are computed by visiting a CFG in DFS fashion
(as described in section III-E) thus preserving the layout
of a CFG. Our DRT vector consists of 768 elements and
its sparse for most of the functions in a binary. To reduce
the dimensionality and impact of sparsity, we compute the
piecewise hashing of the DRT vector and output is a reduced
dimensionality vector. Our DRT vector is a binary vector (i.e.
1 or 0 value), so we adopt a simple approach by representing
32 bits into an equivalent float32 format and sequentially
iterate over the DRT vector to generate the reduced DRT
vector of size 32. Our piece-wise hashing algorithm is given
in Algorithm 1.

Algorithm 1 Piece-Wise Hashing Algorithm
Input: DRT binary string
Output: hash_vector
1: bit_vect = format(DRT binary string, ‘‘0<768b’’)
2: for i = 0 to 768 do
3: elem = int(bit_vect[i]:i+32,2)
4: hash_vector.append(elem)
5: end for
6: return hash_vector

2) PROJECTION BASED HASHING
Piecewise hashing preserves the CFG layout but does not
consider the randomness against basic blocks repositioning.
To introduce randomness, we project the DRT vector on k
linearly independent planes [40] and compute a k-bit signa-
ture in vector form. The value k is much less than the DRT
vector length (768), so the output k-bit signature vector is an
approximation of the DRT vector. As the projection planes
remain the same over all functions in each binary, so the
two similar functions will have exactly similar k-bit signature
vectors. In this research, we have experimented with different
k values but k = 128 gives the optimal accuracy. As k is

not large, we generate k random permutation vector (Pk)
of length 768 and a projection is dot product between in-
question function DRT vector and permutation vector Pk .
So the k-bit signature vector is the output of dot products of
all Pk with the DRT vector. Detailed algorithm is given in
Algorithm 2.

Algorithm 2 Project Based Hashing Algorithm
Input: DRT binary string
Output: Sigk vector
1: hash_size = 128
2: input_len = 768
3: uniform_planes = random_matrix(hash_size, input_len)
4: bit_vect = format(DRT binary string, ‘‘0<768b’’)
5: for i = 0 to hash_size do
6: elem = int(dot(uniform_planesi, bit_vect),2)
7: Sigk vector.append(elem)
8: end for
9: return Sigk vector

In brief, digraph dominance relationship preserves the lay-
out of a CFG and it helps to differentiate between Figure 3
shown digraphs. DRT based binary string preserves the CFG
layout thus our vectorized hashing schemes also respect the
CFG layout and provide syntactic-aware hash signatures.

F. OPCODE VECTOR
A function can have both structural (CFG) and textual
(assembly or IR) representations thus an efficient feature set
must include features extracted from both representations.
The previously discussed features are derived from structural
properties of a function. When a function is compiled for
different architectures, these structural properties do not vary;
as these are not dependent on instruction sets. In contrast,
a binary function compiled for different architectures utilize
different instruction sets, which result in different assembly
codes. A textual feature derived from assembly code can only
be optimized for a single architecture. Consequently, the same
textual feature extracted for different architecture assembly
code will be different thus introduce errors in function match-
ing algorithms. Previous research [18] has defined instruction
and function string histograms as textual features, however
both of them cannot be generalized to all architectures. In this
research, we have used Radare [41] tool generated evaluable
strings intermediate language (ESIL) and extracted the tex-
tual features that resolve the multi-architecture issues. ESIL
has defined its own instruction set, which is the same for all
architectures. To preserve the textual properties of a function,
we have proposed the opcode vector that can be described
as a histogram of each possible opcode types. The possible
types of op-code against all architectures are described in
Appendix B-A. There are a total of 48 op-code types against
all architectures and our analysis on XNU kernel binaries
(x86 and ARM64) shows that the opcodes in range 37-48 (see
Appendix B-A) occur very rarely. In this research, we have

104956 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

considered 0-36 opcode types and generated a feature vector
that counts the frequency of each opcode type against each
function, see the Algorithm 3.

Algorithm 3 Algorithm to Computing Op-Code Vector
Input: Assembly
Output: opcode_vector
1: opcode_vector = [0] * 37
2: for i = 0 to len(instructionsCFG) do
3: inst_type = get_inst_type(instructionsCFG[i])
4: opcode_vector[inst_type] += 1
5: end for
6: return opcode_vector

G. IR EMBEDDING REPRESENTATION
Opcode vector is derived from the operator token of an ESIL
statement, whereas the operands are not utilized. To capture
the diverse nature of textual representation, there is a need to
define another feature vector. Furthermore, we have observed
the redundancy in the functionality of small functions with
a few basic blocks i.e. they have similar structural features
even the number of instructions and opcode vectors. Merely
relying on the structural features, such functions cannot
be accurately matched as they are almost the same. Such
functions slightly differ in their textual properties such as
the caller function names, register names, etc. There is a
need to better preserve the textual properties of a function,
which remain the same for different architectures, stripped
and unstripped binaries. Function strings based features are
not optimal against stripped binaries and not expandable to
multi-arch binaries. In this research, we have proposed an
embedding-based feature that is based on an intermediate
representation of assembly code and respects the seman-
tic properties of a function. The proposed semantic aware
feature can effectively match above mentioned cases and
they are fine-tuned for multi-architectures. There are exist-
ing assembly embedding models [42], [43] that model an
assembly function but the proposed model is simple and
practical.We incorporate theword2vec [44] based embedding
model [45] that respects the semantic relationship and it can
effectively match two similar functions.
word2vec has embarked its significance in different data

analysis tasks. In this research, we train the gensim imple-
mented word2vec model using the IR tokens extracted from
various kernel binaries. Context plays a key role in learning
the semantic relationship among tokens. In this research,
we consider an IR statement as a sentence, and each token
context is defined relatively within the given IR statement.
A disassembled function contains many offset constants and
address tokens, which introduce randomness. From the func-
tion representation perspective, such addresses cause noise,
and also the address space is enormously large as com-
pared to the IR token set. Consequently, address-based tokens
affect the learning accuracy of IR tokens. For these reasons,

there is a need to filter the addresses and constants. In this
research, we replace addresses with constant ‘XXXX’ string
and numeric constants with ‘OFFSET’ string. Given the IR
tokens, we train the word2vec model that learns the embed-
ding vectors against each token. Once the model is trained,
token embedding vectors are used in our function representa-
tion model that is explained in the following section.

1) IR STATEMENT EMBEDDING MODEL
Towards the multi-arch function matching features, we need
to represent assembly code to an IR language. In this research,
we have utilized Radare2 ESIL as an IR language and the
reason for this choice is explained in Appendix B. An IR
statement has a fixed syntax i.e. two or more operand terms
followed by an opcode (operation) term. Most of the IR
statements have the form given in the Figure 5.

FIGURE 5. An IR statement representation.

