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Abstract: Metals and metalloids in consumer products can be ingested by humans and cause health
problems. The unified Bioaccessibility Research Group of Europe (BARGE) method (UBM, i.e., ISO
17924), with complex digestive ingredients, and the 0.07 M HCl single extraction method, as a simpli-
fied means, have been widely used to assess oral bioaccessibility in vitro. Herein, the bioaccessible
concentrations of metals and metalloids in 13 certified reference materials acting as surrogates for
consumer products were determined using the UBM and the 0.07 M HCl single extraction method
and compared. The bioaccessible concentrations of metals and metalloids evaluated using the UBM
and the 0.07 M HCl single extraction method ranged from 0.002 to 17,449 mg/kg and from 0.003 to
20,283 mg/kg, respectively; their bioaccessibility ranged from 0.00002 to 26.9% and from 0.00002
to 36.6%, respectively. The 0.07 M HCl single extraction method showed higher concentrations, as
the bioaccessible concentrations of metals and metalloids differed by 1.38 times (i.e., the slope of
the linear regression), indicating its potential for conservative assessment. However, the Student’s
t-test results for the 12 metals and metalloids showed no significant differences (p-value ≥ 0.05).
It demonstrated that the relatively simple 0.07 M HCl single extraction method can be used as an
in vitro test method to assess the oral bioaccessibility of metals and metalloids in various consumer
products by replacing the UBM and/or through its use as a screening method prior to the application
of the UBM, thereby moving towards green analytical chemistry.

Keywords: oral ingestion; migration; risk assessment; single extraction; green analytical chemistry

1. Introduction

Metals contained in various consumer products, including toys, cosmetics, glass
bottles, and chopsticks [1–4], can be introduced into the human body through oral ingestion.
Guney et al. [1] investigated the concentrations of arsenic (As), barium (Ba), cadmium (Cd),
chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and
selenium (Se) in 72 children’s products and observed that 32 of them showed levels that
exceeded the metal standards suggested by the EU Directive 2009/48/EC [2]. Additionally,
Cui et al. [3] reported that according to the concentrations of As, Cd, Cr, Ni, Pb, and Sb
in children’s products, 16 out of 45 products exceeded the guidelines. Along with the
possibility of oral exposure to products due to children’s sucking behavior, adults have also
used several products with oral exposure concerns, and the detection of metals in those
products has also been reported. The concentrations of Cd and Pb in the enamel of a glass
bottle tested by Turner [4] were 100,000 mg/kg, and 20,000 mg/kg, respectively. Similarly,
Zhao et al. [5] reported that the concentrations of Cd, Co, Cr, Ni, and Pb in paint on
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chopsticks distributed to consumers were up to 120,000 mg/kg, 2600 mg/kg, 8500 mg/kg,
150,000 mg/kg, and 500,000 mg/kg, respectively. Therefore, careful assessments of the
migration of metals from various consumer products into the human body through oral
exposure routes should be thoroughly performed to ensure human health.

Oral bioaccessibility indicates the fraction that can be absorbed by the human body
upon the ingestion of metals contained in confined matrices and can be used as an indicator
of reliable human health risk, being better than total metal concentrations. The amount
of metal actually absorbed through the gastrointestinal tract can be applied for human
health risk assessment, considering relative bioavailability (RBA), through in vivo assays
but faces many economic and ethical limitations [6,7]. In this regard, in vitro test methods
have been proposed to determine the bioaccessibility of metals in confined matrices, with
a high correlation with in vivo assay results. The various test methods with a good in vitro–
in vivo correlation (IVIVC), which were suitable for assessing the oral bioaccessibility
of metal-contaminated soil, include the in vitro gastrointestinal method (IVG) [8], the
physiologically based extraction test method (PBET) [9], OSWER 9285.7-77 of the United
States Environmental Protection Agency (USEPA) [10], ISO 17924 of the International
Standards Organization (ISO) [11], and DIN 19738:2 of the Deutsches Institut für normung
e.V. (DIN) [12]. One can assess the oral bioaccessibility of children’s products through BS EN
71-3 of the British Standards Institution (BSI) [13], simulating gastric juice with 0.07 M HCl;
EUR 19899 EN of the Joint Research Centre European Commission (JRC) [14], simulating
saliva with MgCl2, CaCl2, K2HPO4, K2CO3, NaCl, and KCl; and Report 320102004 of the
National Institute for Public Health and the Environment (RIVM) [15], using human body
fluids containing 12 inorganics, 4 organics, and 8 enzyme components. Among them,
ISO 17924, also known as the unified Bioaccessibility Research Group of Europe (BARGE)
method (UBM), is one of the most detailed simulations of human digestive juices and
their processes.

