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Abstract: In submarine warfare systems, passive SONAR is commonly used to detect enemy targets
while concealing one’s own submarine. The bearing information of a target obtained from passive
SONAR can be accumulated over time and visually represented as a two-dimensional image known
as a BTR image. Accurate measurement of bearing–time information is crucial in obtaining precise
information on enemy targets. However, due to various underwater environmental noises, signal
reception rates are low, which makes it challenging to detect the directional angle of enemy targets
from noisy BTR images. In this paper, we propose a deep-learning-based segmentation network for
BTR images to improve the accuracy of enemy detection in underwater environments. Specifically, we
utilized the spatial convolutional layer to effectively extract target objects. Additionally, we propose
novel loss functions for network training to resolve a strong class imbalance problem observed in
BTR images. In addition, due to the difficulty of obtaining actual target bearing data as military
information, we created a synthesized BTR dataset that simulates various underwater scenarios. We
conducted comprehensive experiments and related discussions using our synthesized BTR dataset,
which demonstrate that the proposed network provides superior target segmentation performance
compared to state-of-the-art methods.

Keywords: deep-learning-based image segmentation; passive SONAR; bearing–time record image;
class imbalance; network training loss function

1. Introduction

Sound navigation and ranging (SONAR) systems have been used to detect and locate
target objects in submarine warfare systems. SONAR is preferred over other types of
sensing systems, such as radar and light waves, due to the fact that sound waves can travel
farther in water. SONAR systems can be classified into two types: active SONAR and
passive SONAR. Active SONAR involves the emission of a sound wave pulse into the water,
followed by the reception of echoes, enabling the determination of an object’s range and
orientation. On the other hand, passive SONAR solely detects incoming sound waves with-
out emitting its own signal; therefore, it cannot independently measure an object’s range
unless used alongside other sensor devices to triangulate its position. While SONAR serves
the purpose of target detection in submarine warfare systems, active SONAR presents the
drawback of potentially exposing the location of one’s own submarine due to sound wave
transmission. Consequently, it is unsuitable for submarines that require concealment. In
contrast, passive SONAR is the preferred choice in submarine combat systems, as it solely
detects the emitted noise from the target, allowing the one’s own submarine to maintain
its stealth capabilities [1]. However, it is challenging to obtain distance information using
passive SONAR alone, as it can only provide bearing information that refers to the direction
of an enemy ship in relation to one’s own submarine [2]. Accurate bearing information is
critical to obtain precise range information in target motion analysis (TMA).
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In passive SONAR systems, the received sound signal can be visually represented by
the bearing–time record (BTR) image. This image effectively illustrates the target’s bearing
information along the x axis as a function of time on the y axis. As illustrated in Figure 1,
the received acoustic signals undergo a transformation process whereby they are converted
into pixel intensity values and subsequently recorded in a sequential manner starting from
the uppermost rows of the BTR image.

Figure 1. Example of how the received sound signal is converted to a bearing–time record (BTR) image.

Figure 2 shows an example scenario, which depicts the underwater environment in
which this BTR image is generated. Various factors, such as water temperature, seafloor
topography, marine life, and water depth, can impede the acquisition of precise bearing
measurements. The presence of background noise resulting from these factors exacerbates
the likelihood of the target not being detected, consequently causing the bearing trajectory
to appear fragmented in the BTR image, as shown in Figure 3, which presents real BTR
images. The successful execution of a military operation hinges upon the acquisition
of continuous and precise bearing information of enemy ships [3]. Hence, the task of
predicting undetected bearing information in BTR images is required [4].

Figure 2. Illustration of an underwater scenario wherein a BTR image is generated.
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Figure 3. Real BTR images.

In previous studies, traditional image processing methods have been utilized to extract
or segment objects from SONAR images [5,6]. Although these algorithms can extract targets
from noisy images, they lack the experiments to validate whether the methods can segment
a continuous target object from a discrete source object. In this paper, we propose a deep-
learning-based segmentation network that can extract targets as a continuous form, even
from discontinuous and noisy BTR images. The network’s objective is to learn how to
predict a continuous target trajectory from an input image with a discontinuous target
trajectory in a supervised learning manner using noisy BTR images and their corresponding
label images.

Deep-learning-based segmentation networks have been used for many practical appli-
cations, including face recognition [7,8] and detection [9,10], medical image analysis [11,12],
computer vision for autonomous vehicles [13,14], etc. For image segmentation studies,
convolutional neural networks (CNNs) and attention-model-based transformer networks
have been the predominant methods [15–18]. However, acquiring a large training dataset
for network learning can be challenging, particularly when the data contain classified
military information. To address this issue and facilitate research and experimentation,
we generated a synthetic BTR image dataset using the modeling and simulation (M&S)
technique [19]; an example of a simulated BTR image and its corresponding label image
are presented in Figure 4.

(a) BTR image. (b) Corresponding label image.
Figure 4. An example of our synthetic BTR image dataset.

Existing segmentation models are subject to limitations when applied to the task of
tracking objects in BTR images. Unlike natural images, target objects in BTR images exhibit
distinct characteristics; for example, they have disjointed, elongated, and linear nature
in the presence of substantial background noise. Moreover, a significant class imbalance
exists between the background and target object in terms of the number of pixels. As
a result, existing segmentation models,which are intended for general images, cannot
provide satisfactory performance for the extraction of target trajectories from BTR images.
To increase the segmentation performance, we propose a novel spatial convolutional layer
in the proposed deep network, which considers the aforementioned characteristics of the
target object. In addition, we introduce new loss functions for network training to address
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the class imbalance problem. We evaluated the performance of our proposed network
against state-of-the-art models using our synthetic BTR image dataset.

