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ABSTRACT TheAdaptive CollisionAvoidanceAlgorithmBased on the EstimatedCollision Time (ACACT)
is proposed in this paper, representing a novel approach designed for effective and efficient collision
avoidance and path planning in highly dynamic environments, notably those with swarm Unmanned Aerial
Vehicles (UAVs). The fundamental challenge in swarm UAV operations revolves around dynamic collision
avoidance and nimble path planning. Addressing this, the ACACT algorithm exhibits the capability of
predicting imminent collisions by estimating their likely occurrence times and then adeptly adjusting
the UAVs’ trajectories in real-time. A significant facet of the algorithm is the employment of adaptive
target velocity, updated in accordance with the predicted collision timelines. This ensures not only that
UAVs can sidestep potential collisions but also that they can pursue more direct and efficient routes
in comparison to conventional methodologies. Highlighting its superiority over existing techniques, the
ACACT algorithm successfully resolves some long-standing issues linked with the Artificial Potential Field
(APF) method, especially concerning unreachability and oscillation. This is accomplished by integrating a
strategic contingency plan coupled with enhanced obstacle navigation, particularly in proximity to target
locations. For a comprehensive evaluation of the algorithm’s prowess in collision avoidance and path
planning, a novel metric named the Path Traveling Time Ratio (PTTR) is introduced. PTTR assesses both the
traveling time taken for a vehicle to reach its target position and the duration it spends within collision-prone
zones. This metric offers a more advanced evaluation method than merely comparing path lengths, collision
counts, or traveling times. Through rigorous experimentation, it is observed that the ACACT algorithm
enhances collision avoidance and path planning by an impressive margin of up to 20% compared to its
traditional counterparts. Furthermore, a distinct advantage of the ACACT is its ability to uniformly tackle
obstacles, irrespective of their speeds and independent of PID gain variations. It not only boosts the safety
parameters but also amplifies operational efficiency, setting new benchmarks for UAVs to reach their target
points with swiftness and security.

INDEX TERMS Swarm UAVs, collision avoidance of swarm UAVs, path planning of swarm robots, swarm
robotics.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), prevalent in robotics
and military applications, are recognized for their agility
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and deployment versatility. These attributes make them
suitable for diverse operations such as surveillance, search
and tracking, cargo transportation, and farm management
[1]. However, the scope of tasks that a single UAV can
execute is finite, necessitating the exploration of swarm
control for UAVs to optimize their utilization. Recent
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studies have been focusing on tasks execution while concur-
rently avoiding potential collisions with obstacles or other
agents [2], [3], [4], [5].

Key technologies for managing swarm UAVs encompass
path planning and collision avoidance. In the absence of
a collision avoidance algorithm during group movement
or formation alignment, collisions may occur, potentially
causing damage to the UAVs. A path planning algorithm that
simultaneously avoids inter-UAV collisions, maintains a pre-
determined formation, and swiftly reaches the destination is
integral to swarm air control. Nonetheless, it is challenging
for UAVs to establish a real-time, smooth, and safe collision-
free path. Over the past few years, extensive research has been
conducted on path planning in an unmapped environment,
where the UAV avoids real-time sensor-detected obstacles
and navigates toward the destination. Several methodologies
have been proposed, including the A* algorithm for offline
path planning [6], [7], Rapidly-exploring Random Tree
(RRT) for quickly exploring uncharted areas [8], [9], [10],
Model Predictive Control (MPC) [11], [12], geometric-
based methods [13], [14], and artificial potential fields
(APF) [15], [16].
The A* algorithm, a heuristic search algorithm extensively

employed, introduces global information to verify all possible
nodes of the shortest path and estimates the distance from
the current node to the destination. This estimation reflects
the probability that the current node is part of the shortest
path. The A* algorithm executes a global search for path
planning under UAVs’ dynamic constraints, generates a
series of intermediate points, and initiates a local search to
circumvent obstacles. Due to these characteristics, the A*
algorithm is computationally complex and memory-intensive
when planning a 3D path for UAVs. Additionally, post-
processing to smooth the path is often required to apply the
path to the UAV [6], [7].

The RRT is a sampling-based probabilistic algorithm
designed to swiftly traverse unexplored areas in a search
space. By randomly generating nodes and connecting them
to the direction of their nearest neighbor, it achieves
effective exploration. Kothari and Postlethwaite [9] applied
chance constraints within the RRT to limit the probability
of constraint violation and to navigate uncertain dynamic
obstacles. To optimize computation time, Kuffner and
LaValle [8] introduced a bidirectional RRT that conducts
simultaneous searches from both the starting point and
the destination. Furthermore, the RRT can find feasible
paths in environments with high dimensional spaces and
complexity. By integrating control functions with specific
input parameters, this approach can be adapted to various
constraints. However, paths derived from RRT often require
refinement using the Dijkstra algorithm, which can extend the
time needed for path adjustment.

MPC is a type of control system that optimizes control
input considering current and expected future operations.
This method uses the dynamic model of the system to predict
future outputs and calculates the optimal control signal based

on these predictions. MPC heavily depends on the accuracy
of the model, and the calculation complexity can be high.

Geometric-based methods primarily find the optimal col-
lision avoidance strategy based on the geometric properties
of fixed-wing forms. For example, a geometric optimization
approach to resolving collisions between planes minimizes
the change in the velocity vector required to resolve collisions
to obtain the minimum deviation from the normal trajectory.
These methods are very efficient, but because they require
a specific geometric relationship between the UAV and the
obstacle, they can be difficult to apply in complex and
dynamic environments [13], [14].