Armenta et al. [16] proposed the use of green analytical chemistry to reduce energy
and reagent consumption, waste generation, and the time required while also simplifying
the test process. In this respect, the in vitro bioaccessibility tests with artificial digestive
juices containing complex components faced a situation that required in-depth research on
the possibility of their replacement with a more simplified testing method. For this purpose,
Pelfrêne et al. [17] compared bioaccessible metal concentrations extracted using 0.65% HCl
(0.21 M HCl), acetic acid, ethylenediaminetetraacetic acid (EDTA), citric acid, and artificial
digestive juices (according to the UBM) in 201 soil samples. A positive correlation between
the results obtained using the UBM and the 0.65% HCl extraction method was found, with
a coefficient of determination R2 = 0.91 for As, R2 = 0.97 for Cd, and R2 = 0.72 for Pb [18].
These results indicated that 0.65% HCl could be suitable for a single extract from the soil to
assess the bioaccessibility of metals instead of using the complex artificial digestive juices.
Other studies also proved that the UBM could be replaced with 0.43 M HNO3 for As, Ba,
Cd, Cu, Ni, Pb, and zinc (Zn) in soil [18,19]. Comparative experiments on environmental
media such as soil have been performed, but none on consumer products such as children’s
toys have been performed.

In this study, the oral bioaccessibility of 12 metals and metalloids (As, Ba, Cd, Cr, Cu,
Ni, Pb, Sb, Se, tin (Sn), strontium (Sr), and Zn) was assessed using the UBM as a precise
means to mimic the human digestive processes and the 0.07 M HCl single extraction method
as a simplified means. EN 71-3 (i.e., 0.07 M HCl single extraction method) was selected
for comparison as it has many applications for children’s products, uses fewer reagents,
produces less waste, and has a simpler test method. Currently, the National Institute of
Environmental Research (NIER) in Korea monitors bioaccessible metal concentrations in
children’s products using the 0.07 M HCl single extraction method, presented in BS EN 71-3
of the BSI [13]. The correlation between the test results obtained using the two methods
was examined, and the possibility of replacing the UBM with the single extraction method
was investigated.
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2. Materials and Methods
2.1. Certified Reference Materials

For a quantitative comparison between the oral bioaccessibility assessment methods,
certified reference materials (CRMs) were used as homogeneous samples with known
concentrations of various elements rather than actual consumer products, which may
involve sampling errors owing to their heterogeneity. A total of 13 types of CRMs were
used, which had different materials, metal/metalloid types, and metal/metalloid contents.
The selected metal/metalloid types were As, Ba, Cd, Cr, Cu, Ni, Pb, Sb, Se, Sn, Sr, and
Zn, which are regulated according to the EU Directive 2009/48/EC related to the safety of
toys [2].

As plastic CRMs, we used CRM 113-01-013 (acrylonitrile butadiene styrene (ABS),
Korea Research Institute of Standards and Science, Daejeon, Republic of Korea); JSM
P 701-1 (polyethylene (PE), JFE Techno-Research Corporation (JFE-TEC), Tokyo, Japan);
ERM-EC680m (PE) and ERM-EC681m (PE) (European Reference Materials (JRC Geel),
Geel, Belgium); SRM 2861 (polyvinyl chloride (PVC), National Institute of Standards and
Technology (NIST), Gaithersburg, MD, USA); and JSAC 0602-3 (polyethylene terephthalate
(PET), Japan society for analytical chemistry (JSAC), Tokyo, Japan). As CRMs of paint
materials, 110-05-patint-02 (Korea Testing and Research Institute (KTR), Gyeonggi-do,
Republic of Korea) and CRM 013-50G (Sigma-Aldrich, Saint Louis, MO, USA) were used.
As CRMs of glass materials, BAM-S004 (Federal Institute for Materials Research and Testing
(BAM), Göttingen, Germany) was used. Finally, as metal CRMs, SRM 856a (aluminum;
NIST), SRM 875 (cupro-nickel; NIST), SRM 899 (nickel-base; NIST), SRM 872 (phosphor
bronze; NIST), and 102-02-SBSI5 (silicon; KTR, Republic of Korea) were used. Table 1 lists
the details of the metal/metalloid types and contents of the CRMs used (Table 1).