In this research, we split an IR statement by comma (,)
and categorize the tokens into operation vs non-operation
terms. An operation term is always a single term while non-
operation terms can be two or more. Using the pre-trained
word2vecmodel, we first transform each non-operation token
to their embedding vectors and aggregate them to a single
summation vector. Later, the summation vector is concate-
nated with the operation term embedding vector and the
corresponding vector is called as IR-statement vector.

2) FUNCTION MODELING
Each function in a binary can have a different number of
instructions depending on its functionality. From the function
matching perspective, we need to represent a function in a
fixed vectorized representation that can preserve its unique-
ness and relationship among other functions. Using the IR
statement embedding model, we have proposed the following
two representations that are used alternatively in the function
matching algorithm.
• Aggregation Vector: Given a function Fi with n instruc-
tions, we first compute an IR-statement vector IRn
against each instruction and later aggregate all n IR-
statement vectors to a single vector. For the aggregation,
either sum or average can be used but we have empiri-
cally analyzed that summation achieve higher accuracy.
This representation is efficient in matching the same
functions.

• Fixed Matrix: In large binaries, there are a few functions
(in different classes or namespaces) which share the
same functionality and their IR representation is slightly
different. Consequently, the aggregation vector is not
efficient against such cases. To cater such unique cases,
we have proposed a matrix representation of a function,

VOLUME 9, 2021 104957

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

where each row is an IR-statement vector. For the com-
putational efficiency, two compared matrices must have
the same dimension. For the sake of same dimension-
ality, we select the dimension of the larger function
and zero pad the other function that has less number of
instructions. Thismatrix based representation is efficient
in detecting the small instruction level differences and
matching the partially same functions.

This section concludes our discussion on proposed effi-
cient features. The proposed feature set covers all aspects of
a binary function, considering a multi-architecture scenario.
All seven features are in vectorized form and preserve the
unique properties of the in-question function. In the follow-
ing sections, we describe the methodology to use proposed
features effectively and an evaluative comparison is given to
prove their effectiveness under complex scenarios.

IV. PROPOSED FUNCTION MATCHING
Once features are extracted against all functions in target
binaries then these features are used in the function matching
algorithm to 1:1 map functions in both binaries. Previous
research [9], [10] has defined heuristics based on a single or
multiple (<5) function features. These heuristics are used as a
selection criteria to 1:1 map the same (or similar) functions in
both binaries. Their matching algorithm iterates through each
heuristic (one at a time) and if two functions satisfy a heuristic
criteria then they are 1:1 mapped. After all the functions
are processed using all heuristics, the 1:1 mapped functions
are categorized as matched and all remaining functions are
categorized as unmatched.
As discussed in section I, a single heuristics can never be

optimal. To cater single feature inaccuracy, we have proposed
vectorized features which are concatenated to a single feature
vector and then that single vector is used in a matching
algorithm. We adopt a two-fold strategy i.e. (i) all structural
features are concatenated to a single vector (dimension of
1 × 226) and compared with all other functions’ structural
features in one-shot fashion. (ii) Textual features (function
vectors of dimension 1 × 400) are compared with all other
functions’ textural features in one-shot fashion. Proposed
function matching algorithms utilize both resultant vectors
and adopt an exact match first (EMF) strategy to find the
same functions. To incorporate similar functions (not 100%
same), we employ a flexible distance based selection criteria
and match the functions which are at-least 90% similar. Con-
sequently, proposed function matching algorithm efficiency
does not diminish due to a single feature inaccuracy and it is
flexible to partial changes thus resolving the third and fourth
challenges. The complete details of our matching algorithm
are given in the following sections.

A. FEATURES ENCODING
Some spatial or structural features like tally vector might
not be optimal in cross-optimization scenario as optimization
affect the CFG but they are important feature towards a
general solution. In contrast to the comparison of selective

features in an iterative fashion, we have proposed a one-shot
encoding scheme that suppresses the individual impact of
a features thus boosting performance against optimizations.
Given a set of feature vectors of a binary function, we first
transform them to corresponding numpy arrays and later
concatenate them to a single representation vector. The same
procedure is repeated for all functions in both binaries under
comparison. The resultant representation vectors are further
used in proposed function matching algorithms.

The proposed function matching algorithm uses a two-
fold strategy. Therefore, there are two representation vectors
against each function. First representation vector is formu-
lated by using a feature set containing features A-F. The
vector dimensions are 1× 226 and shown in Figure 6.

FIGURE 6. First encoding vector.

The order of the arrangements of feature vectors does not
affect the matching algorithm accuracy as far as we keep
the same order for all functions in binaries. In this research,
the choice of arrangement of features in the first representa-
tion vector is given in Figure 6.

Second representation vector is formulated using only a
single feature i.e. function vector (Section G). Its dimen-
sions are the same like function vector 1 × 400. In brief,
the first representation vector is a collection of all spatial
and structural features and the second representation vector
is a collection of textual features. The strategy to use these
representation vectors in a function matching algorithm is
given in the following section.

B. REPRESENTATION VECTOR MATCHING
Given two binaries Abin and A′bin, where A

′
bin is the patched

version of Abin. Each binary consists of k and k ′ number of
functions; which are already disassembled by a disassembler
like IDA or Radare2. Suppose that we have already extracted
the features against each function in both binaries and gen-
erated their representation vectors. Given a representation
vector of any function in Abin, algorithm given in Figure 7
is used to select the best matched function in A′bin. We have
applied the same algorithm for both representation vectors,
separately. However, the distance functions and the threshold
values are different. The details of each module in Figure 7
are as follows.

104958 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

FIGURE 7. Vectorized feature matching strategy.

• Targetbin1 Vector: In a function matching algorithm,
all functions of Abin are compared one-by-one with all
unmatched functions of A′bin. A representation vector of
in-question function from Abin that will be compared
with all representation vectors of A′bin is defined as a
Targetbin1 Vector.

• Targetbin2 Matrix: As our proposed algorithm is in
vector space, so to improve the comparison computation,
we have accumulated all representation vectors (against
all functions) inA′bin into a single matrix. Each row in the
matrix is a representation vector against a single function
from A′bin. We have defined that matrix as Targetbin2
Matrix.

• Distance Function: As discussed in section IV-A,
we have generated two representation vectors. In the
first representation vector each element represents a
unique feature. Two same functions must have the same
unique representation vectors but in case of partially
changed functions (after some patch) the features will
be partially different. Changes in partially changed func-
tions are usually small and are differentiable from the
two completely dissimilar functions. In large binaries
with >20K functions, where we have to compare one
function against >20k functions, the threshold window
is critically small. With empirical analysis and trying
different distance functions and configurations, we have
found that hamming distance with at-least 90% simi-
larity gives the best results. We have used normalized
hamming distance and the distance threshold is 0.1 (90%
similarity).
In the second representation vector, each function is
represented by an embedding vector, which preserves

the semantic relationship. In this case, we employ the
cosine distance to measure the similarity between two
functions. If two functions are the same then the cosine
distance is zero. To match the partially changed func-
tions, we employ a threshold of 0.05 (95% similarity)
and if the distance is more than threshold, we consider
them dissimilar functions.