The rest of this paper is organized as follows. We review related work on deep-
learning-based image segmentation and commonly utilized loss functions in Section 2. Our
synthetic BTR image dataset and the proposed segmentation network are presented in
Sections 3 and 4, respectively. Experimental results are presented and discussed in Section 5.
Finally, concluding remarks are presented in Section 6.

2. Related Work
2.1. Semantic Image Segmentation

Semantic segmentation is a computer vision task, the objective of which is to gen-
erate a dense, pixel-wise segmentation map of the image, where each pixel is assigned
to a distinct class or object. In recent years, several CNN-based deep network mod-
els have been developed for semantic segmentation that have achieved impressive re-
sults on various benchmark datasets, such as PASCAL VOC 2012 [20], Trans10K [21],
ADE20K [22], and Cityscapes [23]. Among these models, DeepLab-v3+ (DLV3+) [24] and
SegNeXt [25] have gained significant popularity due to their excellent performance. Specif-
ically, DLV3+ employs the atrous (dilated) convolution technique to efficiently apply filters
with a broad receptive field without increasing computational complexity. By adjusting the
dilation rate, the model obtains feature maps at varying resolutions, enabling improved
segmentation performance through the atrous spatial pyramid pooling (ASPP) module,
which collects information at multiple scales. Furthermore, DLV3+ leverages an encoder–
decoder structure with skip connections to enhance the resolution of the segmentation
prediction map. SegNeXt also adopts a CNN-based backbone network with an integrated
convolutional attention module, enabling efficient encoding of contextual information by
prioritizing essential regions, thereby enhancing segmentation performance.

Previous studies, such as [26,27], have employed CNN-based networks for sonar
image segmentation. These studies dealt with a common challenge of segmenting images
with backgrounds that have significant noise. In [26], the inclusion of a deep separable
residual module enabled multiscale feature extraction, leading to improved model accuracy.
The dataset used in [27] contains foreground objects with long, linear shape features; the
authors addressed the challenges of strong noise and class imbalance by using an architec-
ture with skip connections and a weighted loss function. The utilization of a CNN-based
spatial convolutional (SC) layer module has been shown to enhance the performance of
semantic segmentation [28]. Another study [29] also utilized an SC layer in an instance
segmentation model to detect transmission lines with long and linear shapes. The module
effectively extracted objects with long, continuous features, such as road lanes. In addition,
there are visual measurement applications related to our research field, such as that re-
ported in [30,31], wherein CNN-based segmentation networks were used to perform width
measurements of cracks on structures like buildings and roads.

In this study, we present a novel CNN-based segmentation model that builds on the
DLV3+ architecture. The BTR image dataset used in our study comprises target objects
that are characterized by discontinuous long and linear features similar to those in [29].
This feature complicates the segmentation task, since the objective is not only to segment
the target objects but also to fill gaps in a natural and seamless manner. Moreover, the
BTR image dataset presents a more intricate challenge due to the fact that the label images
contain only one pixel value per row, reflecting one value per time of bearings. This situation
results in a more severe class imbalance than that reported in [29]. To address this issue,
we propose an extended spatial convolutional (ESC) layer module and a modified spatial
convolutional (MSC) layer module that are integrated into the DLV3+ model to enhance the
accuracy of target object extraction. We benchmarked the performance of our model against
three state-of-the-art models—DeepLabv3+, SegNeXt, and ViT-Adapter [32]—which have
demonstrated satisfactory performance on various datasets.
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2.2. Loss Function

The cross-entropy (CE) loss function is commonly used to train segmentation networks.
However, its effectiveness is limited when the class distribution in the dataset is imbalanced,
as observed in the BTR image dataset. To overcome this type of challenge, several studies
have explored alternative loss functions.

Focal loss [33] is a loss function that tackles class imbalance by reducing the loss
weight assigned to correctly classified pixels. This helps prevent the loss function from
being dominated by a large number of easily classified classes. Tversky loss [34] is a loss
function specifically designed for medical applications, such as lesion segmentation, where
recall performance is crucial. By assigning different weights to recall and precision indices,
learning performance can be improved in the desired direction. Focal Tversky loss [35]
combines the concepts of focal loss and Tversky loss, effectively addressing class imbalance
and enabling weighted learning of recall and precision. In the BTR image segmentation
task, recall performance is crucial, similar to the lesion segmentation task, due to class
imbalance. In this study, we effectively address this problem by proposing a new loss
function that combines Tversky loss and focal Tversky loss to increase the segmentation
performance for various evaluation metrics.

3. Synthetic BTR Image Dataset

In order to create diverse scenarios for the acquisition of underwater sound signals,
a variety of conditions were considered when simulating the BTR image dataset. Several
aspects of the marine environment can cause discontinuity in the trajectory of target
bearing information and introduce noise in the background of BTR images. To simulate
these factors, we considered four specific conditions: (1) three levels of background noise
(strong, moderate, and weak), (2) three levels of probability of target detection (PD) (100%,
80%, and 50%), (3) two types of bearing information (absolute bearing and relative bearing),
and (4) two different patterns of target movement (constant and varying movements). As
a result, our BTR dataset can encompass various warfare scenarios for both one’s own
submarine and an enemy ship. Specifically, a total of 48 simulated BTR datasets can be
generated for a single target motion case. Moreover, the dataset was expanded to include
scenarios with dual targets. A summary of our synthetic BTR dataset is presented in Table 1,
where the single and dual target scenarios include a total of 192,000 and 95,568 cases,
respectively.

