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Device-Algorithm Co-Optimization for an On-Chip Trainable
Capacitor-Based Synaptic Device with IGZO TFT and
Retention-Centric Tiki-Taka Algorithm
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Analog in-memory computing synaptic devices are widely studied for efficient
implementation of deep learning. However, synaptic devices based on
resistive memory have difficulties implementing on-chip training due to the
lack of means to control the amount of resistance change and large device
variations. To overcome these shortcomings, silicon complementary
metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage
synapses are proposed, but it is difficult to obtain sufficient retention time due
to Si-CMOS leakage currents, resulting in a deterioration of training accuracy.
Here, a novel 6T1C synaptic device using only n-type indium gaIlium zinc
oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor
is proposed, allowing not only linear and symmetric weight update but also
sufficient retention time and parallel on-chip training operations. In addition,
an efficient and realistic training algorithm to compensate for any remaining
device non-idealities such as drifting references and long-term retention loss
is proposed, demonstrating the importance of device-algorithm
co-optimization.
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1. Introduction

The Analog in Memory Computing (AiMC)
system has the advantage of enabling low-
power operation compared to conventional
computing systems due to paralleliza-
tion in the operation of neurons and
synapses.[1] Because a key element in
the AiMC system is analog-based system
devices,[2] several resistive switching de-
vices including phase change memory,[3]

ferroelectric device,[4–7] filamentary resis-
tive random access memory (RRAM),[8–10]

non-filamentary RRAM,[11] spintronics
device[12–13] have been used to implement
the synaptic element. However, resistive
switching device has disadvantages in that
the weight update linearity and symmetry
are not sufficient, and the mechanism
of conductance modulation is typically a
random process in an atomic-level change
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based on electro-dynamics,[14] making it difficult to precisely con-
trol its resistance and achieve excellent device variations.[15]

Recently, as a candidate for the synaptic device, charge stor-
age synapses based on silicon complementary metal-oxide semi-
conductor (Si-CMOS) and capacitors have been proposed, and
it has shown the highest level of weight update linearity and
symmetry.[16–18] However, it has a retention problem in that the
charge stored in the capacitor is rapidly leaked through the Si
transistor. In training the modified national institute of standards
and technology (MNIST) dataset and convolutional neural net-
work (CNN), the test error according to the retention time has
also been shown.[16] To solve the retention problem that occurs in
capacitor-based synapses, a synaptic device using an indium gal-
lium zinc oxide thin film transistor (IGZO TFT) with low leakage
current[19–22] and a capacitor have also been devised.[23] However,
because the IGZO TFT cannot fabricate p-channel metal-oxide
semiconductor (PMOS) that charge a fixed current, there are re-
search cases that only conducted inference,[23] and no synaptic
device capable of on-chip training has been devised.[24]

Here, we report an IGZO TFT and capacitor-based synaptic
device capable of linear and symmetric weight updates for on-
chip training. We devised a novel 6T1C synaptic device to operate
by discharging current from both terminals of the capacitor us-
ing only n-channel metal-oxide-semiconductor (NMOS). A table
comparing our 6T1C structure with other capacitor-based charge
storage synapses[16,23–24] can be found in Section S1 (Supporting
Information). We fabricated a single device and 5×5 crossbar ar-
ray on an 8-inch silicon wafer and examined weight update, reten-
tion, and cycling endurance characteristics. We also experimen-
tally demonstrated parallel on-chip training operation through
linear regression on a crossbar array.

In addition, we developed novel neural network training
schemes by co-optimizing the device and algorithm. The 6T1C
synaptic device with standard bias conditions can provide suf-
ficient linearity and symmetry needed for the conventional
stochastic gradient descent (SGD) training algorithm. Further-
more, by simply changing bias conditions, the linearity and
symmetry of the 6T1C synaptic device can be tailored for the
symmetry-centric Tiki-Taka algorithm (TTv1),[25] we also de-
veloped a retention-centric Tiki-Taka algorithm (rTT) to effi-
ciently transfer volatile weights of the 6T1C device to average
non-volatile memories so that deep neural networks with large
datasets requiring synaptic devices with long retention times can
be trained efficiently without losing the accuracy. We designed
the 6T1C synaptic device such that the capacitor can be accessed
from both top and bottom electrodes so that the reference point
can be measured efficiently for the rTT. These device-algorithm
co-optimizations enabled us to demonstrate an MNIST on-chip
training accuracy of over ≈97% in a wide range of retention
requirements even when device and circuit variations were in-
cluded.