• Min Distance: The output from the distance function
is a distance matrix where each rowk represents the
distance of Targetbin2 vector with the row′k of Targetbin2
Matrix. To formulate the 1:1 mapping, we select the
rowk (of distance matrix) with minimum distance. If the
minimum distance is less than threshold, we consider it
a match and map the index k ′ of Targetbin2 Matrix with
the index k of Targetbin1 Vector.

This section explains the procedure to efficiently match
representation vectors. With this, we are all set to explain our
main function matching algorithm, which is explained in the
following section.

C. FUNCTION MATCHING ALGORITHM
Function matching is a process of finding a 1:1 mapping
between the functions of Abin and A′bin binaries. In the pro-
posed function matching algorithm (FMA), we make use of
feature representation vectors and section IV-B algorithm to
compare binary functions and find a 1:1 mapping between
them. The detailed algorithm is given in Algorithm 4.

In Algorithm 4, there are two important base func-
tions that lay the foundation in defining the FMA
strategy i.e. STRUCTURAL_MATCHING() and TEX-
TUAL_MATCHING(). These functions are defined with
section IV-B algorithm; using the first and second repre-
sentation vectors, respectively. These functions compare the
representation vectors and 1:1 map the indexes with the
minimum distance criteria.

The exact matches are defined as the mapped functions,
which have zero distance between their representation vec-
tors. In the proposed FMA, we first find the exact matches
as there is less probability that two dissimilar functions
will have zero distance between them. Our empirical anal-
ysis shows that there are a few (0.01%) false positives
in mapping the exact matches as compared to mapping
partial matches. FIND_STRUCT_EXACT_MATCHES() and
FIND_TEXT_EXACT_MATCHES() functions define the
strategy to find the exact matches based on the struc-
tural and textual representation vectors, respectively.
FIND_STRUCT_EXACT_MATCHES() focus on finding the
structurally similar functions and for cross verification,
we ensure the zero cosine distance between function vec-
tors (textual feature) of mapped functions. In contrast,
FIND_TEXT_EXACT_MATCHES() focus on finding the tex-
tually similar functions and map the function when the cosine
distance is less than equal to 0.1. To secure the accuracy
in mapping the exact functions, we employ the count of
minimum distance entries in the distances matrix. When the
count is one then we consider it an exact match and map

VOLUME 9, 2021 104959

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

Algorithm 4 Function Matching Algorithm (FMA)
Input: Abin, A′bin feature databases (db1, db2)
Output: list of matched and unmatched

1: function FIND_STRUCT_EXACT_MATCHES(db1,
db2)

2: for index1 = len(db1) to 0 do F Reverse Loop
3: index2, dist1 = structural_matching(db1, db2)
4: if count(min(dist1)) == 1 then
5: dist2 = function_vec_matching(index1,

index2)
6: if dist2 == 0 then
7: matched.append(index2)
8: end if
9: end if

10: end for
11: return matched
12: end function

13: function FIND_TEXT_EXACT_MATCHES(db1, db2)
14: for index1 = len(db1) to 0 do F Reverse Loop
15: index2, dist1 = textual_matching(db1, db2)
16: min_d = min(dist1)
17: if count(min_d) == 1 & min_d <= 0.1 then
18: matched.append(index2)
19: end if
20: end for
21: return matched
22: end function

23: function FIND_PARTIAL_MATCHES(db1, db2)
24: for index1 = len(db1) to 0 do F Reverse Loop
25: index2a, dist1 = textual_matching(db1, db2)
26: top_d, top_i = KNN(dist1,k) F Top k matches
27: for i ∈ top_i do
28: index2b,dist2 = function_vec_matching(

index1, i)
29: end for
30: matched.append(index2b[min(dist2)])
31: end for
32: end function
33:

34: matched += FIND_STRUCT_EXACT_MATCHES
(db1, db2)

35: matched += FIND_TEXT_EXACT_MATCHES
(db1, db2)

36: matched += FIND_PARTIAL_MATCHES(db1, db2)
37: Unmatched = remain unmatched functions

the indexes of in-question function and minimum distance
function.

Once all exact matches are found, then we find the partial
matches using FIND_PARTIAL_MATCHES() that follow a
similar strategy but it is thresholded at 90% similarity to
1:1 map functions. It is the case, where there are more than
one functions with same minimum distance, we use the KNN

TABLE 3. Binary dataset for training, testing, and evaluation.

and select top K matches and compute the cosine distance
of the in-question function with each top K function’ textual
representation vector. The function with the minimum cosine
distance is considered a match and it index is mapped with
the in-question function index.

For large binaries, comparing a function representation
vector with all functions representation vectors is computa-
tionally expensive. Once a function is mapped, we removed
it from the dataset and process the remaining functions. Prac-
tically, this strategy boost the computational efficiency of
function matching algorithm.

V. EVALUATION
The proof of concept implementation is coded in python and
consists of two major utilities. (i) Feature extraction utility:
it uses the r2pipe wrapper module (for Radare2) to first ana-
lyze a binary and later extract the feature vectors against all
functions. Extracted features are saved in a database for later
comparison. (ii) Feature comparison utility: it implements the
FMA, which compares the function features, extracted by
the feature extraction utility. The FMA output four files in
cPickle format that are the exact matches, partial matches, un-
matched in primary and secondary binary files, respectively.

The experiments were run on aUbuntumachine with a core
i7, 64Gb RAM, and Nvidia 2080ti GPU. For the evaluation,
we have used kernel binaries that were large and diverse
enough to serve the evaluation objectives. The details of each
compared kernel binaries are given in Table 3. Furthermore,
the highlighted XNU kernel versions (in Table 3) are the ones
used to generate the dataset for the trainingword2vecmodule.
In the following, we explain the adopted procedure to obtain
the kernel binaries.

A. KERNEL BINARIES EXTRACTION
In this section, we explain the procedure to collect bina-
ries for evaluation. ARM, x86, and MIPS have been widely
deployed architectures and used for evaluation in previous
research. However, in this research, we have considered only
stripped and unstripped versions of x86 and ARM. At the
time of writing, Radare2 (binary analysis tool) does not fully

104960 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

support MIPS architecture so we have skipped the evaluation
for MIPS, and evaluation is limited to ARM and x86 (Linux,
Darwin) compiled binaries.

1) x86 ARCHITECTURE
For the evaluation of x86 binaries, we have utilized stripped
and unstripped kernel binaries. To keep the uniformity of the
same kernel versions for each x86 stripped, x86 unstripped,
and ARM stripped binaries, we have selected the APPLE
XNU kernel that empowers both macOS and iOS. In macOS,
the officially distributed kernel binaries are stripped binaries.
To obtain official binaries, we have installed differentMacOS
updates and directly collect the kernel binaries from the root
directory. To collect the unstripped binaries, we manually
compile the XNU source code2 using the build script. The
compilation output is unstripped and stripped binaries but
we have used only the unstripped binary for evaluation. The
detailed procedure for the compilation is described in the
build script that is open-sourced here.3

2) ARM ARCHITECTURE
For the evaluation of ARM binaries, we use only the stripped
binaries. Due to the proprietary issues, the open-source XNU
includes the tempered iOS code thus source code compiled
binaries cannot be used for a fair ARM architecture evalua-
tion. InmacOS, kernel binaries can be directly collected but in
iOS, the root directory is locked to avoid jailbreaking. There
is no direct way to collect kernel binary from iOS (ARM),
so we adopt the following indirect procedure and extract iOS
kernel binaries.