Table 1. Summary of our synthetic BTR image dataset.

BTR Image Type Number of
Motion Cases

Bearing
Variation

Presence of
Sinusoidal Variation

Noise Intensity and
Detection Probability

Total Number
of Images

Single target 4000
2 2

12 192,000
Single-target label 1 16,000

Dual target 1991 12 95,568
Dual-target label 1 7964

An example of a BTR label image and a BTR test image is presented in Figure 5, where
the BTR label image contains absolute bearing information in one motion with 100% PD
and no noise. To be more specific, simulated BTR images (Figure 5b) with dimensions of
1200 × 700 were generated. The horizontal axis represents bearing information ranging
from −180° to 180° at an interval of 0.3° per pixel, while the vertical axis represents time
information, where per second images are captured in order from top to bottom. The bit
depth of a pixel is 8 bits, representing brightness values ranging from 0 to 255. It should
be noted that the corresponding label images (Figure 5a) have a binary pixel value, where
the target’s bearing information is represented by 255, while non-target areas have a value
of 0. BTR label images have only one non-zero pixel in each row as bearing information.
However, actual measurement images tend to display the target trajectory with a certain
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thickness, caused by several noise factors, as depicted in Figure 5b. To account for this,
we simulated the trajectory of target bearing information in the horizontal direction using
Gaussian modeling as follows:

pixelAmp = signalAmp × exp
(
−

pixeldistance
2σ2

)
(1)

where pixelAmp represents the values of the pixels that are generated in Figure 5b based
on the bearing information of the target in Figure 5a, and signalAmp corresponds to the
bearing value of the target in Figure 5a and has a pixel value of 255. In order to enhance
the similarity to real BTR images, where the thickness of the target trajectory varies at each
time step, we simulated the thickness using a Gaussian model with a random selection of σ
values for each time step. Therefore, pixel value of the object in Figure 5b is attenuated as
pixeldistance deviates from the bearing position.

(a) BTR label image. (b) Corresponding BTR image.
Figure 5. An example of a synthetic BTR image pair.

To ensure that our simulated dataset covers various and detailed target motion scenar-
ios, we assumed constant velocity motion of enemy ships at speeds of 5, 10, and 15 knots
(1 knot is equivalent to 1.85 km/h), and distances from one’s own submarine were assumed
to be 10 and 18 km. In real submarine warfare systems, if the one’s own submarine moves
straight, it can only acquire bearing information of the target. To obtain the distance in-
formation of the enemy ship, one’s own submarine needs to alter its course. To account
for this during BTR dataset generation, one’s own submarine’s path change is performed
twice, with each straight motion lasting between 180 and 200 seconds, with an angular
velocity change of 0.3° to 0.5° per second. The speed of one’s own submarine was set to 3,
5, and 7 knots, and the depth of one’s own submarine was assumed to be 150 m from the
sea surface.

3.1. Absolute Bearing and Relative Bearing

In the context of target tracking, two types of BTR images were generated with absolute
and relative bearing information. The bearing represents the 2D plane angle of the enemy
ship as observed from the top view (see Figure 2). A relative bearing represents the angle
relative to the heading of one’s own submarine. On the other hand, an absolute bearing
represents the angle with respect to north as the 0° reference point. Two different types of
bearing are illustrated in Figure 6, and the movement of one’s own submarine is reflected
in (b).
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(a) Absolute bearing. (b) Relative bearing.
Figure 6. An example of BTR images based on two types of bearing.

3.2. Presence of Sinusoidal Variation

To reflect diverse challenges encountered during target tracking, the BTR images were
produced in two distinct formats. The first type of BTR image portrays the target’s bearing
trajectory as a simplistic straight line, assuming a constant motion of the enemy ship
without any deviation from its path (Figure 7a). The second type of BTR image incorporates
more varying target movements in the form of sinusoidal oscillations along the vertical
axis (Figure 7b).

(a) Target with consistent motion. (b) Target with varying movements.
Figure 7. An example of BTR images depending on whether or not sinusoidal variation is reflected.

3.3. Background Noise and Probability of Detection

To simulate background noise in BTR images, the additive white Gaussian noise
(AWGN) function was utilized, with four noise levels applied in terms of the signal-to-
noise ratio (SNR). These SNR values included 5, 10, and 15, with a no-noise scenario also
considered. As the SNR decreases, the degree of noise increases. An example of a BTR
image with background noise is demonstrated in Figure 8.

(a) Without noise. (b) SNR = 5. (c) SNR = 10. (d) SNR = 15.
Figure 8. BTR images with different levels of additive white Gaussian noise (AWGN) added.

The BTR dataset was designed to accommodate intermittent target measurements
by incorporating three distinct probabilities of detection (PD): 50%, 80%, and 100%. The
term PD refers to the likelihood of target detection per frame, with 100% indicating the
availability of target bearing information across all frames. Visual representations of BTR
images with different PD values are shown in Figure 9.

For learning and experimentation purposes, the BTR images without noise were
excluded. Thus, nine BTR images were generated by combining three different levels of
noise and three different PD values for each case, as depicted in Figure 10.
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(a) PD = 100%. (b) PD = 80%. (c) PD = 50%.
Figure 9. BTR images with different probabilities of target detection (PD).

(a) PD100 + SNR15. (b) PD80 + SNR15. (c) PD50 + SNR15.