2. Results and Discussion

2.1. Operation Mechanism of the Synaptic Device

Figure 1a is a schematic of a synaptic device based on IGZO TFT
and capacitor. A single synaptic device is composed of six IGZO
TFT and one capacitor (6T1C device). In this design, the capac-

itor, C1, serves as a memory element in the cell and stores the
weight value in the form of an electric charge. The two transis-
tors, N5 and N6 serve as a read transistors, and the other four
transistors N1–N4 serve to vary the capacitor voltage, Vcap.

For potentiation, a pulse is applied to the N1 to make the upper
terminal voltage (VCP) of the capacitor Vdd/2, and then a pulse is
applied to the N2 to increase the voltage of the capacitor Vcap(VCP–
VCN). For depression, a pulse is applied to the N3 to make the
lower terminal voltage (VCN) of the capacitor Vdd/2, and then a
pulse is applied to the N4 to decrease Vcap. In other words, during
the on-chip training process, if pulses are simultaneously applied
to N1 and N2, potentiation occurs, while simultaneous pulses ap-
plied to N3 and N4 result in depression. It is important to note
that in the operation, N1 and N3 as well as N2 and N4, cannot be
turned on simultaneously. The voltage change per update pulse
is calculated as follows:

ΔVcap =
iN2(or N4) × tpw

C
(1)

where iN2(or N4) is the discharging currents from N2(or N4), re-
spectively, and tpw is the pulse width applied to the N2(or N4),
and C is the capacitance of the 6T1C cell capacitor. To ensure lin-
earity and symmetry characteristics, it is necessary to operate N2
and N4 in the saturation region and discharge a constant current.

The read operation is divided into two separate processes of
reading the current flowing through the N5 and N6. For read op-
eration in N5, a pulse is applied to the N3 to make the voltages of
the upper and lower terminals of the capacitors Vdd/2 + Vcap and
Vdd/2, respectively. With Vdd/2 + Vcap at the gate terminal of the
N5, GN5 is measured by applying a small bias between the source
and drain of N5. Similarly, a pulse is applied to the N1 to make the
voltages of the upper and lower terminals of the capacitors Vdd/2
and Vdd/2–Vcap, respectively. With Vdd/2–Vcap at the gate termi-
nal of the N6, GN6 is measured by applying a small bias between
the source and drain of N6. To represent both positive and nega-
tive weights, the weight of single 6T1C device, Wij, is defined by
subtracting GN5 and GN6 .

Wij = GN5 ij − GN6 ij (2)

Figure 1b,c shows the operation of the 6T1C device crossbar
array. For feedforward operation, as shown in Figure 1b, all N3
devices within the crossbar array are initially turned on, setting
the capacitor’s top and bottom nodes to VDD/2 + Vcap and VDD/2,
respectively. Then, the input data encoded in the form of pulse
width, as shown in Figure 1b at circle number 2, is applied to
the WLU. Afterward, the summed current flowing through each
column via N5 is read through BLU, and this current undergoes
analog-to-digital conversion (ADC). Similarly, to read the current
through N6, the N1 devices within the crossbar array are acti-
vated. The N1 transistors are turned on, thereby setting the top
and bottom nodes of the capacitor to VDD/2 and VDD/2–Vcap, re-
spectively. The same pulse width that was applied to WLU is also
applied to WLD, and the summed current per column is read
through BLD. The read current is then subjected to ADC. Finally,
the feedforward process concludes by subtracting the ADC val-
ues of the current flowing through N5 and the current flowing
through N6.
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Figure 1. 6T1C synaptic device. a) Schematic diagram of the 6T1C synaptic device. A small source-drain in N5, N6 is essential to operate N5, N6 in the
triode region, in which channel resistance depends on the capacitor voltage, VCap (VCP–VCN). b) The initial three stages for the feedforward process in
6T1C crossbar array. c)The final three states for the feedforward process in 6T1C crossbar array. The feedforward is concluded by subtracting the ADC
values obtained from b and c.d) Photograph of 8-inch wafers processed with a single synaptic device and crossbar array. The width of the IGZO device
channel used for a single synaptic device and crossbar array was 2 μm, and the length was fabricated at the level of 0.5–5 μm.

During the backpropagation process, the roles of WL(WLU,
WLD) and BL(BLU, BLD) are reversed compared to their roles
during forward inference. The error values encoded in pulse
width form are applied to BL(BLU, BLD) direction, and the
summed currents along the rows are read. Similarly, to the feed-

forward process, the currents flowing through N5 and N6 are se-
quentially read. The values obtained from these two processes
are used to stochastically apply pulses to the gates of N1-N4 tran-
sistors. Finally, the weight update is performed based on these
pulses.
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We fabricated a 6T1C single synaptic device and 5×5 crossbar
array on an 8-inch silicon wafer as shown in Figure 1d. Details
of the fabrication can be found in the Experimental Section and
essential electrical characteristics of IGZO TFTs can be found in
Section S2 (Supporting Information).