1) Download the complete iOS binary file from
https://ispw.me. Replace the .ipsw extension with the
.zip and unzip the file (iphone<version>).

2) To collect the kernel binary from unzipped file,
it is further processed using jtools4 $ jtool2 -dec
iphone<version>

3) It will write the kernel to /tmp folder that can be
directly copied and used for analysis. The resultant file
is directly analyzable in IDA or Radare2.

Following the above procedure, we collect ARM compiled
kernel binaries and use them for our analysis.

B. COMPARISON FOR THE INDIVIDUAL IMPACT OF
REPRESENTATION VECTORS
Previous research on function matching either immensely
focuses on syntactic or semantic representations of a func-
tion. However, for the proposed function matching features,
we keep a balance and potentially benefit from both syntactic
and semantic features. To emphasize the importance of each
representation vector, and analyze their individual impact; in
this section, we have evaluated the impact of (i) structural

2https://opensource.apple.com/source/xnu/
3https://gist.github.com/sami2316/467a8dc82493e8b748924eda2ab23c84
4http://newosxbook.com/tools/jtool2.tgz

vs textual features, and (ii) proposed function modeling vs
Asm2vec [43].

1) SYNTACTIC VS SEMANTIC FEATURES
In this section, we have compared XNU-4570-31.1			 XNU-
4570-41.2 to evaluate the individual impact of syntactic and
semantic features. For analysis, the selection of kernel bina-
ries is random and comparison results are plotted in Figure 8.
However, the evaluation results are consistent for other bina-
ries as well. In our experiments, we consider all proposed
spatial and structural features as a single syntactic represen-
tation vector (first) and an embedding-based function vector
as a semantic representation vector (second). The evaluation
parameters are the count of true positive (TP), false positives
(FP), and unmatched (UN) or false negative (FN) functions.

FIGURE 8. Comparison of structural representation vector vs textual
representation vector.

As shown in Figure 8, semantic representation vector can
match more number of functions as compared to the syntactic
representation vector. Structural features preserve the distinct
properties of a function and even small changes in function’
CFG are amplified. Consequently, the FMA can match only
exact matches with precision, which are strictly the same.
In contrast, the embedding model learns to find the semantic
similarity/differences between assembly tokens and aggrega-
tion in Algorithm 3 further suppresses the minor difference.
As a result, FMA can match more functions that have seman-
tic similarity but this suppressing effect ignores small changes
and causes more false positives. Overall, the embedding-
based features outperform structural features in FMA set-
tings. In brief, it can be concluded that the embedding-based
representation is a promising solution for matching functions
with accuracy and comparatively better than structural fea-
tures. However, both types of features are equally important
and their combined effect is studied in Section V-C.

2) PROPOSED EMBEDDING MODEL VS ASM2VEC
In this section, we have compared the proposed embedding
model with Asm2Vec [43], which is a well-known assembly

VOLUME 9, 2021 104961

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

to vector representation model. For comparison, we have
usedXNU-4570-31.1			XNU-4570-41.2 kernel binaries (rel-
atively unseen dataset) and evaluation parameters are the
count of true positives, false positives and unmatched (FN)
functions. In our experiments, we have utilized the unofficial
implementation of Asm2Vec, open-sourced on Githhub.5 The
Asm2Vec model is not meant to be a function matching algo-
rithm. To study its impact in a function matching scenario,
we have implemented6 the prediction model using Asm2vec
trained weights and merged it in our FMA. The evaluation is
conducted for Asm2Vec+FMA and proposed model+FMA
and the comparison results are plotted in Figure 9.

FIGURE 9. Comparison of proposed embedding model with Asm2Vec.

To train the embedding models (Asm2Vec and proposed),
we have used Table 3 highlighted kernel versions. However,
the prediction model in Asm2vec unofficial implementation
always retrains the network, whenever new vocabulary words
are found, but the proposed model is only trained once and
never retrained or trained with this section evaluation dataset.
As shown in Figure 9, Asm2Vec performance is worst com-
pared to the proposed embedding model. There are more than
90% false positives in the matched results. The reason for this
inaccuracy for Asm2vecmight be linked with a fewer training
datasets or its incompatibility with the function matching
scenario. The improved efficiency of the proposed model is
linked with the two factors (i) it uses the ESIL as IR that
filter the assembly noise and splits the IR statements into
tokens which are finite in nature and can be efficiently learned
with a fewer dataset. (ii) Algorithm 3 based function vector
computation respects the structural properties of functions
and hence the model output vector captures diverse properties
and efficient. In brief, it can be concluded that an embedding
model which suppresses the assembly noise and preserves the
structural properties of functions, can be effectively used in
FMA. This effect is further studied in section V-H evaluation
results.

5https://github.com/oalieno/asm2vec-pytorch.git
6https://github.com/sami2316/asm2vec-pytorch

3) EVALUATION FOR UNSEEN DATASET
In this section, we have evaluated the accuracy of the pro-
posed embedding model for the completely unseen dataset.
The evaluation parameters are the count of true positives,
false positives, and unmatched functions. For comparison,
we have selected four Linux kernel versions (compiled for
x86 architecture) and compared them with their immediate
kernel versions, which end up in two binary pairs. The ground
truth for these binaries is reported in Table 3 and the compar-
ison results with Asm2vec are shown in Figure 10.

FIGURE 10. Comparison for the unseen dataset.

As shown in Figure 10, Asm2vec performance is worst
and also consistent with the previous section results. How-
ever, there is a slight drop (around 8-10%) in the efficiency
for the proposed model, when evaluated on a completely
unseen dataset. ESIL mnemonic and opcodes are finite in
nature (learnable with a small dataset) but there exist function
strings, which cannot be completely learned with a small
dataset. In our function vector generation model, an unseen
token is replaced with a zero vector, which seeds in a drop
of some useful information for a function and consequently
causes mismatches and false positives.

For the proposed model, training is not a big effort and
a model can be retrained for the unseen tokens. However,
this inaccuracy for the unseen dataset can be also be fine-
tuned [2], [10] with the parallel use of structural features in
FMA. The proposed FMA potentially utilizes both structural
and function embedding vectors tomatch the binary functions
and thus boosts the accuracy.

C. COMPARISON WITH THE BASELINE TOOLS
The function matching algorithm (FMA) can classify the
binary functions being matched or unmatched (usually the
cases of newly added or deleted functions). In the matched
functions, if the FMA rightly maps the two functions then we
call it a True Positive (TP) and for wrong mapping, we call it
a False positive (FP). As ground truth, we compare the names

104962 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

of the mapped functions to describe a TP or an FP case. In the
unmatched functions, we report the functions which do exist
in both binaries but the FMA cannot match them and wrongly
report them as unmatched. In our evaluation, the performance
is measured in terms of the count of TP, FP, and unmatched
functions that together depict the FMA accuracy.