UAVs are commonly operated in dynamic environments
characterized by high degrees of freedom and fast speeds.
In such dynamic environments, each UAV in a swarm must
be able to autonomously avoid collisions. The APF algorithm
offers a mathematically simple and physically realistic
approach that provides smooth paths suitable for robot
and UAV applications. Consequently, the APF algorithm is
well-suited for swarm UAVs that require agile and rapid
movements. Because the APF algorithm does not guarantee
complete collision avoidance, various algorithms have been
explored to mitigate collision risks [17], [18].

Woods and La introduced an advanced version of the
conventional potential field controller, termed the extended
potential field controller (ePFC). This enhancement permits
a drone to track dynamic targets while evading obstructions,
offering improved performance in terms of smoother paths
and reduced settling times. The stability of the ePFC was
verified using the Lyapunov approach, and its effectiveness
was demonstrated through lab experiments [19]. Meanwhile,
Sun et al. focused on the complexities of path planning
for drone formations in dense settings. They revamped
the traditional artificial potential field (APF) algorithm,
addressing challenges in multi-drone path planning in three-
dimensional spaces. Their innovative approach ameliorated
path oscillation issues and integrated a target exchange
mechanism to circumvent local optimization traps. This
improved algorithm was tested on a formation of 500 drones,
proving its practical value in real-flight scenarios [20].
In parallel, Singletary et al. explored the relationship between
the longstanding APFs and the more recent Control Barrier
Functions (CBFs). They provided a theoretical linkage,
indicating that a broad category of APFs can lead to the
creation of CBFs that promise safety. These newly derived
CBFs showcase versatility and are applicable to nonlinear
systems. Practical tests further affirmed the potential of their
method, especially for obstacle avoidance in both simulated
and real environments, including for quadrotors with non-
deterministic dynamics [21].
One challenge in implementing the APF algorithm is

the setting of appropriate gains in the collision prevention
Proportional-Integral-Differential (PID) controller [22]. If the
gains are set too high, the resulting path becomes excessively
long, while setting them too low compromises collision
prevention. This indicates that the performance of the existing
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PF algorithm in collision avoidance is highly sensitive to
the values of PID gains. Achieving optimal gain values for
dynamic mission environments often necessitates extensive
trial and error.

Furthermore, the APF algorithm reduces the velocity
of UAVs when maneuvering around obstacles, resulting
in increased time required to reach the target. Moreover,
it makes UAVs susceptible to local minima, which is a com-
mon issue in PF-based approaches. Additionally, accurately
predicting the timing of collision with obstacles remains
challenging within the existing PF algorithm, as collision
probability increases based on obstacle or UAV velocities.
Given the fragile nature of UAVs and their vulnerability to
even minor collisions, collision probability directly impacts
mission capabilities. Existing collision avoidance algorithms
struggle to handle obstacles with varying speeds, thus
increasing the likelihood of collisions.

To address these limitations, this paper proposes an adap-
tive collision avoidance algorithm based on the Estimated
Collision Time (ACACT) algorithm. The goal of the proposed
algorithm is to save travel time by shortening the path length
to the destination while avoiding collisions with obstacles,
regardless of their speed. It exhibits robustness in dynamic
environments and reduced sensitivity to PID gains.

A. CONTRIBUTIONS
1) This paper presents a novel collision avoidance

algorithm based on a potential field with adaptive target
velocity. Specifically designed for swarm UAVs in
dynamic environments, it prioritizes the shortest path
to the target and effectively mitigates collisions using
the estimated collision time. Additionally, a unique
Path Traveling Time Ratio metric has been introduced,
offering a comprehensive assessment of the algorithm’s
performance in both collision avoidance and path
planning.

2) The ACACT algorithm showcased noteworthy
enhancements, achieving up to a 20% improvement in
collision avoidance and path planning over traditional
methods. This includes providing consistent collision
avoidance capabilities across varying-speed obstacles,
regardless of PID gain modifications, thus bolstering
the algorithm’s versatility.

3) To comprehensively compare the established and the
new algorithms, we devised a realistic simulator
anchored on a physics engine, facilitating a meticu-
lous evaluation of collision avoidance under diverse
conditions.

II. PROBLEM STATEMENT
In this paper, the UAV employed is a quadrotor drone with
a configuration of four rotors. This rotor arrangement grants
the UAV unrestricted motion in all six degrees of freedom,
enabling it to maneuver through three-dimensional paths
in order to avoid obstacles and reach the target position.

FIGURE 1. Attractive force and repulsive force at the UAV generated
concerning the position of the obstacle and position of the goal.

The practical implementation of the algorithm proposed
necessitates two foundational assumptions:

1) Every UAV within the swarm continually disseminates
its respective position and velocity data via a depend-
able network infrastructure.

2) EachUAV is integrated with a sensor adept at ascertain-
ing both the location and speed of impediments in every
direction, having a maximal detection range denoted
as rs.

To simplify the calculations in the algorithm, each UAV is
treated as a particle in 3D space. Therefore, although this
paper primarily focuses on small UAVs, by increasing the size
of the particles, the algorithm can be applied regardless of the
UAV’s size.

Figure 1 illustrates a UAV positioned in a Cartesian
coordinate system commonly used as the East-North-Up
(ENU) coordinate system [23]. The origin represents the
starting position of the UAV, denoted as p⃗v = (xv, yv, zv)
in the coordinate system. p⃗o = (xo, yo, zo) represents the
position of the obstacle, and p⃗g = (xg, yg, zg) represents
the target position of the UAV. The velocities of the UAV
and the obstacle are represented by vectors v⃗v and v⃗o,
respectively.