2.2. Various Properties of a Single Device

We examined the various characteristics of a single synaptic de-
vice. We created a printed circuit board (PCB) combining a mi-
crocontroller unit (MCU) and discrete integrated circuit compo-
nents to interact with an array of synaptic cells. (Figure 2a) Details
of PCB can be found in Section S3 (Supporting Information). The
synaptic cell current is measured by the current integrator and
the ADC on the PCB.

2.2.1. Weight Update

Figure 2b,c shows the weight update characteristics of a 6T1C
single device measured with the PCB. Figure 2b shows the mea-
sured change of ADC value of a single cell, by applying four cy-
cles of 1000 positive updates followed by 1000 negative updates.
To obtain good linearity and

symmetry characteristics of the device by keeping the N2 and
N4 in the saturation region, a low overdrive voltage (Vgs–Vth) was
intentionally applied to the N2 and N4, and a high voltage was
also applied to Vdd/2. We also demonstrate conductance modula-
tion with voltage pulses from 100 to 400 ns (Figure 2c). The result-
ing curves (Figure 2b,c) show that the 6T1C device exhibits very
linear and symmetric weight update characteristics with 1000
conductance states and conductance modulation of the device
can be accurately controlled by changing the measurement con-
dition in the same device.

2.2.2. Retention Characteristics

Figure 2d shows the retention measurement of a 6T1C single de-
vice. To evaluate the retention characteristics of the device, first,
the capacitor was intentionally charged by repeatedly applying po-
tentiation pulses to the synaptic cell. Then, we apply an off volt-
age to all transistors(N1–N4) and perform read operations at ev-
ery predetermined time interval (60 min). After converting the
measured ADC value into capacitor voltage, exponential fitting
was performed to extract the time constant, and as a result, 775
min were obtained. These results indicate that the 6T1C device
exhibits very good retention characteristics compared to the con-
ventional silicon and capacitor-based synaptic devices with a time
constant on the order of seconds.[17]

2.2.3. Cycling Endurance

Another important factor that affects deep neural network train-
ing based on crossbar array technology is the endurance char-
acteristics of synaptic devices. Resistive switching devices, such
as RRAM, have been reported to demonstrate an endurance of

≈105–107 cycles, wherein they distinguish only between the high-
resistance state (HRS) and low-resistance state (LRS) at the array
level.[26–29] In contrast, the charge storage synaptic device based
on Si-CMOS and capacitor exhibits a semi-infinite endurance
characteristic.[17] In our study, we validated the endurance char-
acteristics of IGZO TFT-based 6T1C devices.

Figure 2e,f shows the endurance characteristics of a 6T1C sin-
gle device. An update pulse of 109 was applied by repeating one
cycle of 1000 up/1000 down pulses 500 000 times to the synaptic
device. By comparing the output ADC value of the initial cycle
and the last cycle shown in Figure 2e,f, respectively, it was shown
that the device is still working even after 109 pulses are applied
and the output range of ADC value hardly changes, which con-
firms that the 6T1C synaptic device not only still survives but also
a stable analog characteristic over a large number of cycles. In
addition, through the optimization of bias conditions that mini-
mize negative bias stress (NBS) and positive bias stress (PBS),[30]

which induce changes in the characteristics of the transistors
within the 6T1C device, it is possible to expect the achievement
of endurance characteristics approaching semi-infinity.

2.3. Implementation of Linear Regression on a Crossbar Array

With a 6T1C 5×1 crossbar array, we experimentally conducted
linear regression to evaluate the on-chip training performance
of the synaptic device. The learning process is summarized in
Figure 3a, and input data in the feedforward process and stochas-
tic update pulse in the weight update process were generated in
real-time through MCU located on PCB. First, we generated an
input dataset for the feedforward process, and this was applied to
the word lines (WLs) of five synaptic devices in the form of pulse
width, respectively.

The input data matrix is composed of four randomly generated
data and one fixed value serving as a y-intercept in the form of xi
= [x1,x2,x3,x4,a]. Once the feedforward process is carried out, a
value of y in Equation (3) is generated.

y = xi ⋅
[
w1, w2, w3, w4, w5

]T
(3)

where xi denotes the input data matrix and [w1,w2,w3,w4,w5] de-
notes the weight matrix. Then y is compared with the target value
t in Equation (4) to generate the error value 𝛿 in Equation (5).

t = xi ⋅
[
t1, t2, t3, t4, t5

]T
(4)

𝛿 = xi ⋅
[
w1, w2, w3, w4, w5

]T − t (5)

where [t1,t2,t3,t4,t5] denotes the target weight matrix. The process
of converting the output ADC value into weighted sum and loss
calculation was performed through the MCU located on PCB (See
the Experimental section for linear regression details). Then, via
the stochastic update scheme,[31] a weight update is performed.
The weight update amount of each synaptic cell follows Equa-
tions (6) and (7).