2.2. Determination of In Vitro Oral Bioaccessibility
2.2.1. Procedures of the UBM

Simulated digestive fluids are mainly classified as saliva, gastric fluid, duodenal fluid,
and bile. An inorganic solution (250 mL) and organic solution (250 mL) were prepared by
adding each constituent (Table 2), agitated for a sufficient time, and mixed into a 500 mL
solution. The pH was adjusted to 6.5 ± 1.1 for the simulated saliva, 1.1 ± 0.1 for the
simulated gastric fluid, 7.4 ± 0.2 for the simulated duodenal fluid, and 8.0 ± 0.2 for the
simulated bile using 37% HCl and 1 M NaOH. Then, solid enzyme components (Table 2)
were added to the 500 mL solution and agitated for a sufficient time.

The simulated saliva (9 mL) and gastric fluid (13.5 mL) were added to 0.6 g of the
CRM. The sample was stirred for 1 h at 55 rpm in a constant-temperature water bath at
37 ◦C. Simulated duodenal fluid (27 mL) and simulated bile (9 mL) were then added to the
sample. The sample was stirred for 4 h under the same agitation conditions. The sample
was then subjected to 5 min of centrifugation at 4500× g for solid–liquid separation. After
separating the supernatant from the sample, it was acidified by adding 1 mL of 67% HNO3
and filtered through a 0.45 µm filter. The filtrate was analyzed using an inductively coupled
plasma mass spectrometer (ICP-MS, 7900, Agilent Technologies, Santa Clara, CA, USA)
(Figure 1a).
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Table 1. Certified metal concentrations in the 13 CRMs used in this study.

CRM Material a
Total Metal Concentration (mg/kg)

As Ba Cd Cr Cu Ni Pb Sb Se Sn Sr Zn

JSM P 701-1 PE 187 ± 11.7 - b 114 ± 2.4 115 ± 3.8 - - 111 ± 7.5 - - - - -

CRM 113-01-013 ABS 132 ± 4.7 a - 14 ± 0.38 141 ± 3.2 - 147 ± 9.3 136 ± 3.6 152 ± 12 - - - -

JSAC 0602-3 PET - - 50 ± 05 113 ± 1.8 - - 112 ± 1.4 - - - - -

ERM EC680m PE 4.7 ± 0.4 - 21 ± 0.9 9.6 ± 0.5 - - 11 ± 0.4 9.6 ± 0.7 - 21 ± 1.6 - 194 ± 12

ERM EC681m PE 17 ± 1.2 - 146 ± 5 45 ± 1.9 - - 70 ± 2.5 86 ± 7 - 99 ± 6 - 1170 ± 40

SRM 2861 PVC 239 ± 5.1 740 ± 13 65 ± 3.6 - 50 ± 3.1 - 88 ± 4.7 68 ± 4 244 ± 3.2 1294 ± 10 - -

BAM S004 Glass - - - 471 ± 25 - - - - - - - -

110-05-paint-02 Paint - - 226 ± 4 - - - 944 ± 6 - - - - -

CRM 013-50G Paint - - 38 ± 1.21 618 ± 12 - - 643 ± 13 - - - - -

SRM 856a Aluminum - - - 600 ± 10 35,000 ± 400 3700 ± 100 1100 ± 100 - - 1000 ± 100 180 ± 20 9600 ± 100

SRM 872 Phosphor bronze - - - - 873,600 ± 200 - 41,300 ± 300 - - 41,600 ± 500 - 40,000 ± 100

SRM 875 Cupronickel - - 22 ± 5 - 878,300 ± 500 104,200 ± 300 92 ± 5 <10 4 90 ± 30 - 1100 ± 100

SRM 899 Nickel alloy - - - - - - 39,280 ± 890 - 93,600 ± 2400 - - -

a PE, polyethylene; ABS, acrylonitrile butadiene styrene; PET, polyethylene terephthalate; PVC, polyvinyl chloride. b -: Elements not contained in the CRM.
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Figure 1. Procedures of (a) the UBM and (b) the 0.07 M HCl single extraction method to assess the
oral bioaccessibility of metals.

