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ABSTRACT Chronic otitis media is characterized by recurrent infections, leading to serious complications,
such as meningitis, facial palsy, and skull base osteomyelitis. Therefore, active treatment based on early
diagnosis is essential. This study developed a multi-modal multi-fusion (MMMF) model that automatically
diagnoses ear diseases by applying endoscopic images of the tympanic membrane (TM) and pure-tone
audiometry (PTA) data to a deep learning model. The primary aim of the proposed MMMF model is adding
‘‘normal with hearing loss’’ as a category, and improving the diagnostic accuracy of the conventional four
ear diseases: normal, TM perforation, retraction, and cholesteatoma. To this end, the MMMF model was
trained on 1,480 endoscopic images of the TM and PTA data to distinguish five ear disease states: normal,
TM perforation, retraction, cholesteatoma, and normal (hearing loss). It employs a feature fusion strategy of
cross-attention, concatenation, and gated multi-modal units in a multi-modal architecture encompassing a
convolutional neural network (CNN) andmulti-layer perceptron.We expanded the classification capability to
include an additional category, normal (hearing loss), thereby enhancing the diagnostic performance of extant
ear disease classification. The MMMF model demonstrated superior performance when implemented with
EfficientNet-B7, achieving 92.9% accuracy and 90.9% recall, thereby outpacing the existing feature fusion
methods. In addition, five-fold cross-validation experiments were conducted, in which themodel consistently
demonstrated robust performance when endoscopic images of the TM and PTA data were applied to the deep
learning model across all datasets. The proposed MMMF model is the first to include a category of normal
ear disease state with hearing loss. The developed model demonstrated superior performance compared
to existing CNN models and feature fusion methods. Consequently, this study substantiates the utility of
simultaneously applying PTA data and endoscopic images of the TM for the automated diagnosis of ear
diseases in clinical settings and validates the usefulness of the multi-fusion method.

INDEX TERMS Artificial intelligence, biomedical imaging, classification algorithms, computer aided
diagnosis, convolutional neural networks, deep learning, electronic medical records.
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I. INTRODUCTION
Chronic otitis media (COM) with or without cholesteatoma
is a significant public health issue affecting 0.5%–30% of the
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population and can lead to severe complications due to its
characteristic recurrent infections [1]. Cholesteatoma causes
include congenital or chronic ear infections and even trauma.
Additionally, cholesteatoma can have severe consequences,
such as hearing loss, facial paralysis, and intracranial com-
plications [2]. Otolaryngology involves various diagnostic
methods for ear diseases, such as computed tomography (CT)
and endoscopy analysis [3]. However, COM is often difficult
to diagnose because it shows various signs and symptoms,
such as middle ear inflammation, TM perforation, and retrac-
tion [4]. Moreover, because the diagnosis of ear diseases
primarily relies on visual data, such as endoscopy or CT
images related to the eardrum, the accuracy of this diagnosis
may be limited by the clinician’s experience [5]. To address
these problems, we applied artificial intelligence (AI) models
in otolaryngological examinations to increase the accuracy of
ear disease diagnosis.

Amidst recent advancements in deep learning technology,
numerous studies have applied AI in the medical domain [6].
In otolaryngology, research leveraging deep learning technol-
ogy to diagnose middle ear diseases has attracted increas-
ing attention [7]. In an earlier study, Shie et al. deployed
865 otorhinolaryngological images in an AdaBoost model
and discerned four diagnostic categories based on ear dis-
eases: normal, acute otitis media, otitis media with effusion
(OME), and COM, achieving an accuracy rate of 88.06% [8].
Khan et al. utilized 2,484 endoscopic images of the TM in
a DenseNet-161 model, classifying ear diseases into three
categories: normal, COM with perforation, and OME, and
achieved an accuracy of 94.9% [9].