(d) PD100 + SNR10. (e) PD80 + SNR10. (f) PD50 + SNR10.

(g) PD100 + SNR5. (h) PD80 + SNR5. (i) PD50 + SNR5.
Figure 10. A set of nine BTR images with different SNR and PD combinations.

3.4. BTR Images of Dual Targets

The BTR images presented thus far consider only a singular target, with each image
singularly featuring a sole target. The setup for images containing two targets is akin to
that of single-target images. Figure 11 shows a BTR image of a dual-target scenario, which
was generated through the summation of individual target simulations.

Figure 11. A BTR image with dual targets.
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3.5. Process of Generating the BTR Dataset

Based on the mentioned information, the BTR image dataset was generated using
Matlab. The generation process can be summarized as follows:

(Step 1) Based on the mentioned conditions, one case is determined among the cases corre-
sponding to the motion of one’s own submarine and the enemy ship. Subsequently,
for each determined case, a single label image is generated based on the bearing
conditions (Section 3.1) and the presence of sinusoidal variation (Section 3.2);

(Step 2) The label image obtained in the previous step is used to simulate the horizontal
width according to Equation (1);

(Step 3) For the PD cases described in Section 3.3, one PD value is specified to generate
discontinuous bearing information;

(Step 4) For the SNR cases described in Section 3.3, one SNR value is specified to simulate
the background noise of the image.
Combining all these steps results in the generation of one BTR image.

4. The Proposed Deep Segmentation Network

This section provides a detailed description of the proposed network architecture and
novel loss functions for network training.

4.1. Network Architecture

While many deep-learning-based segmentation models, including DLV3+, are com-
monly trained on datasets with diverse object shapes, the BTR dataset only contains objects
with elongated shapes. To handle such shapes and improve target segmentation perfor-
mance, we propose the addition of an ESC layer module or an MSC layer module to the
baseline DLV3+ network architecture. The overall architecture of the proposed network is
shown in Figures 12 and 13. Positioned between the output of the backbone network layer
and the input of the ASPP layer, the ESC/MSC layer effectively extracts features pertaining
to objects of elongated shape.

Figure 12. The proposed deep segmentation network.
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Figure 13. The architecture of the ESC and MSC modules.

As shown in Figure 12, the input image proceeds through the initial stage of feature
extraction by the ResNet-101 backbone network [36]. The resulting feature map, which
is reduced in spatial size by a factor of 1/16, is subsequently fed into the MSC (or ESC)
layer. The ASPP layer then employs kernels with varying scaling ratios to aid in extraction
of targets with different widths per row in the BTR image. After the ASPP layer, a 1 × 1
convolution is utilized to reduce the number of channels, followed by a 4× upsampling
process that aligns it with the low-level features from ResNet-101, which have also under-
gone a 1 × 1 convolution. Subsequently, a 3 × 3 convolution takes place, followed by a 4×
upsampling operation, resulting in a segmented image with the original image resolution.

The ESC and MSC modules shown in Figure 13 can make the SC module proposed
in [29] more well-suited to the distinct characteristics of BTR images. Specifically, the ESC is
a module that adds additional sublayers to the existing SC layer module. In the sublayers,
the convolution operation is performed four times with an X-shaped kernel, in the order of
downward, upward, rightward, and leftward directions. The MSC comprises a series of
downward, upward, downward, and upward sublayers with the horizontal kernel and
X-shaped kernel, respectively. Each sublayer of the ESC and MSC modules maintains a
tensor size consistent with both its input and output.

Through such directional convolution operations and the kernels, the ESC and MSC
modules can play a role in filling the discontinuities observed in BTR images along the
bearing trajectory. To be specific, the convolutional output of the downward and upward
sublayers corresponding to the i-th row is added to the tensor slice of the subsequent (i + 1)
row. Similarly, for the rightward and leftward sublayers, the convolutional output of the
i-th column is added to the tensor slice of the (i + 1)-th column; then, the convolution
operation of the (i + 1)-th column is performed. Furthermore, the use of an X-shaped
kernel can help to segment target objects with diagonal directions. For the ESC module,
the rightward and leftward sublayers with a vertical kernel may be effective for extracting
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horizontal features. However, they may result in an unnecessary summation between
the target object and background noise in BTR images. Consequently, these directional
sublayers in the MSC and ESC layers enable the network to effectively connect fragmented
spatial features in BTR images.

In addition to the proposed ‘DLV3+ with ESC (DLV3+ESC)’ and ‘DLV3+ with MSC
(DLV3 + MSC)’ networks, we also evaluated other network architectures, such as the ‘DLV3+
with SC (DLV3 + SC)’ network, which integrates the original SC layer onto the DLV3+
baseline. Our experimental results reveal that the ‘DLV3 + MSC’ network outperformed the
other two networks. A comprehensive discussion of the experimental results is presented
in Section 5.

4.2. New Loss Functions for Network Training

In this section, we propose novel loss functions for network training to address the
severe class imbalance problem between the foreground and background regions of the BTR
images. The confusion matrix shown in Table 2 is widely used for the evaluation of image
segmentation models. In our BTR image dataset, true positive (TP) and false positive (FP)
are employed to describe cases in which the network’s prediction correctly and incorrectly
classifies a given pixel as belonging to a target-bearing object, respectively. Similarly, true
negative (TN) and false negative (FN) represent cases in which the network’s prediction
correctly and incorrectly assigns a given pixel to the background class, respectively.

Table 2. Confusion matrix for the BTR dataset.