Δwn = −𝜂xn𝛿 (n = 1 − 4) (6)

Δw5 = −𝜂a𝛿 (7)

Adv. Sci. 2023, 2303018 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303018 (4 of 11)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202303018 by H

anyang U
niversity L

ibrary, W
iley O

nline L
ibrary on [22/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advancedscience.com

Figure 2. a) PCB photograph with synaptic device measurement b) Weight update result of 6T1C single device (Vdd/2 = 2.0 V). 300 ns 1000 up/down
pulses of Vov (= Vgs−Vth) = 0.25 V were applied to N2, N4 transistors. c) Weight update curve according to N2, N4 pulse width (Vdd/2 = 1.5 V) 1000
up/down pulse of Vov = 1.4 V were applied to N2, N4. d) Results of retention characteristics of 6T1C single device. An off voltage of −2 V was applied to
each transistor(N1–N4) e) Measurement results in the initial cycle for measuring cycling endurance of 6T1C f) Measurement result after applying 109

update pulses (update pulse height was 0.5 V/−2 V and length was 1 μs.)
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Figure 3. a) Flow chart for linear regression training. Training consists of two steps: feedforward and weight update. Loss is defined as 1
2

(y − t)2 using
MSE function. b) Evolution of loss and error throughout the training. Both loss and error converge to 0 as training progresses, and the inset of b) lists
parameters and relevant numbers used in this demonstration. 25 input data sets are trained at each epoch. During the demonstration, the bit length
was set to 10 and the learning rate was 0.05. The error in Figure 3b is defined as

∑5
n = 1 (wn − tn)2.

where xn and a denote the input data applied to each synaptic
cell, 𝛿 denote errors extracted through feedforward, 𝜂 denotes
the learning rate. In the weight update process, xn and a were
translated as N1 or N3 pulse generation probability and 𝛿 was
translated into N2 or N4 pulse generation probability. As shown
in Figure 3a, the sign of (y − t) will determine whether to gener-
ate pulses for potentiation or depression. By repeating this pro-
cedure, we can train the 6T1C 5×1 crossbar array and solve the
linear regression problem. Figure 3b shows that the loss and er-
ror converge to zero as training proceeds. These linear regression
results demonstrate the automatic and parallel on-chip training
capability of the 6T1C array.

2.4. Algorithm Optimization for 6T1C Device: Retention-Centric
Tiki-Taka

The achievement of the AiMC system came from both algorithm-
level and hardware-level approaches, aiming for enhanced opti-
mization through hardware-algorithm co-design. Therefore, we
conducted simulations by applying our device to various learn-
ing algorithms: conventional SGD algorithm and TTv1.[25] The
TTv1 is a recently proposed algorithm to overcome the stringent
symmetry requirement of analog synaptic devices and several im-
proved versions such as TTv2 and c-TTv2[32,33] have been addi-
tionally proposed to overcome limitations such as read noise and
number of states. In this study, we conducted the simulations fo-
cusing on TTv1, the most fundamental of them. Our simulation
results demonstrated that our device is well suited for TTv1 as
well as the SGD algorithm. In addition, we devised a new robust
algorithm specialized for devices, rTT, that goes beyond TTv1.
This more robust algorithm 1) shows no decrease in learning
accuracy even when the retention level required for learning in-
creases and 2) can set the reference conductance easily on the
device itself without a separate reference cell array utilizing the
structural characteristics of 6T1C.

First, we simulated neural network training with the SGD al-
gorithm based on the weight update characteristics and reten-
tion time from measurement results shown in Figure 2b,d. In
addition, device variations of 6T1C, a variation of 15% were ap-
plied to NL, which is the parameter representing device asym-
metry, 7% to Gmax and Gmin, 6% to Δwmin, 15% to retention
time, and 15% to Gleak. Gmax and Gmin denote the maximum and
minimum conductance of the device, respectively. Gleak denotes
conductance in which the volatile device converges after com-
plete retention failure. In the case of cycle standard deviation,
5% standard deviation was applied to write noise, 6% to current
sum, and 30% to Δwmin. The following variations were applied
to all simulations other than the SGD algorithm. Assuming the
training cycle length per layer (forward + backward + update) is
200 ns,[17]

≈98.5% accuracy was obtained. (See Section S5, Sup-
porting Information) This result is attributed to the symmetrical
behavior and good retention characteristics of the 6T1C synaptic
device.