The control method employed for swarm drones is based
on centralized control. While decentralized approaches,
which offer scalability and improved system stability, are
actively researched, they fall outside the scope of this paper’s
focus and will not be discussed in detail [24], [25].

For any vector x⃗, ˆ⃗x denotes a unit vector with a magnitude
of 1 in the direction of x⃗.

A. GAIN OPTIMIZATION PROBLEM
Gain optimization is a common challenge in many control
systems, where the performance is influenced by the choice
of gain values. In most cases, a single gain optimization
process can yield consistent performance when the control
environment remains static. However, in the context of UAV
path planning, the speeds of obstacles or other agents can
vary, necessitating repeated gain optimization for different
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FIGURE 2. Example of an artificial potential field with a high potential
obstacle and low potential target.

service environments. This results in the challenge of
potential collision probabilities with fast-moving obstacles.
There’s a trade-off between optimizing gains to reduce these
risks and ensuring efficient trajectories that save travel time
and energy with slow-moving obstacles.

B. TARGET UNREACHABILITY PROBLEM
The target unreachability problem is a well-known limita-
tion of existing APF algorithms, particularly when UAVs
encounter static obstacles on their path to the target position.
In such cases, the UAVmay become trapped in local minima,
preventing it from reaching the intended target position. This
occurs when the repulsive forces to avoid obstacles and the
attractive forces towards the target position balance each
other, resulting in a net force of zero and stagnation of the
UAV’s motion.

C. OSCILLATION PROBLEM
The oscillation problem arises when obstacles are located
near the UAV’s target position. The oscillation problem
occurs when the UAV experiences repetitive oscillations near
the target position due to the interplay of increasing repulsive
forces from obstacles and diminishing attractive forces as the
UAV approaches the target. Over time, the amplitude of these
oscillations tends to decrease, eventually leading to the UAV
reaching the target position after a significant duration.

III. PROPOSED COLLISION AVOIDANCE ALGORITHM FOR
SWARM UAVS
UAVs are required to respond rapidly to changes in their
surrounding environment and generate real-time paths that
are both efficient and safe. The APF algorithm is widely
used for path planning in robotics, particularly in scenarios
where map information is limited and dynamic obstacles
are prevalent. The appeal of the APF algorithm lies in its
simplicity and its ability to generate smooth trajectories that
facilitate collision avoidance. Unlike approaches that search
for a global trajectory, the APF algorithm generates local
paths in close proximity, resulting in smoother paths for
robots to follow. However, the APF algorithm necessitates

careful optimization of gain values to effectively avoid
collisions. Furthermore, even with gain optimization, there
remains the possibility of collisions with faster obstacles that
were not accounted for during the optimization process. Con-
servative gain optimization can result in overly long detours
around slower obstacles, leading to inefficient path planning.
To address these limitations, we propose an enhancement to
the APF algorithm by introducing the concept of estimated
collision time. Specifically, we adjust the change in path
direction based on the velocity of obstacles, enabling the
algorithm to provide stable collision avoidance paths for
obstacles with varying speeds. As a result, our proposed
algorithm ensures UAV safety even in scenarios where
gain optimization has not been performed, distinguishing it
from previous approaches that exhibited varying collision
avoidance performance based on gain optimization.

A. APF ALGORITHM
Fig. 2 illustrates the concept of an artificial PF algorithm.
In the traditional APF algorithm introduced by Khatib
in 1986, the avoidance of collisions is achieved through
the utilization of attractive and repulsive forces [26]. The
attractive force, represented as a force vector, is directed
towards the desired target location to guide the robot in
reaching its destination. Conversely, the repulsive force, also
expressed as a force vector, points in the opposite direction of
obstacles, aiming to prevent collisions by creating a repulsive
effect.

In Fig. 1, the attractive force vector a⃗ pulling the UAV to
the goal position is given as

a⃗ = (xg − xv, yg − yv, zg − zv). (1)

In addition, the relative position vector r⃗ , representing the
repulsive force to the UAV according to the position of the
obstacle, is obtained as

r⃗ = (xv − xo, yv − yo, zv − zo). (2)

The repulsive force that increases as the distance to the
obstacle decreases is obtained as

r⃗p =
r2s

∥r⃗∥2
ˆ⃗r , if ∥r⃗∥ < |rs| , (3)

where the radius rs represents the range within which
obstacles are considered for applying the repulsive force. The
unit direction vector ˆ⃗r is derived from the vector r⃗ , indicating
the direction from the UAV to the obstacle. The value of rs
is determined by the radius of the sensor installed on the
UAV, which enables obstacle detection. (3) illustrates that
the magnitude of r⃗p is 1 when the obstacle is located at
the maximum sensing range of the UAV. Conversely, if the
obstacle is outside the sensing range, the magnitude of r⃗p
is 0. Consequently, as obstacles approach the UAV within
the radius rs, a stronger repulsive force is exerted to prevent
a collision. It should be noted that in the PF algorithm,
the effectiveness of collision avoidance is influenced by the
repulsive force.
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FIGURE 3. Target velocity v⃗+
v updated by projection target velocity v⃗p+

v .