Pred: BTR Pred: Background

Label: BTR TP FN
Label: background FP TN

In the BTR dataset, the main goal is to minimize FNs, i.e., failure to predict actual
target-bearing pixels, since there are only a few target-bearing pixels, and it is crucial to
secure the accuracy of those pixels to obtain satisfying objective and subjective segmentation
results. To achieve this, we propose two loss functions: modified Tversky loss (MTL), a
variant of the Tversky loss [34], and modified focal Tversky loss (MFTL), a variant of focal
Tversky loss [35].

Tversky loss (TL) is a powerful model for balancing the tradeoff between different
classes by assigning different weights to FN and FP, which improves the overall perfor-
mance of the model. It is expressed by the formula TL = 1 − TI, where TI indicates the
Tversky index as:

TI(p, y) =
py

py + α(p − py) + β(y − py) (2)

where p denotes the predicted value assigned to a pixel by the trained network, indicating
its likelihood of belonging to the target class. It is a real number ranging between 0 and
1. Meanwhile, y represents the pixel value in the BTR label image, where a value of 0
corresponds to the background class, and a value of 1 corresponds to the target class. TI
can be expressed in terms of TP, FP, and FN as follows:

TI =
TP

TP + αFP + βFN
(3)

In studies involving lesion segmentation tasks [34], it is more important to avoid
failing to predict true lesions (FN) than falsely identifying normal regions as lesions (FP).
Therefore, reducing FN over FP becomes the primary objective. To achieve this objective,
the network can be trained to assign a higher weight to β (FN) compared to the weight
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assigned to α (FP). Since the main goal of our study is to reduce FNs, we propose the use of
modified TL to further increase the segmentation performance as follows:

MTL(p, y) = 1 − MTI(p, y)
where, MTI(p, y) =

py
py + α(p2 − py) + β(y − py)

(4)

To effectively decrease the occurrence of FNs in the network output, we present a technique
to amplify the significance of FN by squaring the value of p in the FP expression.

Focal Tversky loss (FTL) utilizes a γ exponent greater than 1 to allow the network
to concentrate more on challenging cases during training. As an example with a γ value
of 2, when the training is unsuccessful and TL yields a large loss value such as 0.9, the
FTL output decreases by a relatively small ratio to 0.81. However, when the training is
effective and TL produces a small loss value like 0.1, the FTL output decreases significantly
to 0.01. As a result, FTL effectively enhances segmentation performance by increasing the
relative weighting of challenging cases compared to easy cases in the loss function. It is
mathematically expressed as:

FTL = (TL)γ = (1 − TI)γ (5)

Similar to MTL, the proposed MFTL is a modified version of FTL, as shown below.

MFTL = (MTL)γ = (1 − MTI)γ (6)

5. Experimental Results and Discussion
5.1. Experimental Environment

The experiments were conducted on a hardware setup consisting of an Intel Xeon
Processor with 128 GB RAM, a Windows Server operating system, and an NVIDIA Tesla
V100 GPU. The network implementation was performed using Python 3.8 and PyTorch
1.7.1. The learning optimization algorithm was mini-batch stochastic gradient descent
(SGD) with an initial learning rate of 0.01, and the poly learning rate policy was applied
during the training process.

5.2. Datasets

Our synthetic BTR image dataset was classified into nine distinct subdatasets based on
three levels of noise (SNR: 5, 10, and 15) and three different PDs (50%, 80%, and 100%). Each
subdataset comprises an equal distribution of BTR images that encompass sinusoidal and
non-sinusoidal, relative, and absolute bearing, as well as dual- and single-target scenarios.
To evaluate the performance of the proposed network in different scenarios, the nine
subdatasets were organized into three experimental datasets, key features of which are
summarized in Table 3.

Table 3. Features of the three experimental datasets.

Dataset Background Noise PD Characteristic

PD100 + SNR15 Weak Highest Easiest
PD50 + SNR5 Strong Lowest Most challenging

Nine-case composite Three levels Three cases Comprehensive

5.2.1. PD100 + SNR15 Dataset

The first experimental dataset represents an ideal scenario of an uninterrupted target
and minimal noise interference (PD = 100% and SNR = 15). We conducted experiments on
this dataset to assess the performance of the proposed model under the most favorable con-
ditions. The training dataset consisted of 19,164 images, the validation dataset comprised
300 images, and the test dataset contained 1000 images.
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5.2.2. PD50 + SNR5 Dataset

The second experimental dataset represents the most challenging scenario among
the simulated BTR datasets and is characterized by the highest noise level of SNR = 5
and a 50% probability of target disconnection. In contrast to the PD100 + SNR15 dataset,
it poses greater difficulties for the segmentation task. The training dataset consisted of
19,164 images, the validation dataset comprised 300 images, and the test dataset contained
1000 images.

5.2.3. Nine-Case Composite Dataset

In the third experimental setting, the same number of BTR images containing all nine
cases was used for training, validation, and testing to assess the overall target segmentation
performance of the proposed network. The training dataset comprised 40,500 images, the
validation dataset consisted of 2700 images, and the test dataset comprised 2700 images.