Endoscopic images of the TM are vital for diagnosing ear
diseases because they qualitatively offer various visual mark-
ers indicative of ear pathologies, such as the color and trans-
parency of the TM and the presence of middle ear effusion
[5]. Consequently, the most prevalent method for automati-
cally diagnosing ear diseases involves analyzing endoscopic
images of the TM using AI [7], [10], [11]. However, the
diagnostic performance of AI decreases when classes such
as OME, which visually resembles normal TM, are included
[12]. In addition, when solely relying on endoscopic images
of the TM and not pure tone audiometry for diagnosing ear
diseases, abnormal eardrum images with only subtle visual
deviations may lead not only to misdiagnosis but also to
disease progression. For example, when subtle otitis media is
overlooked, symptoms such as hearing loss and ear fullness
may worsen, with the possibility of newly formed chronic
otitis media and cholesteatoma [13].

Studies have suggested that ear diseases can be diagnosed
using pure-tone audiometry (PTA) data in conjunction with
endoscopic images of the TM [1], [14], [15]. PTA measures
air and bone conduction. The PTA air conduction threshold
is ascertained using headsets or earphones, whereas bone
conduction is assessed by vibrating the skull to stimulate
the inner ear using a bone vibrator [16]. Both methods
determine the patient’s decibel threshold for each frequency

band [17]. The discrepancy between PTA air and bone con-
duction thresholds, known as the air-bone gap (ABG), can
help differentiate between normal and abnormal conditions of
the middle ear [1], [16]. Numerous studies have proposed the
fusion of images and electronic health record (EHR) data in
the medical field [18]. However, to the best of our knowledge,
no previous studies have integrated PTA data with endoscopic
images of the TM for AI applications.

Ongoing efforts are being made to overcome the lim-
itations of image-only models by fusing medical images
with EHR data [18]. In prior research, Prabhu et al. applied
MRI images combined with EHR data to Multi-Modal Deep
Learning Models for the classification of Alzheimer’s Dis-
ease [19]. Jabbour et al. diagnosed acute respiratory failure
(ARF) by applying chest X-rays and EHR data to CNN
and ANN models, respectively [20]. Additionally, besides
EHR data, Kumar et al. analyzed patients’ cough sounds,
leveraging deep learning models to recognize pulmonary dis-
eases [21]. Our model employs late fusion to integrate the
endoscopic images of the TM and PTA data. However, while
endoscopic images of the TM are high-dimensional data
containing considerable information on ear diseases, PTA
data contain significantly fewer details, resulting in an imbal-
ance in the information between the two data types. Using a
single-fusion approach may not deliver optimal performance
[18]. To address these challenges, we propose a multi-modal
multi-fusion (MMMF) model that employs multiple fusion
methods rather than relying on a single method.

Cross-attention captures the interplay between two datasets
[22]. Ying et al. [23] used a cross-attention method to fuse
features from text and image data on social media platforms
to detect fake news. Consequently, they surpassed the perfor-
mance of existing state-of-the-art models. Concatenation is
a straightforward feature fusion method that links features.
Although simple, this method allows the fusion of different
features without compromising the original state of each fea-
ture. Hilmizen et al. concatenated the features extracted from
CT-scan and X-ray images to diagnose COVID-19 pneumo-
nia, and the performance of this approach was superior to that
of other approaches [24]. Gated multimodal units (GMUs)
are modules designed to identify intermediate representa-
tions based on various feature combinations, enabling the
learning of hidden, latent variables by fusing each feature
[25]. Arevalo et al. developed a GMU fusion method to
classify movie genres by fusing features from movie posters
and plot data [25]. They outperformed other fusion methods,
including a mixture of expert models. We implemented a
multi-fusion method that applies feature fusion techniques,
including cross-attention, concatenation, and GMUs.

The primary contributions of this work are as follows:
- We propose an MMMF model that automatically diag-

noses ear diseases using semantic information from endo-
scopic images of the TM and PTA data.

- Our model employs a multi-fusion approach (cross-
attention, concatenate, and GMU), incorporating each feature
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fusion method rather than depending on a single-feature
fusion method to fuse the information extracted from the con-
volutional neural network (CNN) and multi-layer perceptron
(MLP) models.

- We improved the diagnostic performance of ear diseases
by fusing information derived from endoscopic images of the
TM and PTA data. Furthermore, we expanded the classifica-
tion capability beyond the typical categories of normal, TM
perforation, retraction, and cholesteatoma by introducing an
additional class: normal (hearing loss).