Table 2. Composition of digestive fluids (inorganic solution 250 mL + organic solution 250 mL) with
enzymes used in the UBM (ISO 17924 [11]).

Digestive Fluid Ingredients Saliva Gastric Duodenal Bile

Inorganic
constituents

(250 mL)

KCl 448 mg 412 mg 282 mg 188 mg
NaH2PO4 444 mg 133 mg

KSCN 100 mg
Na2SO4 285 mg

NaCl 149 mg 1376 mg 3506 mg 2630 mg
CaCl2 200 mg
NH4Cl 153 mg

NaHCO3 2803.5 mg 2893 mg
KH2PO4 40 mg
MgCl2 25 mg

NaOH (1 M) 0.9 mL
HCl (37%) 4.15 mL 90 µL 90 µL

Organic
constituents

(250 mL)

urea 100 mg 42.5 mg 50 mg 125 mg
glucose 325 mg

glucuronic acid 10 mg
glucosamine hydrochloride 165 mg

Enzymes a

α-amylase 72.5 mg
mucin 25 mg 1500 mg

uric acid 7.5 mg
bovine serum albumin 500 mg 500 mg 900 mg

pepsin 500 mg
CaCl2 100 mg 111 mg

pancreatin 1500 mg
lipase 250 mg

bile salts
(bovine) 3000 mg

pH b 6.5 ± 0.5 1.1 ± 0.1 7.4 ± 0.2 8.0 ± 0.2

a Solid enzymes were added to the mixture solution (500 mL). b Values after mixing the inorganic and organic solutions.
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2.2.2. Procedures of the 0.07 M HCl Single Extraction Method

According to the NIER, the oral bioaccessibility of metals contained in children’s
products can be determined using 0.07 ± 0.005 M HCl [20]. A total of 30 mL of 0.07 M
HCl solution was added to 0.6 g of the CRM. The sample was stirred for 1 h at 55 rpm in
a constant-temperature water bath at 37 ◦C and incubated for 1 h without stirring at 37 ◦C.
The sample was then filtered through a 0.45 µm filter to recover the filtrate for ICP-MS
analysis (Figure 1b).

2.3. Metal/Metalloid Analysis and Data Treatment

The metal concentration was analyzed using an ICP-MS equipped with a collision
cell to minimize mass interference. The analytical conditions were set as follows: a radio
frequency power of 1500 W, radio frequency matching at 2 V, and a nebulizer gas (Ar) flow
rate of 1.05 L/min. The limits of detection (LOD; mg/kg) for the UBM were as follows:
As, 0.001; Ba, 0.001; Cd, 0.001; Cr, 0.001; Cu, 0.013; Ni, 0.001; Pb, 0.001; Sb, 0.003; Se, 0.005;
Sn, 0.007; Sr, 0.0005; and Zn, 0.006. Those for the 0.07 M HCl single extraction method
were As, 0.001; Ba, 0.0005; Cd, 0.001; Cr, 0.0003; Cu, 0.007; Ni, 0.001; Pb, 0.001; Sb, 0.002; Se,
0.003; Sn, 0.003; Sr, 0.0003; and Zn, 0.003. The matrix effect was corrected by subtracting
the analysis signal of a blank sample (i.e., digestive fluids without CRM for the UBM and
0.07 M HCl solution without CRM for the 0.07 M HCl single extraction method) from the
analysis signal of each sample.

Bioaccessibility was calculated as the percentage of the analysis result (CRMC, mg/kg)
obtained from the in vitro experiment with respect to the metal content in the CRMs used
(certified value; CRMT, mg/kg) (Equation (1)).

Bioaccessibility (%) =
CRMC
CRMT

× 100 (1)

2.4. Statistical Analyses

The bioaccessible concentrations determined using each test method (i.e., the UBM
and 0.07 M HCl single extraction) were expressed as the mean and standard deviation of
triplicates. The average concentrations of all the metals (n = 12) leached from all the CRMs
(n = 13) used in the experiments were compared for the two test methods.