5.3. Evaluation Metrics

For segmentation tasks, the mean intersection over union (MIoU) is commonly used as
a performance metric. However, in the context of the BTR image dataset, which comprises
only two classes (background and target) with a significant class ratio imbalance, MIoU is
not an appropriate metric for performance assessment. Instead, we employed four metrics:
recall, precision, and Fβ scores (β = 1 and 3), hereafter denoted as F1 score and F3 score,
respectively, which are expressed as follows.

recall =
TP

TP + FN
(7)

precision =
TP

TP + FP
(8)

Fβ score = (1 + β2) · precision · recall
(β2 · precision) + recall

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(9)

The recall increases as the number of FN pixels decreases, while the precision increases
as the number of FP pixels decreases. Given that the primary objective of this work is
to enhance the detection rate of the target’s bearing by reducing FNs, the improvement
in the recall metric is considered more crucial than precision. Furthermore, due to the
discontinuity of target objects and their varying widths, the network occasionally produces
predictions with a width larger than one, in contrast to the label image’s bearing pixel
width of one. Consequently, this leads to relatively lower precision results. However, it is
important to note that this phenomenon does not pose a problem in bearing detection, as
the network’s predicted pixels can be effectively aggregated by taking their average values.
While the F1 score reflects an equal balance between FP and FN, the F3 score, which assigns
greater weight to recall than precision, aligns with our purpose and was therefore selected
as the primary evaluation metric. Previous studies, such as [37,38], also utilized the F3
score as the main metric.

5.4. Quantitative Evaluation

The performance of the proposed network was compared with three state-of-the-art
networks:" DLV3+ [24], SegNext [25], and Vit-Adapter [32]. SegNext and Vit-Adapter
were tested because they have shown high performance on various semantic segmentation
datasets, and the base model, DLV3+, was also compared. To ensure a fair comparison,
instead of using pretrained networks provided by the authors, test networks were trained
on our BTR dataset. The two proposed networks, DLV3+ with ESC and DLV3+ with
MSC, were designed to capture the spatial features associated with vertical and diagonal
directions by adding a set of kernels to the existing SC layer, where these kernels are
arranged in different orders within each network.
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In quantitative evaluation, we focused on conducting a thorough analysis of the
recall and F3-score metrics. Additionally, the results of precision and F1 score are included
for informative purposes to provide a comprehensive understanding of the performance
characteristics. The experimental results are summarized in Table 4, where the highest
scores for recall and F3 score are highlighted in bold for each dataset. It is worth mentioning
that all the results in Table 4 were obtained by training five networks with the same cross-
entropy loss function.

Table 4. Quantitative evaluation on the BTR image dataset. All test networks were trained using the
cross-entropy loss function.

Dataset Model Loss Function Recall (%) Precision (%) Fβ (β = 1) (%) Fβ (β = 3) (%)

PD100 + SNR15

SegNeXt

Cross Entropy

17.45 8.08 11.05 15.64
ViT-Adapter 4.23 91.74 8.09 4.68

DLV3+ 34.01 27.46 30.38 33.22
DLV3 + SC 38.96 26.66 31.66 37.24

DLV3 + ESC 50.49 26.87 35.07 46.41

PD50 + SNR5

SegNeXt 8.76 9.29 9.02 8.81
ViT-Adapter 3.11 0.06 0.12 0.51

DLV3+ 1.12 15.07 2.08 1.23
DLV3 + SC 2.93 17.16 5.00 3.19

DLV3 + ESC 0.67 20.69 1.30 0.74

9-cases composite

SegNeXt 19.18 9.69 12.87 17.47
ViT-Adapter 7.54 84.57 13.85 8.30

DLV3+ 12.88 30.70 18.15 13.67
DLV3 + SC 17.32 23.60 19.98 17.79

DLV3 + ESC 21.81 28.98 24.89 22.36

5.4.1. Results of Using the Cross-Entropy Loss Function

In this subsection, the experimental results of the three datasets trained by the cross-
entropy loss function are analyzed.

(a) The results of the PD100 + SNR15 dataset are presented as follows. The proposed
DLV3 + ESC shows the highest performance, with recall and F3-score metrics of 50.49% and
46.41%, respectively. When compared to the second-highest-performing model, DLV3 + SC,
our approach demonstrates a significant improvement of approximately 11.53% and 9.17%
in recall and F3 score, respectively. These results validate that the introduction of new
directional sublayers and the novel X-shaped kernel in the SC layer is highly advantageous
for effectively extracting elongated features from BTR images. It is worth noting that the
SOTA models, SegNeXt and ViT-Adapter, exhibit notably poor performances in terms of
recall and F3 score, e.g., i.e., than 20%. This can be attributed to their lack of specialized
network modules designed to consider such distinctive feature characteristics.

(b) For the challenging PD50 + SNR5 dataset, SegNeXt achieved the highest recall
and F3 score. It outperformed the proposed DLV3 + SC model by a margin exceeding 5%.
Notably, even SegNeXt achieved a recall rate below 10%, indicating that all tested networks
encountered difficulties in accurately segmenting the target pixels. These results suggest
that training the proposed network using the traditional CE loss function fails to effectively
optimize its performance due to several factors, including the presence of strong noise, the
presence of discontinuous targets, and the existence of class imbalance. These challenges
prevent the achievement of satisfactory segmentation results during the training process.

(c) Lastly, in the case of the results obtained from the nine-case composite dataset, the
proposed DLV3 + ESC network outperforms the other networks. Specifically, when com-
pared to SegNeXt, DLV3 + ESC demonstrates noteworthy enhancements of 2.63% in recall
and 4.89% in F3 score. However, it is important to note that despite these improvements,
the overall performance of DLV3 + ESC remains relatively low, achieving 22% recall.
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Table 5 presents the experimental results of the proposed DLV3 + MSC network
when utilizing the proposed MTL or MFTL loss functions instead of the CE function.
The hyperparameters of the loss function were configured as α = 0.1, β = 0.9, and
γ = 1.3. Based on the recall and F3-score metrics, it is evident that the overall experimental
results presented in Table 5 show significant improvements compared to those in Table 4.
Specifically, for the nine-case composite dataset, the recall score increases substantially to
92.28% from 21.81%.