Second, we conducted neural network training with the TTv1,
recently developed training algorithms designed for asymmetric
analog synaptic devices. The TTv1 operates fully in parallel and
trains the core device through the update information obtained
from the auxiliary device. In this case, we use the 6T1C device,
which has excellent update characteristics but fundamentally has
leakage, as the auxiliary device, and average non-volatile mem-
ory (NVM) as the core device to periodically transfer the weight
of 6T1C to NVM so that it could be read without loss of weight
during the inference process. To utilize the TTv1 for training, the
weight update measurement results of 6T1C were converted to
the conductance–conductance change form of Figure 4a. Then
Figure 4a was modeled via linear regression analysis to extract
simulation parameters in Equations (8) and (9). (See Section S6,
Supporting Information)

ΔGp =
(

1 − NLp ×
G − Gsym

Gmax − Gmin

)
× ΔGsym (8)
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Figure 4. a) Conductance–conductance change form of results obtained under various measurement conditions. In the figure, NLP and NLD represent
non-linearity observed during the process of potentiation and depression, respectively. The equations related to these concepts can be found in Equa-
tions (8) and (9). NL = 0.2 and 2.0 are the results of converting Figure 2b and the green line of Figure 2c, respectively. In the case of NL = 2.0, linear
regression analysis was used only for some domains for learning. (Figure S6, Supporting Information) Result of applying TTv1 by reflecting various
values within the NL range of 6T1C device in (b) LENET5 and c) MLP (see Tables S4 and S5, Supporting Information, for the accurate learning accuracy
value) Neural network training results by applying the rTT to NL = 0.2, 2.0 in (e) LENET5 and f) MLP (see Tables S6 and S7, Supporting Information, for
the learning accuracy results according to the detailed NL values) Because a fixed learning rate was used for all retention ranges, the accuracy decreased
in 5e-2 of LENET5 and 5e-3 of MLP. However, when the optimized learning rate was used for training in 5e-2 of LENET5 and 5e-3 of MLP, an accuracy
of ≈97% was achieved. (Figure S8, Supporting Information) f) Method of setting reference conductance in rTT. Since the reference conductance in rTT
means the conductance when VCap = 0, it is read as the difference between the current of N5 with a pulse applied to N1 and the current of N6 with a
pulse applied to N3. g,h) Learning results of applying TTv1 and rTT at various retention levels in LENET5, and MLP respectively. In Figure 4 g,f, only the
best case among several NL values was shown for TTv1, and the case where NL = 0.2 for rTT was shown.

Δ Gd =
(

1 − NLd ×
G − Gsym

Gmax − Gmin

)
× ΔGsym (9)

where ΔGp, ΔGd denote the conductance change in one potentia-
tion, depression pulse, respectively; Gsym denotes the symmetric
conductance that satisfies Δ Gp = ΔGd. As shown in Figure 4a,
it was possible to extract both highly linear update results (NL ≈

0.2) and intentionally asymmetric update results (NL ≈ 2.0) by
changing the measurement conditions in the same device. Pre-

vious studies have shown that the NL combination of core and
auxiliary devices is important to achieve optimal learning accu-
racy using TTv1.[34] In other words, it is important to obtain a tar-
get NL value to find the optimal combination. However, in a typ-
ical resistive switching device, it is impossible to obtain a target
NL value because the conductance modulation mechanism relies
on a random process at the atomic level.[14] On the other hand, as
shown in Figure 4a, our device can have a wide range between NL
= 0.2–2.0 by changing the measurement condition in the same
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device, and the target NL value can be easily obtained based on
a clear conductance modulation mechanism. Figure 4b,c shows
the result of applying the TTv1 under the same core device con-
dition by reflecting various values within the NL range of the
6T1C device in the LENET5 and multi-layer perceptron (MLP)
neural network structures, respectively. As in the results of pre-
vious studies,[34] the learning accuracy was changed according to
the NL of the 6T1C device. However, our device can easily obtain
the target NL by changing the measurement conditions, so it is
a device that can achieve optimal learning accuracy through the
TTv1 regardless of the type of core device.

In addition, by using the TTv1 for the 6T1C device, weight
transfer can also be performed. Despite the good retention char-
acteristics of 6T1C devices, the weight transfer process that con-
veys the stored weights to NVM is essential because of long-
term retention loss. However, the weight transfer technique re-
quires serial access to cross-point elements either one-by-one or
row-by-row.[8,35,36] Naive weight transfer can cause tremendous
overhead for large networks because it involves time-consuming
serial operations and repeatedly programming and verifying
weights.[37,38] On the other hand, by using the TTv1, learning and
weight transfer can be performed simultaneously and fully in par-
allel.