Student’s t-test was performed to examine the significant differences between the
bioaccessibility results obtained using the USM and 0.07 M HCl single extraction method;
all significance levels were evaluated based on a two tailed p-value of 0.05. Microsoft Excel
365 (Microsoft Corp., Redmond, WA, USA) was used for the statistical analysis.

3. Results and Discussion

Figure 2 shows an excellent linear relationship of the all the metal/metalloid bioac-
cessibility results determined using the UBM and 0.07 M HCl single extraction (R2 = 0.82)
method. The slope of the linear regression was 1.38 (Figure 2), indicating that the 0.07 M
HCl single extraction has potential for conservative assessment. The bioaccessible concen-
trations of all the metals/metalloids in all the CRMs determined using the UBM and the
0.07 M HCl single extraction method ranged from 0.002 to 17,449 mg/kg and from 0.003 to
20,283 mg/kg, respectively (Table 3). The bioaccessibility obtained with the UBM and the
0.07 M HCl single extraction method ranged from 0.00002 to 26.9% and from 0.00002 to
36.6%, respectively (Table 4). Overall, the bioaccessible metal/metalloid concentration and
the bioaccessibility obtained using the 0.07 M HCl single extraction method were slightly
higher than those obtained using the UBM. However, the results of Student’s t-test using
the two methods, for all the metals/metalloids, did not show a statistically significant
difference (p = 0.24). Pelfrêne et al. [17] confirmed that the 0.65% HCl extraction method
could be used to effectively replace the UBM when testing 201 metal contaminated soils,
and the R2 values of the linear correlations for As, Cd, and Pb were 0.91, 0.97, and 0.72,
respectively. Based on these results, the HCl single extraction method has been used to
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determine metal bioaccessibility in soil [21,22]. Rodrigues et al. [19] also attempted to
develop a single extraction method using 0.43 M HNO3 as an alternative to the UBM and
observed that the bioaccessibility values of Ba, Cd, Cu, Ni, Pb, and Zn in 204 soil samples
assessed using the UBM were highly correlated with those obtained using the 0.43 M
HNO3 extraction method (R2 = 0.82–0.94). Similarly, the relatively simple 0.07 M HCl single
extraction method can be used as an in vitro test method to assess the oral bioaccessibility
of metals/metalloids in various consumer products, replacing the UBM.
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linear regression, respectively.

To confirm the difference in the bioaccessibility of the metals/metalloids according to
the material properties of the consumer products, the 13 CRMs were classified into 4 types:
plastic, paint, metal, and glass. The results of the two bioaccessibility determination
methods were compared for each of the classified CRM material properties (in the case of
glass, the bioaccessibility evaluation result was only one; therefore, a linear relationship
could not be confirmed) (Figure 3d–f). The linear regression slopes were 0.84 (R2 = 0.92) for
plastics (Figure 3d), 1.39 (R2 = 0.98) for paints (Figure 3e), and 3.66 (R2 = 0.59) for metals
(Figure 3f), and no statistically significant differences were observed (all p-values > 0.05).
The average bioaccessibility of the CRMs made of plastics, paints, and metals determined
using the UBM was shown to be 0.69 ± 2.00%, 12.1 ± 13.2%, and 0.99 ± 1.13%; however,
when using the 0.07 M HCl single extraction method, bioaccessibility values of 0.39 ± 0.87%,
17.98 ± 17.5%, and 4.94 ± 5.52% were observed (Figure 3; Table 4). In particular, the metals
and metalloids contained in paints are easily leached as compared to other materials.
Further in-depth research on this topic is required. Additionally, the linear relationships
between the analytical results obtained using the two the methods were compared for
each element contained in the CRMs (Figure 3a–c). The linear regression slopes were 1.39
(R2 = 0.90) for Cd (Figure 3a), 1.41 (R2 = 0.99) for Cr ((Figure 3b), and 3.04 (R2 = 0.63) for Pb
(Figure 3c), and no statistically significant differences were observed (all p-values > 0.05).
Similar trends were confirmed in the evaluation results for the other metals and metalloids
(As, Ba, Cu, Ni, Sb, Sr, and Zn), except for Se and Sn (no individual figure is presented due
to the lack of data (n < 3)).
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Table 3. Bioaccessible metal concentrations in CRMs determined using the UBM and the 0.07 M HCl single extraction method.