- We have verified the efficacy of the multi-fusion method.
Moreover, we applied the proposed MMMF model to the
endoscopic images of the TM and PTA data, validating its
superior diagnostic performance for ear diseases.

FIGURE 1. Types of ear diseases in the collected dataset. The red circles
indicate the locations representing specific characteristics of each
disease. (a) Normal TM. (b) Marginal perforation of TM. (c) Attic
retraction. (d) Attic destruction with cholesteatoma.

II. MATERIAL AND METHODS
A. PATIENT SELECTION AND DATA ACQUISITION
We collected and analyzed 1632 TM endoscopic images
from Korea University Ansan Hospital. Among these, 1,480
endoscopic images of the TM included 330 normal images,
554 images of TM with perforations, 300 retraction images,
159 cholesteatoma images, and 137 images obtained from
patients categorized as normal (hearing loss). The remaining
152 images were excluded because they exhibited severe
swelling, bleeding, indistinguishable diseases, and overlap-
ping or blurred foci. Furthermore, the TM size, angle, loca-
tion, rotation, light reflection, and smudging varied across
the endoscopic images of the TM; however, these images
were analyzed without filters, mirroring real-world clini-
cal situations. The endoscopic photography equipment was

replaced midway through the data acquisition process. Con-
sequently, because the image resolutions varied between
1920 × 1080 and 640 × 480, we adjusted the image size to a
uniform size of 384 × 384 pixels.
The clinical features of ear diseases are shown in Figure 1,

with red circles indicating the location of a specific feature.
TM perforation, TM or attic retraction, and cholesteatoma
are features observed in individuals with hearing impair-
ment. The presence of TM retraction indirectly shows the
patient’s Eustachian tube function while suggesting potential
cholesteatoma formation in the middle ear. Cholesteatomas
can induce symptoms such as hearing loss, otorrhea, vertigo,
and headache.

TABLE 1. PTA data characteristics for patients included within the dataset
used to train the model.

Table 1 lists the characteristics of the patients from whom
PTAdata were collected. Previous studies have suggested that
hearing levels vary according to sex and age [27]; therefore,
we included both factors in our PTA data. We collected PTA
decibel thresholds at 0.25, 0.5, 1, 2, 3, and 4 kHz frequencies
and computed the average decibel thresholds across the entire
frequency band using two testing methods: air and bone
conduction. Given that ABG can help differentiate normal
and abnormal TM [1], [16], we included ABG in our analysis
of patient characteristics. We also included the values calcu-
lated using the sexenary average formula to determine hear-
ing loss grades [26]. The sexenary average is calculated as
follows:

Sexenary average =
0.5k + 2 × 1k + 2 × 2k + 4k

6
(1)

When endoscopic images of the TM show normal
eardrums but the sexenary average exceeds 25 dB, diseases
such as sudden sensorineural hearing loss, congenital middle
ear anomalies, and otosclerosis may cause hearing loss [28].
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In addition, normal eardrums with ABG of 11 or more may
indicate otosclerosis, bone anomaly, and inner ear disorders
[29]. Therefore, we included a hearing loss flag in our data
because a difference of 11 or more between the ABG and the
average value of PTA air, or a sexenary average value of 26 or
more, significantly increases the likelihood of hearing loss.
Consequently, we constructed one-dimensional data with a
length of 25. The patients’ ages ranged from 0–80, and the
decibel levels varied between −10 and 120 dB, a range. In
addition, we classified the PTA dataset into 330 normal and
1150 abnormal cases (perforation, retraction, cholesteatoma,
and normal (hearing loss)) based on the analysis of endo-
scopic images of the TM.

The endoscopic images of the TM and PTA data were
randomly divided into five distinct datasets, each representing
20% of the total data per disease category, with no overlap.
Four datasets, comprising 80% of the images (1184), were
employed for training, whereas the remaining dataset, con-
taining 20% of the images (296), was used for validation.
In addition, all procedures in this study were performed
following the rules of the 1975 Helsinki Declaration, and
the use of the data was approved by the IRB (2021AS0329)
of Korea University Ansan Hospital. The ethics committee
waived informed consent because of the retrospective nature
of the study.