Table 5. Experimental results of DLV3 + MSC on the BTR image dataset when trained using the
proposed loss functions.

Dataset Model Loss Function Recall (%) Precision (%) Fβ (β = 1) (%) Fβ (β = 3) (%)

PD100 + SNR15

DLV3 + MSC

MTL 94.53 28.79 44.13 76.96
MFTL 87.86 27.31 41.67 71.92

PD50 + SNR5 MTL 72.38 17.38 28.03 54.98
MFTL 71.86 17.42 28.05 54.75

9-cases composite MTL 92.28 25.68 40.53 73.28
MFTL 91.75 23.60 37.55 71.19

5.4.2. DLV3 + MSC: Results of the Proposed Loss Functions

The experimental results of the three datasets trained by the proposed DLV3 + MSC
network and the proposed loss functions are analyzed in this subsection.

(a) First, we present the results of the PD100 + SNR15 dataset. When comparing
the performance of the DLV3 + MSC trained using MTL with that of the DLV3 + ESC
trained using CE loss, notable enhancements are observed. Specifically, the DLV3 + MSC
model exhibits remarkable improvements, exceeding 40% and 30% in recall and F3 score,
respectively, over the DLV3 + ESC network.

(b) For the the PD50 + SNR5 dataset, the DLV3 + MSC achieves a high recall rate
of 72.38% and an F3 score of 54.98%. As observed in Table 4, the proposed network
trained with the CE loss function failed to attain satisfactory segmentation performance
on this particularly demanding dataset. Therefore, the incorporation of the proposed
loss function proves beneficial, as it enables the network to address the challenge of class
imbalance, thereby enhancing its robustness and reliability. However, it shows relatively
low performance compared to other datasets, so there is a need for further improvement in
the future.

(c) As observed in the experimental results on the nine-case composite dataset, the
proposed network with novel loss functions shows exceptional average segmentation
performance, specifically a recall rate of 92.28% and an F3 score of 73.28%. These results
suggest that the proposed loss functions consistently surpass the performance of the CE
function, providing superior enemy-tracking performance for diverse warfare scenarios.

5.5. Qualitative Evaluation

In this section, we conduct a comparative analysis of the subjective quality of the
predicted images generated by the respective test networks.

5.5.1. Networks Trained Using the Cross-Entropy Loss Function

Figure 14 presents a qualitative visual quality comparison of the models trained using
the CE loss function. The images were sourced from the PD100 + SNR15 and PD50 + SNR5
datasets for the dual-target scenario. The first and second rows show the test images and
the corresponding label images,respectively. The label images have a single non-zero pixel
per row, representing the bearing value of the target per second. In these test images, the
spacing between dual targets decreases as moving down the rows, thereby posing a greater
challenge for accurate target separation. Additionally, the bearing trajectories of the targets
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in these images demonstrate both diagonal and vertical directions. The third to seventh
rows exhibit the predicted images of each network.

Figure 14. Qualitative comparison among the test networks trained using CE loss. For ease of
observation, the yellow boxed areas in the first row are magnified in the subsequent rows.

Upon inspection of the image predicted by SegNeXt for the PD100 + SNR15 image in
the second column, it is evident that the target is not detected in the middle of the object.
Additionally, in the lower parts of the image, where the distance between the two targets
is short, the target bearings are not predicted separately but incorrectly predicted as one.
The trend is the same in the predicted image of the PD50 + SNR5 image, with fewer target
pixels correctly predicted. The predicted images in the second column also have a diagonal
break in the object. The worst result is observed in the PD50 + SNR5 image in the fourth
column, which is the most challenging scenario, where SegNeXt almost failed to segment
the target trajectory.
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The Vit-Adapter network generally exhibits notably inadequate qualitative perfor-
mance across all predicted images. When examining the predicted images in the first
and second columns, only a few pixels near the top of the images demonstrate successful
segmentation. Even worse, the target prediction fails completely for the PD50 + SNR5 test
images in the third and fourth columns.

Regarding the PD100 + SNR15 outcomes obtained from DLV3+, similar to SegNeXt,
noticeable discontinuities are observed in the target prediction. Additionally, in the lower
parts of the images, the network exhibits a failure to accurately predict the targets. As for
the PD50 + SNR5 results, a majority of the pixels are classified as background, indicating
a significant shortfall in target identification. On the other hand, for DLV3 + SC, there is
some improvement in target prediction in the lower parts of the images in the third and
fourth models compared to DLV3+.

The proposed DLV3 + ESC network, as depicted in the predicted image in the second
column, demonstrates a higher target detection rate compared to previous results. This
improvement can be attributed to the integration of the ESC layer module, which incorpo-
rates a diagonal kernel, enabling consideration of the directionality of the spatial features.
However, when faced with the demanding PD50 + SNR5 dataset, the third and fourth
figures clearly indicate that a substantial number of targets remain undetected.

In summary, for the majority of networks trained with the CE loss function on the
PD100 + SNR15 dataset, less than half of the bearing target segmentation results are shown.
Additionally, on the more challenging PD50 + SNR5 dataset, almost no segmentation is
achieved. Therefore, further improvements are imperative for the successful application of
these models to military SONAR systems.