SELECT COUNT (∗) FROM results WHERE type

= ‘‘best’’; (1)

SELECT COUNT (∗) FROM results WHERE type

= ‘‘best’’ (2)

AND (name=name2 OR name LIKE ‘‘sub_%%’’

AND name2 LIKE ‘‘sub_%%’’);

SELECT COUNT (∗) FROM unmatched WHERE type

= ‘‘primary’’; (3)

To evaluate and compare the performance of our proposed
function matching technique with the baselines, we have
compared it with Diaphora and Reveal [9]. Diaphora is devel-
oped by Joxean Koret and it is open-sourced at Github.7 To
compare the kernel binaries, we have used its default configu-
rations and disabled the same name heuristic to truly evaluate
the impact of its features. Diaphora saves its output in an
SQLite format. We have used the following SQL statements
in (1)-(3) to find the total matches by Diaphora, count of FPs,
and count of unmatched functions, respectively.

Reveal is not open-sourced yet but we are thankful to
Chariton Karamitas for sharing their code with us. We run
Reveal with its factory settings on the same hardware. Its
output is three separate files in cPickle format and we use
similar criteria defined for Diaphora to find the total matches,
count of FPs, and unmatched functions. Once the match-
ing is done, we used the same name as ground truth to
evaluate the accuracy of matched functions. Equations (1)-
(3) is used as a benchmark and we have applied the same
criteria for the proposed tool and analyzed the proposed FMA
output.

The proposed tool uses Radare2 for binary analysis,
whereas Diaphora and Reveal both uses IDA for binary anal-
ysis. Both binary analysis tools have their pros and cons,
details are in appendix , but the number of detected func-
tions for kernel binaries is differently reported by both tools.
Radare2 detects more functions for x86 architecture but IDA
detects more functions for the ARM architecture. The reason
for this difference is out of the scope of this research. For
evaluation fairness, we have computed the relative percentage
for the evaluation parameters.

In the following section, we have evaluated the perfor-
mance for unstripped and stripped binaries compiled for
x86_64 architecture, and stripped ARM binaries. Due to the
limitation of Radare2, we have selected only the x86_64, and
ARM architectures; for this section evaluation.

7https://github.com/joxeankoret/diaphora

TABLE 4. Summary of comparison for x86_64 architecture compiled
unstripped binaries.

D. x86_64 ARCH BINARIES–UNSTRIPPED
In this section, we have evaluated the function matching
tools’ performance overXNUkernel binaries, which areman-
ually compiled for x86 architecture. For unstripped binaries,
symbolic information is available thus features based on such
information can be more effective. Diaphora features set to
utilize the symbolic information but in contrast, Reveal and
the proposed tool useless or do not use such information.
The comparison results for unstripped binaries are reported
in Table 4. For the first and third experiments, Diaphora TPs
percentage is higher than the compared tools. This improve-
ment in TPs is first linked with the availability of debug
symbols and secondly, there is less number (<60) of partially
changed functions in compared binaries. In the second and
fourth experiments, the number of parts changed functions
are more than 500, and Diaphora heuristics (based on a single
feature) mismatches such partially changed functions, which
result in a drop in performance.

Reveal performance is comparatively less in all scenarios
but consistent. Its FMA fails to match at least 15% of func-
tions as shown in the unmatched column of Table 4. In the
first and third experiments, the proposed tool efficiency is
comparable to Diaphora but for the second and fourth experi-
ments, proposed tool outperforms Diaphora. One-shot encod-
ing mechanism and distance-based criteria (adopted in the
proposed tool) can accurately match partially changed func-
tion as compared to Diaphora. The proposed tool is consistent
in its performance against all experiments but Diaphora is
not consistent. The proposed tool is also computationally
efficient as compared to baselines. Although the proposed

VOLUME 9, 2021 104963

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

TABLE 5. Summary of comparison for x86_64 architecture compiled
stripped binaries.

tool is efficient in complex cases, we also endorse Diaphora
for matching unstripped x86 compiled binaries.

In brief, when the compared binaries have less number
of partially changed functions and binaries are unstripped;
Diaphora is efficient in comparing exact functions but the
proposed tool is efficient in comparing exact and partially
changed functions.

E. x86_64 ARCH BINARIES–STRIPPED
In this section, we have evaluated the function matching
tools’ performance over XNU kernel binaries, which are
officially distributed x86 binaries. The officially released
binaries are stripped and most of (40-60%) the symbolic
information is not available. The comparison results for the
stripped binaries are reported in Table 5. Although Reveal
performance is comparatively less among other tools, its
performance is similar to unstripped binaries. In other words,
reveal features are not dependent on symbolic information
thus its performance is not affected.

Some heuristics in Diaphora are dependent on symbolic
information thus in comparison to stripped binaries, the TPs
accuracy slightly drops for the stripped binaries. Comparing
Table 4 and Table 5 results for Diaphora, the number of TPs
reduced and number of FPs increased. In contrast, the pro-
posed tool is consistent with Reveal in its detection accuracy.
There are two observations from Table 5 results. (i) There is
a difference in the total number of functions for Diaphora,
Reveal vs proposed tool. This difference is due to the reason
discussed in sectionV-C. For the fair evaluation, we have used
the relative percentage for TP. In comparison to Diaphora,

TABLE 6. Summary of comparison for ARM architecture.

TABLE 7. Results for searching the heartbeat vulnerability.

the proposed tool has better detection accuracy for all four
experiments for stripped binaries. (ii) Diaphora and the pro-
posed tool both have a higher number of FPs as compared
to Reveal. Reveal only focuses on finding the exact matches.
However, there are partially changed functions as well, which
must also be mapped as matched. While matching partially
changed functions, the probability of false positives rises
as the FMA is a feature-based approximation that is more
accurate for exact matches with zero distance but increasing
the threshold to a higher number introduces inaccuracies.
Although considering partially changed functions increases
FPs for Diaphora and proposed tools but as an advantage TPs
percentage is increased.

It can be concluded that the proposed features are efficient
for x86 stripped binaries and Diaphora is the second-best
option. For x86 architecture, detection accuracy for Diaphora
and proposed tools are fairly efficient.

F. ARM ARCH BINARIES
In this section, we have evaluated the function matching
tools’ performance over XNU kernel binaries, which are
compiled for the ARM architecture. Different architecture
binaries differ only in their textual representation i.e. assem-
bly code but the structural features are almost the same.
Reveal textual representation features do not use assembly
code as a feature thus its performance is consistent for TPs.

104964 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

TABLE 8. Cross-optimization-level binary comparison results.