FIGURE 2. MLP architecture for extracting meaningful features from PTA
data.

B. MLP MODEL FOR EXTRACTING SEMANTIC
INFORMATION FROM PTA DATA
Images are high-dimensional data containing a wealth of
information [30]. Consequently, they can accurately iden-
tify the properties of normal, perforation, retraction, and
cholesteatoma-affected eardrums. While one-dimensional
PTA data can classify eardrums into normal and abnormal
categories, identifying the specific characteristics of retrac-
tion, perforations, and cholesteatoma using PTA data presents
a challenge. Hence, we applied PTA data to an MLP to
develop a simple PTAmodel that extracts information regard-
ing normal and abnormal TM states. The architecture of the
proposed PTAmodel is shown in Figure 2. We constructed an
MLP comprising an input layer with 25 nodes and a hidden
layer with 144 nodes.

C. CNN MODELS FOR EXTRACTING SEMANTIC
INFORMATION FROM ENDOSCOPIC IMAGES OF THE TM
We extracted endoscopic image information using a
pre-trained public CNN model validated using the ImageNet
database. The CNN model was trained to classify images
into 1,000 categories. Therefore, the ImageNet CNN model
included a fully connected (FC) layer of 1,000 nodes. As
we used the CNN model solely to extract image features,
we employed it with the FC layer removed.

D. MMMF MODELS FOR THE AUTOMATIC DIAGNOSIS OF
EAR DISEASES USING ENDOSCOPIC IMAGES OF THE TM
AND PTA DATA
The architecture of the MMMF model is shown in Figure 3.
First, theMLPmodel was applied to PTA data to extract MLP
features related to hearing. In addition, endoscopic images of
the TMwere applied to the CNNmodel to extract the features
of the TM. The CNN features were extracted both before and
after average pooling. TheCNN featuremap beforeAvg pool-
ing was reshaped into channel × (width × height) images.
The MLP feature map was then expanded by the number of
channels in the CNN feature map to obtain CNN and MLP
feature maps of the same size. Cross-attention was used to
generate the CA features to fully integrate the information
from the endoscopic images of the TM and PTA data. To
preserve feature information from both models, the CNN
feature map after Avg pooling was concatenated with the
feature map extracted from theMLP, resulting in CC features.
Finally, the GMU [25] module fused the CA and CC features
to produce multi-fusion features. An FC layer was then used
to classify the multi-fusion data into the following classes:
normal, perforation, retraction, cholesteatoma, and normal
(hearing loss).

E. MULTI-FUSION METHOD
First, we applied the cross-attention mechanism in our model
to mix information from the endoscopic images of the TM
and PTA data. The cross-attention structure we used aligned
with the scaled dot-product attention structure proposed in
the transformer [31]. To learn the correlation between the
information in endoscopic images of the TM and PTA data,
each feature sequence should be utilized as three variables:
query, key, and value. The CNN feature map was employed,
which contains information from endoscopic images of the
TM as the query, and the MLP feature map, which contains
PTA data information, as the key and value.

We computed the correlation between the endoscopic
images of the TM and the PTA data using dot products of
the query and key. By scaling this with the softmax function,
we derived the attention weights for both datasets. These
weights were then multiplied with the value to produce the
CA feature, used for the GMUmodule. The operation process
for cross-attention is as follows:

Attension(Q,K ,V ) = softmax(
QKT
√
dk

)V (2)
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FIGURE 3. MMMF model architecture. Information extracted from endoscopic images of the TM and PTA data through CNN and MLP is integrated using
the cross-attention, concatenate, and GMU fusion methods. Following fusion, the combined features are forwarded through the FC layer to classify five
ear diseases (normal, perforation, retraction, cholesteatoma, and normal (hearing loss)). PTA, Pure-tone audiometry. CNN, Convolutional neural networks.
MLP, Multi-layer perceptron. CA, Cross-attention. CC, Concatenate. GMU, Gated multimodal units. Avg, Average. FC layer, Fully connected layer. c, Channel
size. w, Width size. h, Height size.

where Q represents the query, K represents the key, and V
represents the value, while dk signifies the dimensions of the
queries and keys. The dot products of the query and key are
computed, each divided by

√
dk , and the softmax function is

then applied to obtain the weights for the values.
Second, the concatenation method was used to focus on the

interactions between the features extracted from the CNN and
MLP, and these features were fused without damaging their
original state. The structure of the GMU module is shown in
Figure 4. We used the GMU module to extract a multi-fusion
feature that learned the intermediate representation and hid-
den, latent variables of the cross-attention-fused CA feature
and CC feature. This CA feature contained information about
the interrelation between the two datasets, and the CC feature
retained the original forms of the endoscopic images of the
TM and PTA data.