Let v⃗v represent the target velocity that governs the
trajectory of the UAV. It serves as a control input to ensure
that the current velocity of the UAV quickly converges to the
target velocity. The value of v⃗v is determined by combining
attractive and repulsive forces according to the following as

v⃗v = kpaa⃗+ kppr⃗p, (4)

where kpa denotes the proportional (p) gain of the PID control
for the attractive force, and kpp represents the p gain for
the repulsive force. Choosing excessively high values for
these gains leads to a rapid increase in UAV movement upon
entering the sensing range due to the repulsive force, which
can result in flight instability or oscillation. Conversely,
setting these gains too low may lead to collision incidents
as obstacles approach. Therefore, determining appropriate
values for the p gains is crucial. The stability and collision
avoidance performance of the system are highly sensitive
to these gains. However, finding an optimal value for the
gains proves challenging, as they need to be adjusted based
on the obstacle or UAV’s speed. It is important to note that
while (4) employs only p gains for simplicity, in practical
implementations, the p, i, and d gains should all be set to
their optimal values to achieve effective collision avoidance
performance.

B. ADAPTIVE COLLISION AVOIDANCE BASED ON
ESTIMATED COLLISION TIME
1) ROBUST PATH GENERATION BASED ON ESTIMATED
COLLISION TIME
In order to enhance the collision avoidance performance in
the presence of obstacles with different velocities, an addi-
tional repulsive force that takes into account the relative
velocity between the UAV and the obstacles is incorporated.
The relative velocity is calculated as

v⃗r = v⃗o − v⃗v. (5)

The repulsive force generated by the relative velocity
vector v⃗r is directed perpendicular to the relative velocity

vector, following the approach proposed in [27]. Since the
UAVoperates in a three-dimensional space, there aremultiple
vectors that are perpendicular to the relative velocity vector.
In this paper, only the vectors perpendicular to the direction
moving away from the obstacle in the plane are considered,
which includes the vectors r⃗ and v⃗r . The repulsive force in
the normal direction is defined as

r⃗vn =


ˆ⃗r

ˆ⃗r · ˆ⃗vr
− ˆ⃗vr if 0 < ˆ⃗r · ˆ⃗vr < 1

0 else .

(6)

The equation is applicable when the angle between r⃗p and
v⃗r is less than 90◦, satisfying the condition 0 < ˆ⃗r ·

ˆ⃗vr < 1. Additionally, the target velocity of the UAV can be
determined by considering r⃗vn as

v⃗v = kpaa⃗+ kppr⃗p + kpvr⃗vn. (7)

The concepts of projected target velocity and estimated
collision time are employed for adaptive collision avoidance.
These concepts allow for the anticipation of the target
velocity and the prediction of the time until a potential
collision. By incorporating these estimates, the system can
dynamically adjust its trajectory and take proactive measures
to avoid potential collisions. The estimated collision time
is obtained by considering the distance to the obstacle
and the target velocity. For objects moving at a constant
velocity, the time it takes to traverse a certain distance can be
determined by dividing the distance by the velocity. Similarly,
when the UAV maintains its current target velocity, the
estimated collision time is defined as the duration required
to collide with the obstacle. However, since the direction
of the target velocity may not align with the obstacle, the
target velocity is projected in the direction of the obstacle
for precise calculations. By continuously updating the target
velocity based on obstacle avoidance, the UAV’s trajectory is
dynamically generated.

The target velocity v⃗v can be obtained as explained in (7).
In Fig. 3, v⃗pv refers to the target velocity projected to −r⃗ ,
which is calculated as

v⃗pv = −∥v⃗v∥ cos θ ·ˆ⃗r, (8)

where θ means the angle between −r⃗ and v⃗v. furthermore,
cos θ is as

cos θ =
−v⃗v · r⃗

∥v⃗v∥ · ∥r⃗∥
. (9)

Substituting (9) into (8), we get

v⃗pv =
v⃗v · r⃗
∥r⃗∥

·ˆ⃗r . (10)

Let tc be the estimated time until the UAV collides with an
obstacle in the future, assuming that v⃗v and r⃗ are on the same
line. The estimated collision time tc in the direction of the
obstacle can be obtained as

tc =
∥r⃗∥∥∥v⃗pv∥∥ , (11)
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which is obtained using (10) and (11) as

tc =
∥r⃗∥2

|v⃗v · r⃗|
. (12)

Let ts be the time required to avoid collision when a
collision with an obstacle is expected. It is the only parameter
that should be set appropriately in the proposed ACACT
algorithm and can be calculated physically as opposed to the
PID gains that must be set experimentally in general. For
example, if rs is 8 m and the maximum speed of the UAV
is 2 m/s, ts can be set to a maximum of 4 s. This prioritizes
collision avoidance, even if it results in slightly longer paths.
If ts is set between 2-3 s, the algorithm will choose a path that
is slightly closer to the obstacle, which, although dangerous,
can reach the target point faster. If tc < ts, the conventional
algorithms do not have enough time to avoid collisions,
thus the potential collision probability is high. On the other
hand, the proposedACACT algorithm performs the following
to make tc larger than ts to reduce the potential collision
probability. First, when ts is set to a specific value, the updated
projection target velocity v⃗p+v is calculated as∥∥v⃗p+v ∥∥ =

∥r⃗∥
ts

. (13)

The adjustment of v⃗p+v aims to increase the collision time
tc to be greater than or equal to the expected collision
time ts. This adjustment ensures that the UAV has sufficient
time to avoid collisions with obstacles. The updated target
velocity v⃗+v is derived from v⃗p+v , allowing the UAV to navigate
towards the target point efficiently while maintaining its
speed. To calculate v⃗vv, a vertical vector is required, which
plays a crucial role in determining the direction of motion
that avoids obstacles. The calculation of the vertical vector v⃗vv
is as

v⃗vv = v⃗v − v⃗pv . (14)

This value is used to obtain the updated target velocity ⃗v+v as

v⃗+v =
∥∥v⃗p+v ∥∥ ˆ⃗vpv +

√
∥v⃗v∥

2
−

∥∥∥v⃗p+v ∥∥∥2 ˆ⃗vvv, (15)

where, by taking the squared sum of the coefficients of the
two integrated vectors, it becomes evident that the magnitude
of v⃗v remains unchanged. The updated v⃗+v leverages the
direction vector of the projection velocity and the vertical
velocity components within v⃗v to determine the shortest path
while avoiding obstacles.