As a drawback, its feature set is not diverse and conse-
quently, FMA cannot match all functions and the number
of unmatched functions is increased. In contrast, Diaphora
uses assembly code as a feature but it is fine-tuned only for
x86 architecture. Consequently, its function matching accu-
racy is severely affected for the ARM architecture. As shown
in Table 6, Diaphora achieves higher matching accuracy for
the first experiment but its accuracy drops for the other three
experiments. In brief, Diaphora features are optimized for
x86 architecture only, and for ARM architecture its accuracy
is abrupt and inconsistent.

Proposed tool textual features are based on interme-
diate representation (ESIL), which is the same for all
architectures, Hence, the proposed features are resilient
against multi-architectures; as compared to Diaphora. Tex-
tual representation-based features cannot be ignored like
the Reveal approach as they are as important as structural
representation-based features. Diversity and uniqueness of
features are the keys to accurately match functions. Proposed
features are not architecture-dependent and the proposed
FMA achieves higher function matching accuracy for the
ARM architecture; as shown in Table 6.
The proposed tool is consistent in its accuracy against

evaluated architectures, whereas the accuracy of Reveal and
Diaphora drop significantly for the ARM architecture. It can
be concluded that the proposed features are efficient and
expandable to multi-architectures.

G. CROSS ARCHITECTURES COMPARISON
In this section, we have evaluated the performance of
the proposed tool for cross-architecture comparison. Dis-
covRE [8] and VSkLCG [16] have proposed function match-
ing techniques that compare the cross-architecture binary
executables. Our work is not fine-tuned for cross-architecture
comparisons but rather is a general solution for multi-
architectures binary comparison. However, we have evaluated

the performance of our tool for cross-architecture binaries,
and results are reported in Table 7. This section experiments
were conducted on the same configurations like discovRE
and OpenSSL binaries were used for comparison, which
have two vulnerable functions i.e. tls1_process_heartbeat
and dtls1_process_heartbeat. The evaluation objective is to
search these two vulnerable functions in cross architectures
and output as 1: ’detected’, 0:’not detected’. Evaluations
in DiscovRE have compared three architectures ARM, X86,
MIPS but unfortunately we could not compare MIPS; due to
limitations of Rardare2 (underlying binary analysis tool) as it
does not support MIPS at the time of writing.

As shown in Table 7, all tools can detect the vulnerable
functions. In the experiments, we have considered k= 5 in the
KNN algorithm to report the vulnerable functions; whereas
DiscovRE uses the k = 128 and selects the top 5% to report
the vulnerable functions. In brief, it can be concluded that
the proposed tool can accurately match the cross-architecture
binaries when k = 5 and matched functions are in the top
5 results. However, discovRE performance is better than the
proposed tool in the top 1% andwe equally endorse discovRE
for cross-architecture comparison.

H. RESILIENCE AGAINST COMPILER OPTIMIZATIONS
In this section, we have evaluated the resilience against the
optimization-level settings. We have utilized the DeepBin-
Diff [3] open-sourced binaries,8 whichwere compiled for O0-
O3, O1 vs O3, O2 vs O3. The evaluation parameters are recall
and precision and results are reported in Table 8.
In Table 8, the results for BinDiff [5], Asm2Vec+k-Hop,

and DeepBinDiff are reported from the DeepBinDiff [3]
paper. The results for proposed are computed with Algo-
rithm 4, using the same experimental configurations like
DeepBinDiff. For evaluation of results, we compare each
binary in coreutils, compiled with optimization level O3; with

8https://github.com/yueduan/DeepBinDiff.git

VOLUME 9, 2021 104965

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

the same version Coreutil binaries compiled with optimiza-
tion levels O0, O1, and O2, respectively. Each version of
Coreutils consists of around 80-110 binaries, we first com-
pare them individually and compute TP, FP, FN and later take
an average of TP, FP, and FN to compute recall and precision.
As shown in Table 8, the proposed tool outperforms in recall
compare to other tools but DeepBinDiff mostly outperforms
in precision. The reason for this behavior in the proposed tool
is tightly linked with the embedding vector-based function
modeling. The embedding vector modeling in section III-
G2, suppresses the structural changes caused by compiler
optimizations, which improves the recall but it replaces some
assembly tokens with fixed constants that affect the precision
in the function matching algorithm. In contrast, DeepBinDiff
uses the softmax based classifier to learn the embedding
representation and merges it with CFG, thus preserving the
structural information. Consequently, it has high precision but
low recall in its function matching algorithm.

In brief, it can be concluded that the proposed function
modeling-based function vector feature can handle the com-
piler optimization to some degree and can be effectively used
as a function feature. However, we endorse DeepBinDiff for
the high precision function matching tasks.

VI. CONCLUSION AND LIMITATIONS
Diaphora has a diverse set of features and their function
matching algorithm is excellent for unstripped binaries,
which are compiled for x86 architecture. Diaphora’s best
heuristics rely on textual representation-based features but
these features are not optimal when the binaries are stripped.
Evaluation results show that Diaphora slightly loses its effi-
ciency for stripped x86 binaries. For ARM architecture,
Diaphora is unstable and inaccurate as its function matching
algorithm cannot match 20-30% functions.

Reveal has less feature set as compared to Diaphora but
its function matching accuracy is consistent for stripped and
multi-arch binaries. There are two drawbacks in Reveal,
first, it is not computationally efficient for large binaries
and second, its matching accuracy is less than Diaphora
and the proposed tool. The drop inefficiency is due to its
misinterpretation of the function matching output. Reveal
only considers the exact matches as the output of FMA but
the reality is that partially changed functions must also be
1:1 mapped. Although Reveal proposed features are efficient
but considering only the exact matches, it loses its efficiency
among compared tools.

The proposed tool uses efficient features with a
one-shot encoding mechanism that boosts its computa-
tional efficiency and also its detection accuracy is con-
sistent for multi-architectures. Evaluation results show
that using intermediate representation; in modeling textual
representation-based features, is the main reason for con-
sistency in multi-architectures and cross-optimization levels.
The distance-based selection criteria are flexible to partially
changed function but it also introduces inaccuracies for some
special scenarios: given below. Although our technique is

effective against multi-architectures, it has the following two
limitations.

1) In our empirical analysis, we have found that the most
TP cases detected by the proposed tool are the ones that
have less than 5 assembly instructions; defined in a sin-
gle basic block. For a single basic block, proposed fea-
tures are not effective thus proposed tool mismatches
such functions with other similar functions that also
have a single basic block. To explore the solution,
we have investigated the Diaphora source code. But to
our surprise, if the number of instructions is less than
10 then its FMA ignores such functions. The assembly
code of functions with less than 5 instructions looks
very similar to each other and hard to accurately match
them. In the future, we aim to further investigate this
challenge and explore a feasible solution.

2) Proposed textual representation features are modeled
with word2vec based embedding vectors. Evaluation
results show that this technique is effective but if there
are unseen strings then the word2vec model needs to
be retrained. This problem is general to all embedding-
based techniques. To cater to this problem, we aim
to split the multi-token strings to a list of tokens and
formulate an equivalent vector by the summation of
their embedding vectors. A similar approach is also
adopted by Google trained word2vec model and its
effectiveness against unseen strings dataset. We will
implement this feature in our tool, before the final
release.