CRM Material Method
Bioaccessible Concentration (mg/kg)

As Ba Cd Cr Cu Ni Pb Sb Se Sn Sr Zn

JSM P701-1 PE
UBM 0.03 ± a 0.01 - b 0.04 ± 0.001 2.06 ± 0.43 - - 0.07 ± 0.001 - - - - -

0.07 M HCl 0.02 ± 0.002 - 0.08 ± 0.009 2.00 ± 1.16 - - 0.17 ± 0.03 - - - - -

CRM 113-01-013 ABS
UBM 0.43 ± 0.04 - 0.01 ± 0.001 0.10 ± 0.01 - 0.07 ± 0.02 0.04 ± 0.004 <0.003 - - - -

0.07 M HCl 0.38 ± 0.03 - <0.001 c 0.08 ± 0.004 - <0.001 0.08 ± 0.01 0.01 ± 0.004 - - - -

JSAC 0602-3 PET
UBM - - 0.01 ± 0.002 0.08 ± 0.01 - - 0.02 ± 0.001 - - - - -

0.07 M HCl - - 0.04 ± 0.004 0.04 ± 0.03 - - 0.04 ± 0.003 - - - - -

ERM EC680m PE
UBM <0.001 - 0.002 ± 0.0003 0.03 ± 0.001 - - <0.001 0.01 ± 0.002 - <0.007 - 4.59 ± 1.32

0.07 M HCl 0.02 ± 0.001 - 0.003 ± 0.0004 0.02 ± 0.002 - - 0.01 ± 0.001 0.01 ± 0.0004 - 0.07 ± 0.001 - 0.51 ± 0.03

ERM EC681m PE
UBM <0.001 - 0.01 ± 0.002 0.09 ± 0.05 - - <0.001 0.01 ± 0.0003 - <0.007 - <0.006

0.07 M HCl 0.04 ± 0.003 - 0.02 ± 0.001 0.07 ± 0.002 - - 0.05 ± 0.001 0.02 ± 0.0004 - 0.06 ± 0.004 - 0.53 ± 0.01

SRM 2861 PVC
UBM 0.01 ± 0.01 11.9 ± 1.01 0.05 ± 0.03 - <0.013 - 0.04 ± 0.04 0.34 ± 0.05 0.52 ± 0.09 130 ± 7.06 - -

0.07 M HCl 0.06 ± 0.003 15.5 ± 0.44 0.04 ± 0.001 - 0.36 ± 0.04 - 0.02 ± 0.001 0.72 ± 0.08 0.20 ± 0.02 57.7 ± 3.13 - -

BRM S004 Glass
UBM - - - 0.08 ± 0.01 - - - - - - - -

0.07 M HCl - - - 0.04 ± 0.01 - - - - - - - -

110-05-paint-02 Paint
UBM - - 0.07 ± 0.01 - - - 19.2 ± 2.89 - - - - -

0.07 M HCl - - 1.14 ± 0.30 - - - 20.9 ± 5.96 - - - - -

CRM 013-50G Paint
UBM - - 10.2 ± 0.90 161 ± 6.31 - - 37.1 ± 2.47 - - - - -

0.07 M HCl - - 13.5 ± 2.09 226 ± 39.8 - - 96.0 ± 19.8 - - - - -

SRM856a Aluminum
UBM - - - <0.001 <0.013 0.15 ± 0.05 0.58 ± 0.06 - - <0.007 3.16 ± 0.92 6.60 ± 4.37

0.07 M HCl - - - 80.4 ± 1.54 48.9 ± 7.92 6.35 ± 0.25 0.24 ± 0.01 - - 2.08 ± 0.34 11.0 ± 0.14 636 ± 23.2

SRM 872 Phosphor bronze UBM - - - - 4920 ± 81 - 610 ± 33 - - 7.14 ± 0.37 - 440 ± 11.4
0.07 M HCl - - - - 16,036 ± 1748 - 6617 ± 80.7 - - 491 ± 100 - 2313 ± 97.4