The obtained v⃗+v generates a path in a safe direction
based on the estimated collision time derived from the
projection velocity aligned with the obstacle’s direction.
In this regard, the ACACT algorithm demonstrates adaptive
collision avoidance performance that is less reliant on
collision avoidance PID gains, thanks to the utilization of
estimated collision time. Moreover, the parameter ts, which
is easily comprehensible, ensures that the projection velocity
remains collision-free within a specified timeframe, thereby
determining the path for obstacle avoidance. Notably, ts,

Algorithm 1 Contingency Plan

if ∥a⃗∥ > 1,
∥∥∥ ⃗v+v

∥∥∥ < 0.5 then
for all obstacle o ∈ rs do
compute p⃗r = p⃗v − p⃗o
compute phi = arccos(p⃗r .x/rs)
compute theta = arctan(p⃗r .z, p⃗r .y)
append values in the obposes(phi, theta)

end for
get random value rphi = uniform(0, π/2)
get random value rtheta = uniform(0, 2π )
if ((rphi, rtheta) ∈ obposes then
get random value rphi = uniform(0, π/2)
get random value rtheta = uniform(0, 2π )

else
compute x = −0.8 ∗ rs ∗ cos rphi
compute y = 0.8 ∗ rs ∗ sin rtheta ∗ cos rtheta
compute z = 0.8 ∗ rs ∗ sin rtheta ∗ sin rtheta
return x, y, z

end if
end if

which relates to the maneuverability of the UAV, must be
accurately calculated, eliminating the need for extensive trial
and error typically associated with conventional collision
avoidance algorithms.

2) CONTINGENCY PLAN
As a characteristic of the APF algorithm, which iteratively
generates paths within local regions to reach the target
position, it is necessary to have a contingency plan to
overcome situations where the algorithm becomes trapped
in local minima and fails to reach the target position.
To determine whether the UAV is trapped in a local minima,
we can assess its position, velocity, and target point. If the
magnitude of vector a⃗ in (1) is greater than 0 and the UAV’s
velocity approaches zero, it indicates that the UAV is indeed
trapped. In such a situation, a contingency plan needs to be
initiated.

When trapped in a local minima, obstacles typically
obstruct the UAV’s forward movement. Therefore, to escape,
it is advisable to move backward. Since information about
obstacles is only available within a radius of rs, selecting
a random position within this radius in the backward
direction without obstacles is preferred. The algorithm for
implementing this contingency plan can be summarized as
shown in Algorithm 1. The escape radius is set to 80% of the
obstacle radius, and a randomposition is generatedwithin this
radius in the backward direction, ensuring it is obstacle-free.
Finally, the UAV is moved to the randomly selected position
to successfully escape the local minimum.

3) OSCILLATION CANCELLATION
Oscillation phenomena in UAVs caused by obstacles near
the destination occasionally occur. While these oscillations
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generally diminish or disappear over time, minimizing the
time required for UAVs with shorter flight durations to reach
the destination is desirable. The first step is to determine
whether the UAV has approached the target position and
if there are obstacles in close proximity. By selecting an
arbitrary distance, denoted as rref , which is smaller than the
detection radius rs, it is possible to determine if the UAV
is near the destination. Additionally, a positive value of the
repulsive force r⃗p, derived from relative positioning, indicates
the presence of nearby obstacles. Situations involving
obstacles near the target position can be classified into two
categories: those where the obstacles are in motion and those
where they are stationary. In the case of moving obstacles,
they do not significantly contribute to UAV oscillation, and
collision avoidance techniques can be employed. On the other
hand, if the position of a stationary obstacle does not align
with the target position, temporarily disabling the repulsive
force is an effective approach to reduce oscillation. Therefore,
(7) is modified as

v⃗v =


kpaa⃗ if ∥a⃗∥ < rref , r⃗p > 0, r⃗vn < 0.2
kpaa⃗+ kppr⃗p
+kpvr⃗vn else ,

(16)

C. COLLISION AVOIDANCE FOR SWARM UAVS
The first requirement for controlling a swarm of UAVs is
a unified global coordinate system. Typically, each UAV
maintains its own local coordinate system for controlling
its own position. The system that controls the entire swarm
issues commands based on the global coordinate system,
so each UAV shares its coordinates with the system by
transforming them using the following as

xl
yl
zl
1

 =


cos θ − sin θ 0 tx
sin θ cos θ 0 ty
0 0 1 tz
0 0 0 1



xg
yg
zg
1

 (17)

where xl, yl , and zl represent the local coordinate system of
the UAV, whereas xg, yg, and zg represent the unified global
coordinate system. Additionally, θ denotes the angle between
the local coordinate system and the global coordinate system.
In a swarm UAVs, it is necessary to avoid collisions

not only with obstacles but also with other agents within
the swarm. The proposed ACACT algorithm encompasses
collision avoidance from multiple obstacles, including other
agents.
The repulsive force for the ith vehicle in a group of N units

is determined as

r⃗i =

N∑
j=0,j̸=i,∥r⃗j∥<|rs|

r⃗j, (18)

where r⃗i represents the resultant force calculated in the
direction of the vector sum of all the repulsive forces exerted
by known obstacle locations and other vehicles within a