Within the GMU module, our first step extract hidden
features from the CA features and CC features. Subsequently,
employing the concatenation operator and the sigmoid acti-
vation function, we derive the z activation function from
the two features. Then utilized z activation function and the
hidden features of CA features and CC features, resulting in
a multi-fusion feature used for ear disease classification. The
GMU operational process is as follows:

hv = tanh(Wv · xv) (3)

ht = tanh(Wt · xt ) (4)

z = σ (Wz · [xv, xt ]) (5)

FIGURE 4. GMU architecture [25].

h = z×hv + (1 − z) × ht (6)

θ = {Wv,Wt ,Wz (7)

where θ represents the parameter to be learned, and [·, ·]
denotes the concatenation operator; both operations are
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differentiable. This fusion method can be easily integrated
with other neural network architectures and trained using
stochastic gradient descent.

F. TRAINING DETAILS
We evaluated the usefulness of the features extracted from the
MLP model described in Figure 2, in which we added an FC
layer with two output nodes to the MLP model. To extract
features from endoscopic images of the TM, we compared
seven CNN models from ImageNet. The models include
Vgg-19 [32], ResNet-152 [33], GoogleNet [34], DenseNet-
161 [35], Inception-V3 [36], Inception+ResNet-V2 [37], and
EfficientNet-B7 [38]. In addition, we added an FC layer
with four output nodes to each CNN model. Following this,
we adopted the CNN model that exhibited the best perfor-
mance and compared and evaluated our proposed MMMF
model with conventional feature fusion methods. All models
were trained using a batch size 16, a learning rate 1e−4,
an Adam optimizer, and a cross-entropy loss function. More-
over, owing to a class imbalance in the data, loss weight
was applied by calculating the ratio of the number of data
points for each disease. All experiments in this study were
conducted on a deep learning server equipped with eight
NVIDIA GeForce RTX 3080 12GB graphic processing units.

G. EVALUATION PROTOCOLS
We evaluated the performances of all the models using accu-
racy and recall indicators. Accuracy, which represents the
proportion of correctly predicted data across an entire dataset,
is the most commonly used performance metric. Recall indi-
cates the proportion of data correctly predicted to belong
to the actual class from the entire dataset of that class. The
formulas for these evaluation metrics are as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(8)

Recall =
TP

TP+ FN
(9)

where TP, TN, FP, and FN represent the true positives, true
negatives, false positives, and false negatives, respectively.
The higher the value of each metric, the better the classifi-
cation performance.

III. RESULTS
A. PTA MODEL FEATURE EXTRACTION PERFORMANCE
As depicted in Figure 3, to implement cross-attention
between the semantic information from endoscopic images
of the TM and PTA, a feature map of the same size is
required. Therefore, we generated a feature map with a length
of 144, corresponding to one channel size of the CNN feature
map, to represent the semantic information of PTA data. In
addition, it is essential to ascertain whether the features of
PTA data can distinguish between the normal and abnormal
states of the eardrum. We trained the model by adding an FC
layer with two output nodes to the MLP model, as shown
in Figure 2. The MLP model demonstrated an accuracy of

90.5%, recall of 94.0%, and loss of 0.221. This indicates that
when the PTA data were applied to our proposedMLPmodel,
the features of the normal and abnormal eardrum conditions
were effectively differentiated.