5.5.2. DLV3 + MSC Trained Using the Proposed Loss Function

The seventh and eighth rows of Figure 15 represent the segmentation results generated
after training the proposed DLV3 + MSC using the MTL and MFTL loss functions. Rows
3 to 6 in the figure depict the segmentation results of the comparative models trained
using the CE loss function. Overall, a noticeable enhancement in the target detection rate
is observed in the results of the proposed DLV3 + MSC using the MTL and MFTL loss
functions when compared to the predicted images in the comparative models.

When comparing the results of the first and third columns, which were tested on
images with low noise and high PD, the DLV3+ based models show a certain degree of
target segmentation, but a considerable amount of fragmented areas are also observed. In
contrast, the Vit-Adapter model exhibits lower segmentation results. However, it is evident
that the results of the proposed DLV3 + MSC using the MTL and MFTL loss functions show
significantly fewer discontinuous regions.

When examining the results of the second, fourth, and fifth columns, which were tested
on images with relatively stronger noise and lower PD, it is evident that the DLV3+-based
models struggled to effectively perform segmentation. Additionally, the Vit-Adapter model
shows incorrect predictions in the second and fifth columns. In contrast, the results of
the proposed DLV3 + MSC using the MTL and MFTL loss functions demonstrate robust
segmentation, even in challenging images.

Finally, to compare the performance of MTL and MFTL with the proposed DLV3 + MSC
model, we examine the segmentation results in the fifth column. It is noted that the MTL-
based outcome demonstrates a slightly refined depiction where the two targets intersect.
However, except for this specific area, discerning any significant difference between the use
of the two functions is difficult. Since both the proposed loss functions aim to minimize
false negatives, the overall target tracking rate is high. Nevertheless, in comparison to the
label image presented in the second row, the predicted targets appear slightly thicker than
the actual target pixels, and there are also some areas where certain pixels are not accu-
rately predicted. Nonetheless, the image, as a whole, exhibits favorable target prediction
capabilities for both vertically and diagonally oriented objects. Additionally, the results in
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the fourth and fifth columns shown that even when two targets are adjacent with strong
background noise, the outcomes remain precise.

Figure 15. Predicted BTR images obtained from the DLV3 + MSC trained using the proposed loss
functions and the comparative models trained using the CE loss function. For ease of observation,
the yellow boxed areas in the first row are magnified in the subsequent rows.

5.6. Ablation Study

In this section, we present a comparison of the MTL and TL loss functions using the
same model, as well as a comparison between the DLV3 + ESC and DLV3 + MSC models
when employing the proposed MTL loss function. These evaluations were carried out
using the PD100 + SNR15 and PD50 + SNR5 datasets.

Table 6 presents the results obtained using the same MTL loss function. In the case of
the PD100 + SNR15 dataset, it is evident that DLV3 + MSC exhibits superior performance
across all metrics. For the PD50 + SNR5 dataset, DLV3 + ESC displays a higher recall metric.
However, when comparing two networks based on the F3 score, which reflects precision,
DLV3 + MSC outperforms DLV3 + ESC by a notable margin of approximately 30%.
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Table 7 shows a performance comparison between the original TL function and the
proposed MTL function. In both datasets, there is an improvement of over 3% in the recall
metric, while the F3 score demonstrates an enhancement of approximately 3%. The F1
score, which reflects recall and precision in the same ratio, did not decrease. Based on these
results, we can conclude that the proposed loss function is successful in reducing FN and
increasing the recall metric.

Table 6. Performance comparison between DLV3 + ESC and DLV3 + MSC on the PD100 + SNR15
and PD50 + SNR5 datasets.

Dataset Model Loss Function Recall (%) Precision (%) Fβ (β = 1) (%) Fβ (β = 3) (%)

PD100 + SNR15 DLV3 + MSC

MTL

94.53 28.79 44.13 76.96
DLV3 + ESC 88.69 16.62 27.99 61.86

PD50 + SNR5 DLV3 + MSC 72.38 17.38 28.03 54.98
DLV3 + ESC 95.85 3.55 6.85 26.63

Table 7. Performance comparison of using the MTL or TL for network training on the PD100 + SNR15
and PD50 + SNR5 datasets.

Dataset Model Loss Function Recall (%) Precision (%) Fβ (β = 1) (%) Fβ (β = 3) (%)

PD100 + SNR15
DLV3 + MSC

MTL 94.53 28.79 44.13 76.96
TL 90.78 26.86 42.03 73.96

PD50 + SNR5 MTL 72.38 17.38 28.03 54.98
TL 69.29 15.06 25.54 52.09

6. Conclusions

In this paper, we propose an efficient deep segmentation network designed to enhance
the extraction of target bearing information acquired from challenging underwater environ-
ments. To facilitate the development of the proposed network and performance evaluation,
we generated the synthetic BTR image dataset by simulating various factors. including
underwater noise, target detection probability, target movements, etc. The proposed net-
work architecture incorporates an MSC or ESC module, which effectively captures spatial
features of elongated target trajectories. Moreover, to address the class imbalance problem
inherent in traditional CE loss functions, we introduce novel loss functions: MTL and
MFTL. The experimental results demonstrate that the proposed DLV3 + MSC network
trained with the MTL outperformed the existing state-of-the-art segmentation networks,
achieving improvement of up to 92.28% and 73.28% for recall and F3 score, respectively.
Future research will focus on further enhancing segmentation performance for the chal-
lenging PD50 + SNR5 dataset by devising a more suitable network configuration. We
believe that the implementation of our deep network in existing SONAR systems has
significant potential with respect to the automation of the operation military underwater
warfare systems.
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