Algorithm 2 Swarm Collision Avoidance
for all vehicle d ∈ Swarm do
Coordinate Transform pgtopl
Compute a⃗, r⃗p, r⃗vn, r⃗min
if ∥a⃗∥ < rref , r⃗p > 0, r⃗vn < 0.2 then

compute v⃗vi = kpaa⃗
else

compute v⃗vi = kpaa⃗+ kppr⃗pi
end if
if ∥a⃗∥ > 1,

∥∥∥ ⃗v+v
∥∥∥ < 0.5 then

execute Contingency Plan
end if
compute tc for r⃗min
if tc < ts then
compute v⃗+vi for r⃗min
return v⃗+vi

else
return v⃗vi

end if
end for

radius of rs around the ith vehicle. The repulsive force acting
against the most imminent obstacle to be avoided within the
rs range can be determined as

r⃗min : ∥r⃗i∥ ≤
∥∥r⃗j∥∥ , i ̸= j ∀i, j ∈ N , (19)

where r⃗min is r⃗ used to determine tc of the proposed algorithm.
Algorithm 2 summarizes the aforementioned algorithm.

The ACACT algorithm is, in theory, adaptable to exten-
sive multi-UAV systems, encompassing between 100 and
1,000 UAVs. The scalability of this system hinges on
two pivotal assumptions. Firstly, the position and velocity
of every UAV in the swarm should be disseminated in
real-time via a robust network infrastructure. Secondly,
the ACACT algorithm necessitates a decentralized control
architecture for individual UAV control. When realized
through this distributed control paradigm, the algorithm
exhibits a computational complexity of O(n), seemingly
escalating with the number of UAVs. However, as each UAV
is only tasked with avoiding other UAVs within a radius of
rs, the computational demand scales with rs, independent of
the UAVs quantity n. Consequently, the ACACT algorithm
assures both scalability and real-time operability.

D. PERFORMANCE EVALUATION METRIC
Dynamic path planning algorithms for UAVs in 3D space
are currently limited, and there is a lack of suitable metrics
for evaluating their performance. To address this challenge,
we propose the path traveling time ratio (PTTR) as a novel
measure to assess the effectiveness of collision avoidance and
path planning. PTTR is defined as the ratio of the actual path
traveling time to the ideal path traveling time, as shown in
Fig. 4. It provides a quantitative measure of the efficiency and
effectiveness of the UAV’s trajectory planning in navigating

VOLUME 11, 2023 120185



S. Min, H. Nam: ACACT for Swarm UAVs

FIGURE 4. An example scenario showing how PTTR is calculated. In this
scenario, tmin represents the time it takes to fly the shortest path at
maximum velocity.

complex environments.PTTR is defined as

PTTR =

d
vmax

− tctravel
ttravel

, (20)

where d is the distance between the current position and goal,
ttravel is the time taken to move from the current position to
the goal position, vmax is the maximum velocity of the UAV,
and tctravel is the time spent flying in a collision risk area. The
first term of PTTR is introduced to evaluate the path planning
performance of algorithm. This is defined as the travel time
ratio (TTR). If the maximum velocity set in the UAV is vmax ,
d/vmax can be regarded as the minimum time for the UAV to
reach the target point, which means the shortest path. Thus,
TTR is ideally 1 when the UAV moves at the highest speed
over the shortest path, and a value gets close to 0 when the
actual arrival time takes longer. Therefore, if an algorithm is
evaluated using TTR, one can see how quickly it reaches its
goal position. In other words, TTR measures how closely the
UAV follows the shortest path. However, TTR alone does not
indicate whether a vehicle experiences collisions.

Therefore, the second term in (20) is defined as the
collision area occupancy time ratio (CTR), which quantifies
the proportion of time the UAV spends within the collision
risk area relative to its total travel time. In this paper, the
collision risk area is determined as a radius of 2 meters
around the UAV, considering its size to be 0.5 meters. It is
recommended to set the collision risk area as approximately
1.5 meters larger than the UAV size to account for variations
in performance evaluation. For instance, if the UAV spends
1 second within the collision risk area during a total travel
time of 8 seconds, the CTR would be calculated as 0.125.
A CTR value of 0 indicates optimal collision avoidance
performance, while smaller values signify more effective
avoidance of collisions.

PTTR is theoretically bounded between 1 and −1, but
in practice, TTR is typically greater than CTR, resulting in
PTTR values ranging from 1 to 0. PTTR serves as a com-
prehensive metric for assessing path planning performance,
encompassing both collision avoidance capability and overall
path quality. A PTTR value close to 1 indicates superior path
planning performance with effective collision avoidance. The
PTTR metric is applicable across diverse environments. In a

FIGURE 5. Formation flight with 10 iris in Gazebo environment(upper).
Attractive and repulsive forces and the target velocity as a result of the
ACACT algorithm acting on each UAV(lower).

FIGURE 6. Software architecture of the simulator. (a) centralized
architecture, (b) decentralized architecture.

given scenario, if Algorithm A exhibits a superior PTTR
value compared to Algorithm B, it suggests that Algorithm
A is a more efficient path-planning algorithm. To compute
the PTTR value, one requires the UAV’s initial position, its
target position, the total traveling time, and the time expended
within the collision-area. To evaluate the algorithms, at least
30 experiments are conducted per scenario, and the highest
and lowest PTTR values are excluded before computing the
average. The PTTR graphs for each algorithm are presented
in Section IV-B.