SRM 875 Cupronickel UBM - - 0.84 ± 0.17 - 17,449 ± 220 2128 ± 23.5 0.69 ± 0.17 - 0.09 ± 0.01 <0.007 - <0.006
0.07 M HCl - - 3.76 ± 0.22 - 20,283 ± 1290 3484 ± 176 9.55 ± 0.37 - 0.02 ± 0.005 5.75 ± 1.50 - 79.8 ± 6.50

SRM 899 Nickel, Alloy UBM - - - - - - 0.01 ± 0.002 - 0.08 ± 0.03 - - -
0.07 M HCl - - - - - - 0.03 ± 0.003 - 0.02 ± 0.003 - - -

a ±: standard deviations of triplicates. b -: elements not contained in the CRM. c <: limit of detection (LOD; mg/kg).
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Table 4. Bioaccessibility of metals in CRMs determined using the UBM and the 0.07 M HCl single extraction method.

CRMs Material Methods
Bioaccessibility (%)

As Ba Cd Cr Cu Ni Pb Sb Se Sn Sr Zn

JSM P701-1 PE
UBM 0.02 - a 0.03 1.80 - - 0.06 - - - - -

0.07 M HCl 0.01 - 0.07 1.74 - - 0.15 - - - - -

CRM 113-01-013 ABS
UBM 0.32 - 0.10 0.07 - 0.05 0.03 <0.001 - - - -

0.07 M HCl 0.29 - <0.004 b 0.06 - <0.0003 0.06 0.005 - - - -

JSAC 0602-3 PET
UBM - - 0.01 0.07 - - 0.02 - - - - -

0.07 M HCl - - 0.07 0.03 - - 0.03 - - - - -

ERM EC680m PE
UBM <0.021 - 0.01 0.26 - - <0.01 0.08 - <0.005 - 2.36

0.07 M HCl 0.37 - 0.02 0.19 - - 0.06 0.08 - 0.32 - 0.26

ERM EC681m PE
UBM <0.006 - 0.004 0.21 - - <0.001 0.01 - <0.001 - <0.0001

0.07 M HCl 0.23 - 0.02 0.16 - - 0.07 0.02 - 0.06 - 0.05

SRM 2861 PVC
UBM 0.003 1.61 0.08 - <0.002 - 0.04 0.50 0.21 10.0 - -

0.07 M HCl 0.02 2.09 0.06 - 0.72 - 0.02 1.07 0.08 4.46 - -

BRM S004 Glass
UBM - - - 0.02 - - - - - - - -

0.07 M HCl - - - 0.01 - - - - - - - -

110-05-paint-02 Paint
UBM - - 0.03 - - - 2.03 - - - - -

0.07 M HCl - - 0.50 - - - 2.22 - - - - -

CRM 013-50G Paint
UBM - - 26.9 26.0 - - 5.77 - - - - -

0.07 M HCl - - 35.6 36.6 - - 14.9 - - - - -

SRM 856a Aluminum
UBM - - - <0.0002 <0.000003 0.004 0.05 - - <0.0001 1.76 0.07

0.07 M HCl - - - 13.4 0.14 0.17 0.02 - - 0.21 6.11 6.62

SRM 872 Phosphor bronze UBM - - - - 0.56 - 1.48 - - 0.02 - 1.10
0.07 M HCl - - - - 1.84 - 16.0 - - 1.18 - 5.78

SRM 875 Cupronickel UBM - - 3.81 - 1.99 2.04 0.75 - 2.23 <0.001 - <0.0001
0.07 M HCl - - 17.1 - 2.31 3.34 10.4 - 0.55 6.38 - 7.25