APPENDIX A
ANALYSIS TOOLS VS IR CHOICE
Given two binary executables, function matching requires the
pre-analysis of binaries for the availability of each function
representation i.e. CFG and assembly code. Binary analysis
tools lay the foundation for pre-analysis of binaries by provid-
ing parser for binary formats (ELF, Mach-O, PE), relocations
analyzer, function identification analyzer, disassembler, static
analysis (CFG) utility, etc. The details of each step are out
of the scope of this research but a step-by-step process of a
binary analysis tool is shown in Figure 11.

There aremany binary analysis tools that differ in the scope
of their functionality. An objective of this research is to pro-
vide a multi-arch solution for function matching, so a binary
diffing tool must be efficient in providing base functionality
for well-known architectures and file formats. We have ana-
lyzed Angr, BAP, IDA, and Radare2, which are frequently
used in literature research. In our empirical analysis, we have
explored that all of these tools are matured for PE and ELF
binary formats but their accuracy drops for Mach-O format.
There are several errors in file parsing or function analysis
modules. As shown in Table 9, Radare2 is best among other
binary analysis tools and it analyzes all format binaries with
the same accuracy. IDA pro is the second-best choice (satis-
fying all parameters) and also an industry-standard tool but
it does not provide IR lifting thus cannot serve the purpose

104966 VOLUME 9, 2021

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

FIGURE 11. A general binary analysis procedure.

of this research. Radare2 being a single choice is selected for
this research.

TABLE 9. Comparison of binary analysis tools.

APPENDIX B
ESIL: Radare2 INTERMEDIATE REPRESENTATION
LANGUAGE
Evaluable Strings Intermediate language (ESIL) is an IR
language created and used by Radare2. To represent IR state-
ments, it utilizes a post-fix notation that is stack friendly.
A value is simply pushed on the stack, an operator then pops
values from the stack, performs op-code operation and pushes
the result back on.

An ESIL transformation machine uses the following rules
to translate assembly instructions to ESIL expressions.
• A target assembly opcode is translated into a comma
separated list of ESIL expressions. xor eax, eax →

0, eax,=, 1, zf
• Memory access is defined by brackets operation. E.g.
mov eax, [0x80480] → 0 x80480, [], eax,=

• Default operand size is determined by the size
of operation destination. movb $0, 0x80480 →

0, 0x80480,= []
• NOP instructions is represented as an empty string.
• syscalls are marked by $ sign. E.g. 0 x80, $

A. ESIL INSTRUCTION SET
Radare2 ESIL defines its own instruction set using
Table 10 given opcodes. These opcodes are applicable to all

architectures and serve the purpose for an intermediate rep-
resentation language.

TABLE 10. ESIL opcodes.

REFERENCES
[1] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, ‘‘SIGMA: A semantic

integrated graph matching approach for identifying reused functions in
binary code,’’ Digit. Invest., vol. 12, pp. S61–S71, Mar. 2015.

[2] S. Alrabaee, L. Wang, and M. Debbabi, ‘‘BinGold: Towards robust binary
analysis by extracting the semantics of binary code as semantic flow graphs
(SFGs),’’ Digit. Invest., vol. 18, pp. S11–S22, Aug. 2016.

[3] Y. Duan, X. Li, J. Wang, and H. Yin, ‘‘Deepbindiff: Learning program-
wide code representations for binary diffing,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2020.

[4] H. Flake, ‘‘Structural comparison of executable objects,’’ in Proc. DIMVA,
Dortmund, Germany, Jul. 2004, pp. 161–173.

[5] Zynamics BinDiff Kernel Description. Accessed: Feb. 10, 2020. [Online].
Available: https://www.zynamics.com/bindiff.html

[6] Y. David, N. Partush, and E. Yahav, ‘‘Statistical similarity of binaries,’’
ACM SIGPLAN Notices, vol. 51, no. 6, pp. 266–280, 2016.

[7] T. Dullien and R. Rolles, ‘‘Graph-based comparison of executable objects
(English version),’’ in Proc. SSTIC, 2005, vol. 5, no. 1, p. 3.

[8] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, ‘‘discovRE: Efficient
cross-architecture identification of bugs in binary code,’’ in Proc. NDSS,
2016, pp. 58–79, doi: 10.14722/ndss.2016.23185.

[9] C. Karamitas and A. Kehagias, ‘‘Efficient features for function match-
ing between binary executables,’’ in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Mar. 2018, pp. 335–345, doi: 10.1109/
SANER.2018.8330221.

[10] Diaphora Ida Plugin. Accessed: Feb. 10, 2020. [Online]. Available:
https://github.com/joxeankoret/diaphora

[11] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, ‘‘FOSSIL: A resilient
and efficient system for identifying FOSS functions in malware binaries,’’
ACM Trans. Privacy Secur., vol. 21, no. 2, pp. 1–34, Feb. 2018.

VOLUME 9, 2021 104967

http://dx.doi.org/10.14722/ndss.2016.23185
http://dx.doi.org/10.1109/SANER.2018.8330221
http://dx.doi.org/10.1109/SANER.2018.8330221

S. Ullah et al.: Efficient Features for Function Matching in Multi-Architecture Binary Executables

[12] J. Oh, ‘‘Fight against 1-day exploits: Diffing binaries vs anti-diffing bina-
ries,’’ in Proc. Blackhat Tech. Secur. Conf., Jul. 2009.

[13] D. Gao, M. K. Reiter, and D. Song, ‘‘BinHunt: Automatically finding
semantic differences in binary programs,’’ in Proc. Int. Conf. Inf. Commun.
Secur. Berlin, Germany: Springer, 2008, pp. 238–255.

[14] Z. Wang, K. Pierce, and S. McFarling, ‘‘BMAT—A binary matching
tool for stale profile propagation,’’ J. Instruct.-Level Parallelism, vol. 2,
pp. 1–20, May 2000.

[15] Z. Wang, K. Pierce, and S. McFarling, ‘‘BMAT—A binary matching tool,’’
in Proc. 2nd ACM Workshop Feedback-Directed Optim., 1999, pp. 1–20.

[16] M. Han, D. Zhao, H. Lin, D. Zhou, J. Xiang, Z. Liu, and Y. Xing,
‘‘VSkLCG a method for cross-platform vulnerability search in firmware,’’
in Proc. 6th Int. Conf. Dependable Syst. Their Appl. (DSA), Jan. 2020,
pp. 395–400.

[17] M. Bourquin, A. King, and E. Robbins, ‘‘BinSlayer: Accurate comparison
of binary executables,’’ in Proc. 2nd ACM SIGPLAN Program Protection
Reverse Eng. Workshop, 2013, pp. 1–10, doi: 10.1145/2430553.2430557.

[18] C. Karamitas and A. Kehagias, ‘‘Function matching between binary exe-
cutables: Efficient algorithms and features,’’ J. Comput. Virol. Hacking
Techn., vol. 15, no. 4, pp. 307–323, Dec. 2019.