IV. SIMULATION AND EXPERIMENTAL RESULTS
A. SIMULATION ENVIRONMENT
To evaluate the ACACT algorithm, a simulator has been
implemented using Gazebo, a widely adopted platform in
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FIGURE 7. Three distinct experimental scenarios designed to assess the
algorithm’s performance. (a) Scenario1, (b) Scenario2, (c) Scenario3.

conjunction with the Robot Operating System (ROS) [28].
The simulator incorporates a physics engine that emulates
real-world dynamics, while also offering sensor models
capable of introducing Gaussian noise to mimic real-world
conditions. The simulation employs the 3DR Iris drone
model, and the drone’s control software utilizes the PX4flight
stack, which is a prevalent tool in drone research. The loading
process for the PX4 flight stack and Iris models in the Gazebo
simulation is detailed in [29]. For drone control within the
ROS ecosystem, Mavros, a ROS application, is utilized to
establish a connection with the PX4 flight stack [30]. The
simulation was conducted on a computer equipped with a
10th generation Intel i7 CPU, 48GB of RAM, and without
a dedicated GPU.

In Fig. 5, a formation of ten Iris drones is employed, and
the ACACT algorithm was applied to the simulation. In the
simulation, the drones maintain a formation centered around
a reference drone, with the remaining nine drones rotating
counterclockwise while adhering to the formation. A flight
video showcasing the formation flight is available in [31].
Fig. 6 depicts the software architecture of the simulation.
The algorithm proposed is amenable to both centralized and
decentralized control approaches. Our developed simulator
for swarm UAV formation control is available for download
at [32].
A force visualization tool has been developed, as illustrated

in Fig. 5, to evaluate the algorithm’s efficacy during formation
flight simulations [33]. This tool graphically depicts the
attractive force (displayed in green), the repulsive force
(displayed in red), and the target velocity (displayed in
light blue), conveying both their magnitude and direction.
Moreover, the tool presents the three-dimensional path
followed by eachUAV. Such a visual representation facilitates
a deeper understanding of the workings of the proposed
algorithm.

B. EXPERIMENT
A comprehensive set of experiments were carried out to
assess the effectiveness of the proposed collision avoidance
algorithm across various UAV contexts. Fig. 7 delineates
three scenarios representative of the challenges typically
encountered when UAVs undergo formation changes in
swarm settings. Detailed results pertaining to Scenario1 are
illustrated in Fig. 8. This figure contrasts the performance
of the newly proposed ACACT algorithm with the existing
APF algorithm. In this test case, two UAVs were initially
stationed at points A(0, 5, 5) and B(0,−5, 5).With both UAVs
navigating concurrently toward opposite directions, the aim
was to gauge the proficiency of each algorithm in averting
collisions and ensuring that the drone adheres to the most
direct trajectory while reaching the target position quickly.

The image in Fig. 8 displays the flight paths and the
proximity between the drones. The space between drones
was measured 30 times a second. When they came less than
2 m apart, it was counted as a collision. Results indicate
that the older PF method led to several collisions, evident in
Fig. 8a, 8b, and 8d. These collisions occurred because the
forces pushed the drones towards each other, making them
follow longer paths and reducing their speeds. In contrast,
the newACACTmethod prevented these collisions and chose
clearer paths, leading to faster destination arrivals.

The ACACT algorithm consistently exhibited superior
performance in collision avoidance compared to other estab-
lished methods. The comprehensive analysis of experimental
results was conducted using the PTTR metric, as introduced
in Section III-D. Fig. 9 displays the efficacy of collision
avoidance path planning based on this metric. As previously
discussed, a PTTR value closer to 1 indicates a more
efficient UAV performance in both collision avoidance
and expedited target approach. Within the figure, the term
‘‘offset’’ delineates the deviation from the optimal tuning
point and indicates the extent to which the PID gain deviates
from this optimal point. Typically, as the PID gain diminishes,
so does its collision avoidance capability. Hence, a rising
offset correlates with a declining PTTR. Conversely, when
the PID gain is elevated, the resultant path tends to elongate,
leading to a prolonged duration to reach the target, which
in turn causes the PTTR to decline. Across all examined
scenarios, the ACACT algorithm consistently outshined its
counterparts.

The second experiment, similar to Scenario1, becomes
more challenging with the inclusion of four UAVs. UAV
No. 1 transitions from A(5, 5, 5) to D(−5, −5, 5), while
UAV No. 2 goes from B(5, −5, 5) to C(−5, 5, 5). UAVs
3 and 4 navigate from D to A and from C to B, respectively.
Commands for all UAV movements are issued concurrently.
Conditions were deliberately made challenging by setting the
kpp extremely low, as illustrated in Fig. 10, or by having high
obstacle speeds, as shown in Fig. 11, increasing the likelihood
of collisions.

Fig. 12 provides a multi-angle view of the Scenario2
results. Notably, the path length chosen by the proposed
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FIGURE 8. For Scenario1: Comparison of performance of (a), (b), (c), (d) with conventional algorithm and (e), (f), (g), (h) with ACACT algorithm
in the four cases where the gain kpp is 0.24, 0.8, 1.5 with the maximum speed of the UAV is 3 m/s and kpp is 1.5 with 5 m/s in potential
field-based collision avoidance.