SRM 899 Nickel, Alloy UBM - - - - - - 0.00002 - 0.0001 - - -
0.07 M HCl - - - - - - 0.0001 - 0.00002 - - -

a -: elements not contained in the CRM. b <: limit of detection (LOD; mg/kg).
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Meanwhile, artificial digestive fluid composition (ingredients) can affect the bioacces-
sibility of target metals and metalloids. The artificial digestive fluids of various components
(pepsin, mucin, etc.) used for UBM testing contribute to the formation of metal com-
plexes [21–25]. Metals extracted from low-pH gastric juice can interact (e.g., metal complex
formation) with enzymatic components in the intestinal environment (i.e., neutral pH).
These metal complexes may precipitate during centrifugation and be separated from the
supernatant. They may also show a low ionization efficiency, even when introduced
into analytical equipment (e.g., ICP-MS) [26]. Consistent with these observations, signifi-
cant differences were observed in the bioaccessibility results obtained with the UBM and
0.07 M HCl single extraction method for Cr (UBM: <0.0002%, 0.07 M HCl: 13.4%) and Cu
(UBM: <0.000003%, 0.07 M HCl: 0.14%) in SRM 856a and Zn in SRM 875 (UBM: <0.0001%,
0.07 M HCl: 7.25%). Conversely, Se in SRM 2861 (UBM: 0.21%, 0.07 M HCl: 0.08%) and
Sn (UBM: 10.0%, 0.07 M HCl: 4.46%) and Zn (UBM: 2.36%, 0.07 M HCl: 0.26%) in ERM
EC680m showed higher bioaccessibility using the UBM. Further research is needed to
understand how the UBM facilitates metal extraction from certain products.

Although the specific interactions and mechanisms between the enzymatic compo-
nents in artificial digestive fluids and target metals and metalloids are not well-understood,
this study indicates that the bioaccessibility results determined using the two analytical
methods are similar, regardless of these interactions (p > 0.05). In previous studies, the
IVIVC values obtained from animal models and the UBM were higher than the validation
criterion (i.e., R2 ≥ 0.6) while indicating the suitability of the UBM as an in vitro oral
bioaccessibility test method for metal-contaminated soil [27,28]. Furthermore, Li et al. [29]
confirmed that the UBM showed a higher IVIVC value than other in vitro bioaccessibility
test methods (i.e., IVG [8], PBET [9], solubility bioaccessibility research consortium method
(SBRC) [10], and DIN [12]) when assessing As-contaminated soils.
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The UBM is an effective in vitro test method that can reasonably be used to assess
the concentration of metal absorbed in the body (which can replace a bioassay), and its
relative complexity can be overcome with a single extraction method, as described in this
study (i.e., the 0.07 M HCl extraction method). It has the advantages of eliminating time-
consuming and complicated procedures involved in the preparation of the UBM extractants
and the dilution of eluates (i.e., to lower the high total dissolved solid content of the eluates)
and can minimize the use of solvents in the pursuit of green analytical chemistry.

This study contributes to the establishment of a more reasonable human health risk
assessment by presenting the alternative possibility of an in vitro bioaccessibility test
method partially confirmed for metal-contaminated soil, introduced into the realm of
consumer products for the first time. In particular, the 0.07 M HCl single extraction method
can be used as a screening method prior to the application of the UBM. If a certain threshold
is exceeded when applying 0.07 M HCl single extraction to consumer products, the use of
the UBM to assess more realistically bioaccessibility can be considered.

4. Conclusions

In this study, the oral bioaccessibility of As, Ba, Cd, Cr, Cu, Ni, Pb, Sb, Se, Sn, Sr,
and Zn in 13 CRMs was assessed using the UBM, as a precise means to mimic the human
digestive processes, and the 0.07 M HCl single extraction method, as a simplified means.
The bioaccessible metal concentrations evaluated using the UBM and the 0.07 M HCl single
extraction method ranged from 0.002 to 17,449 mg/kg and from 0.003 to 20,283 mg/kg,
respectively; their bioaccessibility ranged from 0.00002 to 26.9% and from 0.00002 to 36.6%,
respectively. The 0.07 M HCl single extraction method showed relatively high concentra-
tions, as the bioaccessible metal concentrations differed by 1.38 times (i.e., the slope of
the linear regression), indicating its potential for conservative assessment. No statistically
significant difference was observed between the results obtained using the two methods.
This suggests that the 0.07 M HCl single extraction method can be used as an in vitro test
method to assess the oral bioaccessibility of metals in a variety of consumer products,
replacing the UBM and/or being used as a screening method prior to the application of
the UBM, while eliminating the time-consuming procedures for preparing extractants and
minimizing the use of solvents in order to adhere to green analytical chemistry practices.
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