Although the 6T1C device proved to be a well-suited device for
the TTv1, the learning accuracy deteriorated as the time required
for learning increased as shown in Figure 4b,c. Therefore, we pro-
posed a new algorithm, the rTT to recover the learning accuracy
even when longer retention is required. First, we analyzed the
phenomenon that the accuracy decreases according to retention
in the TTv1 by adapting the formula proposed in the previous
study.[39]

When the TTv1 is performed using a volatile device as an aux-
iliary device and a non-volatile device as a core device, the weight
update aspect of the auxiliary device and the core device follows
Equations (10) and (11), respectively.

Ȧ = −
(

1 − e−
tupdate

RC

) (
A − Aleak

)
− 𝜂Ae−

tupdate
RC

((
𝜕E
𝜕C

+ 𝜀 (t)
)

+ NLA

A − Asym

Amax − Amin

|||| 𝜕E
𝜕C

+ 𝜀 (t)
||||
)

(10)

Ċ = 𝜂C

(
A − Aref

)
− 𝜂C

||A − Aref
||NLC

C − Csym

Cmax − Cmin
(11)

where tupdate denotes the training cycle length per layer in an aux-
iliary array and 𝜖(t) denotes the stochastic effect that occurs dur-
ing the update. 𝜂A and 𝜂C are the learning rate of the auxiliary and
the core device, respectively. E denotes cost function.

Then for the weight of the auxiliary and the core device to
reach a steady state, Equations (12), and (13) must be satisfied,
respectively. In the TTv1 using NVM, the global minimum can
be reached because |A − Asym = 0| can be satisfied after suf-
ficient learning is carried out by setting Aref as Asym. However,
when a volatile device is used as an auxiliary device, the right
side of Equation (12) does not converge to 0 and thus the global
minimum cannot be reached. As a result, as the required reten-
tion time for training increased, the learning accuracy decreased

as shown in Figure 4b,c.

⟨
𝜕E
𝜕C

⟩
= −

NLA

Amax − Amin

|||| 𝜕E
𝜕C

+ 𝜀 (t)
||||
(
A − Asym

)

− 𝜂−1
A

(
e

tupdate
RC − 1

) (
A − Aleak

)
(12)

⟨A⟩ − Aref = NLC

C − Csym

Cmax − Cmin

|||(A − Aref

)||| (13)

However, the decrease in accuracy due to retention can be
solved with a new device-specific algorithm(rTT) that takes Aref as
Aleak. Due to the structure of the 6T1C device, the expected values
of Asym and Aleak are the same when Vcap = 0, and the 6T1C de-
vice is capable of highly linear weight updates shown in Figure 4a.
Therefore, the influence of the term related to asymmetry, which
is the first term on the right side of Equation (12), can be almost
negligible, and it can be expected the global minimum will be
reached if Aref is set to Aleak.

Note that as the global minimum is reached, | 𝜕E
𝜕C

+ 𝜀(t)| of
Equation (12) becomes smaller thus the effect of asymmetry is
further reduced. Figure 4d,e shows the neural network training
results by applying the rTT to NL = 0.2, 2.0 in LENET5 and MLP.
In the highly linear case with NL = 0.2, an accuracy of ≈97.5%
can be achieved even if the required retention time increases. In
addition, as analyzed in Equation (10), it was confirmed that the
accuracy decreased as the asymmetry of the device increased.

The rTT also has the advantage of being able to set the ref-
erence conductance quickly and easily by 6T1C itself without a
separate reference cell array. It is known that is important to set
an accurate and stable reference conductance as symmetric con-
ductance in the TTv1,[39] but the previously proposed symmetric
conductance setting method is relatively complex and requires
an additional array.[40] On the other hand, with the rTT, the 6T1C
can take the reference conductance quickly and accurately by per-
forming one more read operation (Figure 4f). In addition, as the
characteristics of the device change during training, the symmet-
ric conductance of the device itself or the conductance of the ref-
erence device may change, resulting in reduced accuracy. How-
ever, for the rTT, the reference conductance can be read stably
even if the characteristics of the device change during training.

Figure 4g,h shows the learning results of applying TTv1 and
rTT at various retention levels. As confirmed in Equation (12),
the retention and asymmetry of the devices had a complex ef-
fect on the learning accuracy, and algorithms required for optimal
learning differed according to retention levels. However, by using
the 6T1C, it is possible to flexibly select the algorithms accord-
ing to the retention level. If the retention required for learning
increases due to complex datasets or neural networks, the opti-
mal accuracy can be obtained by applying the rTT using a highly
linear update condition. If the retention of the device is sufficient
for learning, the optimal accuracy was obtained by applying TTv1
using an update condition suitable for the asymmetry of the core
device.