FIGURE 9. For Scenario1: Evaluation based on the proposed average
PTTR metric for each algorithm and situation.

algorithm, as seen in the left of Fig. 12a, is marginally longer
than other algorithms. This implies a preference for slightly
extended routes to ensure safe collision avoidance. Despite
the longer path, due to the algorithm’s aim to minimize
deceleration while evading collisions, the destination is
reached much quicker than with other algorithms, as evident
in Fig. 12b. When assessed using the proposed metric, which
gauges both collision avoidance and rapid target attainment,
the performance of the proposed algorithm surpasses others
in all situations, as shown in Fig. 12c.
In the third experiment, a UAV moving in a straight line

faces multiple obstacles intermittently charging towards it.
UAV No. 1 transitions from A(−17, 0, 5) to B(7, 0,5). UAV
No. 2 moves from C(−5, 5, 5) to D(−15, −5, 5), while

FIGURE 10. Top view of the Scenario2 experimental path for four
algorithms, with the PID gain kp set to an extremely low value (kpp =

0.5). (a) APF, (b) Adaptive APF, (c) Dynamic APF, (d) Proposed.

UAV No. 3 travels from E(−5, −5, 5) to F(−15, 5, 5).
Approximately 2.5 to 3 seconds later, UAV No. 4 starts from
G(5, 5, 5) to reach E, and UAVNo. 5 sets off fromH(5,−5, 5)
targeting C. As with Scenario2, conditions were made more
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FIGURE 11. Top view of the Scenario2 experimental path for four
algorithms, under conditions where the obstacles’ velocities and the
UAV’s maximum velocity exceed anticipated values (5m/s). (a) APF,
(b) Adaptive APF, (c) Dynamic APF, (d) Proposed.

TABLE 1. PID gains and parameters used in the experiment.

challenging by setting kpp very low, as depicted in Fig. 13,
or by elevating the speed of the obstacles, as seen in Fig. 14.
Fig. 15 displays the results of Scenario3 from different

perspectives. Mirroring the findings from Scenario2, the
path determined by the proposed algorithm, as shown in the
left side of Fig. 15a, is marginally elongated. Nevertheless,
it facilitates the fastest arrival at the target position, and

FIGURE 12. For Scenario2: (a) Average traveling distance for each
algorithm under varied situations; (b) Corresponding average traveling
time; (c) Evaluation based on the proposed average PTTR metric for each
algorithm and situation.

FIGURE 13. Top view of the Scenario3 experimental path for four
algorithms, with the PID gain kp set to an extremely low value (kpp =

0.5). (a) APF, (b) Adaptive APF, (c) Dynamic APF, (d) Proposed.

its PTTR score significantly surpasses those of the other
algorithms.
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FIGURE 14. Top view of the Scenario3 experimental path for four
algorithms, under conditions where the obstacles’ velocities and the
UAV’s maximum velocity exceed anticipated values (5m/s). (a) APF,
(b) Adaptive APF, (c) Dynamic APF, (d) Proposed.

FIGURE 15. For Scenario3: (a) Average traveling distance for each
algorithm under varied situations; (b) Corresponding average traveling
time; (c) Evaluation based on the proposed average PTTR metric for each
algorithm and situation.

The parameters employed in the experiments are enumer-
ated in Table 1. Parameters consistent across experiments

are excluded from the table for clarity. The sensing range,
denoted as rs, was configured at 7m. Regarding the PID
gains, kip was established at 0.1, while kdp was set at 0.4.
As variations in kdp and kip exert a negligible influence on
path determination, the experiments predominantly centered
on modifications in kpp.

In the case of the conventional algorithm, it was observed
that when the maximum speed was set to 5 m/s, the overall
PTTR value was lower compared to the case with a speed
of 3 m/s. This can be attributed to the increased inertial force
acting on the drone when it avoids collisions at higher speeds,
resulting in longer travel distances and a higher likelihood of
passing through the collision zone.

Furthermore, for the conventional algorithm, noticeable
differences were observed between cases where collision
avoidance PID gains were appropriately set and cases where
they were not. However, in the proposed ACACT algorithm,
the performances of these two cases were almost identical,
with a PTTR value of approximately 0.5. These results
suggest that the ACACT algorithm consistently delivered
excellent performance, regardless of the specific settings of
the collision avoidance PID gains.

In terms of the CTR, a value of 0 was recorded for all
cases of the ACACT algorithm (except vel5), as indicated in
Fig. 9. This indicates that the proposed algorithm effectively
avoids collisions, and no obstacles enter the collision area
of the UAV. When the maximum speed is set to 5 m/s,
the CTR values are comparable between the proposed and
conventional algorithms. However, the proposed algorithm
exhibits improved Travel Time Ratio (TTR) and overall
performance.

V. CONCLUSION
This research presents an advanced collision avoidance
algorithm based on estimated collision time, address-
ing the limitations of the conventional potential field
method. The algorithm calculates the estimated collision time
using the projected velocity. This allows unmanned aerial
vehicles (UAVs) to adjust their direction to avoid collisions
without slowing down, provided the estimated collision
time remains below a predefined safety threshold. This
approach significantly improves the UAV’s path smoothness
and reduces unnecessary energy consumption, resulting in
faster arrival at the target position. Extensive experiments
are conducted in a simulated environment to assess the
efficacy of the proposed algorithm. A novel performance
metric called Path Traveling TimeRatio (PTTR) is introduced
to compare and analyze the performance of the proposed
algorithm against existing approaches. The experimental
results reveal an average PTTR improvement of 0.126,
representing a maximum 20% enhancement in collision
avoidance performance when considering the full metric
range. The simulations, incorporating a physics engine that
closely emulates real-world conditions, demonstrate the
algorithm’s practical applicability and offer an effective
means for its evaluation.
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