[19] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, ‘‘code2vec: Learning
distributed representations of code,’’ in Proc. ACM Program. Lang., vol. 3,
2019, pp. 1–29, doi: 10.1145/3291636.

[20] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, ‘‘Scalable graph-
based bug search for firmware images,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 480–491.

[21] T. Dullien, E. Carrera, S.-M. Eppler, and S. Porst, ‘‘Automated
attacker correlation for malicious code,’’ Bochum Univ., Bochum,
Germany, Tech. Rep. RTO-MP-IST-091, 2010. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.661.9484&
rep=rep1&type=pdf

[22] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, ‘‘Detecting
code clones in binary executables,’’ in Proc. 18th Int. Symp. Softw. Test.
Anal., 2009, pp. 117–128.

[23] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, ‘‘Finding software
license violations through binary code clone detection,’’ in Proc. 8th Work.
Conf. Mining Softw. Repositories, 2011, pp. 63–72.

[24] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
‘‘BinGo: Cross-architecture cross-OS binary search,’’ in Proc. 24th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2016, pp. 678–689.

[25] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, ‘‘Cross-
architecture bug search in binary executables,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 709–724.

[26] M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi, ‘‘BinClone:
Detecting code clones in malware,’’ in Proc. 8th Int. Conf. Softw. Secur.
Rel. (SERE), Jun. 2014, pp. 78–87.

[27] M. R. Farhadi, B. C. M. Fung, Y. B. Fung, P. Charland, S. Preda, and
M. Debbabi, ‘‘Scalable code clone search for malware analysis,’’ Digit.
Invest., vol. 15, pp. 46–60, Dec. 2015.

[28] S. Cesare, Y. Xiang, and W. Zhou, ‘‘Control flow-based malware variant
detection,’’ IEEE Trans. Depend. Sec. Comput., vol. 11, no. 4, pp. 307–317,
Jul./Aug. 2013.

[29] X. Hu, T.-C. Chiueh, and K. G. Shin, ‘‘Large-scale malware indexing using
function-call graphs,’’ in Proc. 16th ACM Conf. Comput. Commun. Secur.,
2009, pp. 611–620.

[30] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, ‘‘αDiff:
Cross-version binary code similarity detection with DNN,’’ in Proc. 33rd
ACM/IEEE Int. Conf. Autom. Softw. Eng., Sep. 2018, pp. 667–678, doi:
10.1145/3238147.3238199.

[31] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, ‘‘Neu-
ral machine translation inspired binary code similarity comparison
beyond function pairs,’’ 2018, arXiv:1808.04706. [Online]. Available:
http://arxiv.org/abs/1808.04706

[32] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 363–376, doi: 10.1145/3133956.3134018.

[33] K. Redmond, L. Luo, and Q. Zeng, ‘‘A cross-architecture instruc-
tion embedding model for natural language processing-inspired binary
code analysis,’’ 2018, arXiv:1812.09652. [Online]. Available: http://arxiv.
org/abs/1812.09652

[34] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, ‘‘Neural nets can learn
function type signatures from binaries,’’ in Proc. 26th USENIX Secur.
Symp. (USENIX Security), 2017, pp. 99–116.

[35] S. Ullah and H. Oh, ‘‘BinDiffNN : Learning distributed representation
of assembly for robust binary diffing against semantic differences,’’
IEEE Trans. Softw. Eng., early access, Jul. 1, 2021, doi: 10.1109/TSE.
2021.3093926.

[36] H. Dai, B. Dai, and L. Song, ‘‘Discriminative embeddings of latent variable
models for structured data,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2702–2711.

[37] R. Tarjan, ‘‘Testing flow graph reducibility,’’ in Proc. 5th Annu. ACM
Symp. Theory Comput., 1973, pp. 96–107.

[38] Y. Li, J. Jang, and X. Ou, ‘‘Topology-aware hashing for effective control
flow graph similarity analysis,’’ inProc. Int. Conf. Secur. Privacy Commun.
Syst. Cham, Switzerland: Springer, 2019, pp. 278–298.

[39] M. Slaney and M. Casey, ‘‘Locality-sensitive hashing for finding nearest
neighbors [lecture notes],’’ IEEE Signal Process. Mag., vol. 25, no. 2,
pp. 128–131, Mar. 2008.

[40] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, ‘‘Locality-sensitive
hashing scheme based on p-stable distributions,’’ inProc. 20th Annu. Symp.
Comput. Geometry, 2004, pp. 253–262.

[41] Radare2 Team, GitHub, 2017. [Online]. Available: https://github.com/
radareorg/radare2-book and https://book.rada.re/

[42] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, andK.-W. Park, ‘‘Learning binary
code with deep learning to detect software weakness,’’ in Proc. KSII 9th
Int. Conf. Internet Symp. (ICONI), 2017, pp. 1–5.

[43] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489, doi: 10.1109/SP.2019.00003.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[45] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

SAMI ULLAH received the B.S. degree in elec-
tronics engineering from International Islamic
University Islamabad, Pakistan, in 2014. He is
currently pursuing the M.S./Ph.D. degree with
the Department of Computer Science and Engi-
neering, Hanyang University, South Korea. From
2015 to 2017, he worked as a Teaching and
Research Assistant with the Next Generation Intel-
ligent Networks Research Center, Institute of
Space and Technology. He is also working as a

Research Assistant with InfoSec Lab. His research interests include robust
network security, vulnerability analysis at application layer and network
layer, and binary static analysis using machine learning and deep learning
techniques.

WENHUI JIN was born in Hegang, Heilongjiang,
China. He received the B.S. degree in software
and engineering from Heilongjiang University,
China, in 2013. He is currently pursuing the Ph.D.
degree in computer science and engineering with
Hanyang University, South Korea. His research
interests include binary obfuscation, binary anal-
ysis with machine learning, malware analysis, and
detection, and security issues in mobile.

HEEKUCK OH (Member, IEEE) received the
B.Sc. degree in electronics engineering from
Hanyang University, in 1983, and the M.S. and
Ph.D. degrees in computer science from Iowa
State University, in 1989 and 1992, respectively.
He joined the Faculty of the Department of Com-
puter Science and Engineering, Hanyang Univer-
sity, Erica campus, in 1994, where he is currently
a Professor. He is also the President Emeritus with
Korea Institute of Information Security and Cryp-

tography. His current research interests include network and system security.
He is also a member of the Advisory Committee for Digital Investigation
in the Supreme Prosecutors’ Office of the Republic of Korea. He is also
a member of the Advisory Committee on Government Policy under the
Ministry of Government Administration and Home Affairs.

104968 VOLUME 9, 2021

http://dx.doi.org/10.1145/2430553.2430557
http://dx.doi.org/10.1145/3291636
http://dx.doi.org/10.1145/3238147.3238199
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.1109/TSE.2021.3093926
http://dx.doi.org/10.1109/TSE.2021.3093926
http://dx.doi.org/10.1109/SP.2019.00003