Furthermore, the 6T1C device and optimized algorithm can
also improve scalability, which is a disadvantage of capacitor-
based synapses. As the size of the capacitor decreases, it is dif-
ficult to achieve sufficient retention time for learning, so there
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is a limit to the scalability of the capacitor-based synaptic device.
For example, it is known to require a large capacitance of 100fF
capacitance/cell for a CNN.[17] However, since the IGZO-based
6T1C device has a much smaller leakage current and can apply
an algorithm robust to retention, capacitor size can be reduced,
thus device scalability can be improved. For example, applying
an IGZO TFT[22] and capacitor[41] with the lowest current level re-
ported so far, high learning accuracy can be achieved by training a
large input data with a synapse with a 10fF capacitance/cell. (See
Section S8, Supporting Information) Therefore, the 6T1C device
is a versatile and practical device that can be applied to large input
data and complex neural networks.

3. Conclusion

We have reported a novel synaptic device using IGZO TFT with
low leakage current and capacitor to solve the retention prob-
lem in capacitor-based charge storage synapses. By fabricating a
single synaptic device and a 5×5 crossbar array, we demonstrate
that our novel device can provide not only linear and symmet-
ric weight update but also sufficient retention time and paral-
lel on-chip training operations. We also demonstrated the im-
portance of co-optimization of the device-algorithm by develop-
ing an efficient yet realistic training algorithm to compensate
for remaining device non-idealities such as drifting reference
and long-term retention loss. Our novel algorithm does not re-
quire a separate reference cell array and could reach a high learn-
ing accuracy of ≈97% even when the retention time required
for training increases, enabling smaller synaptic array sizes with
smaller capacitors. We expect that the size of the 6T1C device can
be further reduced with ultralow-leakage and nanoscale IGZO
TFTs and capacitors that have previously been reported. The de-
vice footprint can be further improved through Monolithic 3D
(M3D) integration[41–43] and vertical channel thin-film transis-
tors (VTFTs) based on IGZO atomic layer deposition (ALD).[44–45]

Therefore, we believe that our 6T1C device is a practical synaptic
device for neuromorphic computing.

4. Experimental Section
Device Fabrication: The synaptic array structure composed of the

IGZO TFT and capacitor used in this study was made of a 4-metal, 8-
metal layer on top of silicon oxide formed on a silicon base. First, a 200
Å thick tungsten metal to be used as the capacitor’s lower electrode was
deposited. A rectangular lower electrode with various widths and its con-
necting wiring was patterned using photolithography and dry etching. Af-
terward, a high-k oxide to be used as a capacitor insulator was deposited
to the required thickness by an ALD. Note that a capacitor using an ap-
propriate high-k material must be fabricated to satisfy the capacity and
leakage current requirements of the synaptic capacitor. VIA for connecting
the lower electrode and the upper electrode was formed by a wet etch-
ing after photolithography only at the point where it intersects the wiring
connected to the upper electrode in a region separate from the capacitor.
Next, 200 Å thick tungsten metal to be used as the upper electrode of the
capacitor was deposited by CVD. A rectangular upper electrode and con-
necting wiring having various widths were patterned in consideration of
the shape in which the lower electrode was formed. Next, an appropriate
oxide used as an IGZO TFT underlayer was deposited. The VIA process for
connecting the upper electrode and the metal used as the source/drain of
the TFT was performed by photolithography and wet etching. After that,
200 Å tungsten metal to be used as the source/drain of the IGZO TFT was

deposited, patterned, and etched. IGZO, the channel material of IGZO
TFT, was deposited to a thickness of 100 Å in 2.44 W cm−2 RF bias plasma
in 1 Pa Ar/O2 atmosphere using a sputtering facility equipped with a tar-
get composed of In:Ga:Zn = 1:1:1. Then, it was formed on the channel site
through photolithography and wet etching. A high-k material to be used
as the gate oxide of the IGZO TFT was deposited. Note that the upper and
lower high-k material adjacent to the IGZO channel must be considered to
satisfy the requirements for the on/off ratio and leakage current character-
istics of the IGZO TFT. VIA patterning and etching were performed at the
site where the connection between the source/drain and the upper elec-
trode was required. After that, a tungsten metal to be used as the upper
gate electrode of the IGZO TFT was deposited, and the synaptic structure
was completed by dry etching after photolithography.

Experimental Setup for Device Measurement: The peripheral circuit for
synapse measurement was implemented on the PCB combining MCU and
discrete devices. The synaptic cell on an 8-inch wafer was contacted with
a 45-pin probe card mounted on an Eg4090, and the voltage to be ap-
plied to each synaptic cell was applied to the PCB through the DC power
supply(2230g-30-3). Personal computer(PC) and MCU communicate with
universal asynchronous receiver-transmitter (UART), and input signals
such as pulse width and repetition number were input from PC. Supple-
mentary Figure 2 shows the connection structure of the PC, MCU, and
PCB. The PCB mode for synaptic device measurement was divided into
feedforward, backpropagation, and weight update, and the data flow for
each mode and discrete device information used in PCB are all shown
in Section S 3(Supporting Information). In the case of read and update
pulses, the measurement was performed by giving a pulse in microsec-
onds unit considering the settling time of the MCU, but when a pulse of
nanoseconds was applied, the pulse of the MCU was used as a trigger and
a pulse in nanoseconds unit was applied using a pulse generator (81110A,
81150A).

Linear Regression: In linear regression, when feedforward was con-
ducted, the output was in the form of ADC. Therefore, it was essential
to convert the output ADC into a weighted sum for loss calculation. The
weighted sum was defined as follows:

5∑
n = 1

xn × wn =
5∑

n=1

xn

xmax
× 2

(
Gn − Gref

Gmax − Gmin

)
× xmax (14)

where Gmax and Gmin denote the maximum and minimum conductance
of the device, respectively, and Gref denotes the conductance when weight
is 0; xmax denotes the maximum value among input data within a prede-
termined range, and xn denotes the current input data applied to each
cell. The x

xmax
× xmax part in Equation (14) means input data, 2( Gn−Gref

Gmax−Gmin
)

means the normalized weight in the range of −1 to 1 of each cell, and
the product of the two components means the input × weight, which is a
weighted sum. Then, the right side of Equation (14) can be rewritten as

5∑
n = 1

xn

xmax
× 2

(
Gn − Gref

Gmax − Gmin

)
× xmax = 2

(
ADCfeedforward − ADCref

ADCmax − ADCmin

)

× xmax (15)

where ADCfeedforwad denotes the ADC extracted through the feedforward
process and ADCmax is the ADC extracted when the maximum value(xmax)
of the input data is applied when the conductance of the synaptic cell is
maximum(when the voltage stored in the capacitor is Vdd/2); ADCmin is
the ADC extracted when the maximum value (xmax) of the input data is
applied when the conductance of the synaptic cell is minimum(when the
voltage stored in the capacitor is −Vdd/2). To determine ADCmax, ADCmin,
ADCref in Equation (15), ADC was extracted for five cells before training,
and ADCmax, ADCmin, ADCref were determined as the average of the five
values obtained.

MNIST Pattern Recognition Simulation using TTv1 with 6T1C Device: To
apply the Tiki-Taka algorithm using the 6T1C device, IBM Analog Hard-
ware Acceleration[46] Kit ver.0.5.1 was used. First, the linearStepDevice
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was modified to reflect the characteristics of the 6T1C device. Second, the
TransferDevice was modified to apply the rTT algorithm. During ANN sim-
ulation, Gleak of 6T1C device follows N(Gsym,(0.15*Gsym)2), and a cycle-
to-cycle standard deviation of 30% was used for every update. NL values of
6T1C, 0.2, 0.5, 1.0, 1.5, and 2.0 were swept, and in each case, the device-
to-device standard deviation of 15% of the NL value was applied. Since
the number of states of 6T1C can be >10 bits, Δ wmin = 0.002(≈1000
steps), and Δwmin device-to-device 6% was set. The weight leakage phe-
nomenon of the auxiliary device was reflected just before updating the core
device, and 15% device-to-device std was applied for retention. In the case
of rTT, the initialization of the auxiliary device was set to Gleak, which was
an initialization that was set naturally without applying any pulse to the
device. As the core device, a virtual NVM with characteristics of Δ wmin =
0.02(≈100 steps), Δwmin device-to-device std 10%, NL = 1.8, NL device-
to-device std 15%, and update cycle-to-cycle std 30% was used. When ap-
plying the TTv1, feedforward and backpropagation were performed only
with the core device by setting gamma to 0 in W = 𝛾A + C,[25] and the
update was performed on the auxiliary device(6T1C). The MLP neural net-
work structure of the simulation consisted of 784 input neurons, 256, 128
hidden neurons, and ten output neurons, and a sigmoid function was used
for the activation function between each layer. The logsoftmax classifier
was applied to the output layer. up to 50 epochs were trained with a mini
batch of one image, and the average accuracy of the last five epochs was
used in Figure 4. For the LENET5 structure of the simulation, 28 × 28 × 1
image input, 16 conv1 5 × 5 × 1 kernel – hyperbolic tangent – maxpool –
32 conv2 5 × 5 × 16 kernel – hyperbolic tangent – maxpool – hyperbolic
tangent – FC 512 × 256 × 10 – logsoftmax neural network structure was
used. Up to 30 epochs were trained with a mini batch of four images, and
the accuracy of the last five epochs was used in Figure 4. In addition, the
weight updates of the devices were made to occur when the stochastically
generated pulses based on the input and backpropagated values overlap
at the same time according to the stochastic update scheme.[26]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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