B. CNN MODEL CLASSIFICATION PERFORMANCE
The performances of seven CNN models pre-trained on Ima-
geNet were compared for use in our MMMF model. Our
endoscopic images of the TM showed the characteristics
of four ear diseases: normal, perforation, retraction, and
cholesteatoma. Therefore, the CNN models were classified
into four classes. Table 2 compares the results. The CNN
models displayed an average accuracy of 89.9%, recall of
85.9%, and loss of 0.565 for identifying ear diseases. Further-
more, the EfficientNet-B7 model, which exhibited superior
performance, showed an accuracy of 91.5% and a recall of
87.6%, indicating that applying endoscopic images of the
TM to the CNN model enables the precise extraction of
features corresponding to the four ear diseases. Additionally,
we adopted EfficientNet-B7 for the proposed MMMFmodel.

TABLE 2. Performance comparison of CNN models.

C. MULTI-FUSION AND SINGLE-FUSION COMPARISON
RESULTS
We extended the classification of ear diseases into five cat-
egories: normal, perforation, retraction, cholesteatoma, and
normal (hearing loss). The latter was identified using features
of abnormal hearing extracted from the PTA data in conjunc-
tion with features of the normal class extracted from endo-
scopic images of the TM. Table 3 compares the performance
of the proposed MMMF model with that of conventional
single-feature fusion methods. Our model exhibited superior
performance with an accuracy of 92.9%, recall of 90.9%, and
loss of 0.671. Our proposed model also outperformed the
EfficientNet-B7 model, which was trained to classify four
classes, despite adding a fifth class: normal (hearing loss).
Figure 5 shows cases of improved diagnosis of ear diseases
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FIGURE 5. Examples of improved misclassification results of the EfficientNet-B7 model when using the proposed model. Tensor is the
predicted value for each class by the model. For the EfficientNet-B7 model, the order is normal, perforation, retraction, and
cholesteatoma. The order of the proposed model is normal, perforation, retraction, cholesteatoma, and normal (hearing loss). The
target is ground truth.

using our proposed MMMF model compared to using only
endoscopic images of the TM in the EfficientNet-B7 model.
This proves that our model not only effectively classifies
the additional normal (hearing loss) class but also enhances
the diagnostic performance of the original four types of ear
diseases.

TABLE 3. Performance comparison between the proposed MMMF model
and conventional single-feature fusion methods.

D. MMMF MODEL FIVE-FOLD CROSS-VALIDATION RESULT
Table 4 summarizes the results of the five-fold cross-
validation of the proposedMMMFmodel. Ourmodel demon-
strated consistent performance across all datasets, achieving
an average accuracy of 89.7%, recall of 87.2%, and loss
of 0.852. Confusion matrices depict the rate of correct pre-
dictions for each class, as well as the proportions at which
certain classes are mistakenly identified as others. Within
these matrices, the diagonal elements represent the correct
prediction rate for each specific class. Aggregating the correct
prediction rates from all classes results in the overall accuracy

value. Furthermore, elements outside the diagonal provide
insights into which specific classes were commonly misclas-
sified. Figure 6 shows the confusion matrix results of all
datasets for our proposed model, demonstrating the perfor-
mance of our model in accurately classifying all five types of
ear diseases across all datasets. This confirms the capability
of the proposed MMMF model to accurately categorize the
added normal (hearing loss) class across all datasets.

TABLE 4. Five-fold cross-validation performance results of the proposed
MMMF model.

E. GRAD-CAM ANALYSIS
Grad-CAM is a common method for visualizing the areas
in an image that the CNN model focuses on during clas-
sification. Figure 7 shows the Grad-CAM outputs for each
disease type for the MMMF and EfficientNet-B7 models.
EfficientNet-B7, when integrated into the proposed MMMF
model, displays a heat map of the precise eardrum and
affected area locations, resembling the findings from the
standalone EfficientNet-B7 model. This demonstrates that
the EfficientNet-B7 model incorporated into the MMMF

VOLUME 11, 2023 116727



T. Kim et al.: Toward Better Ear Disease Diagnosis: A MMMF Model Using Endoscopic Images

FIGURE 6. Confusion matrix for each dataset of a MMMF model. No, normal. Per, perforation. Ret, retraction. Chole, cholesteatoma. No (HL), normal
(hearing loss).

model classifies ear diseases by focusing on exact eardrum
locations.

IV. DISCUSSION
The diagnosis of ear diseases predominantly depends on
ear examinations and clinician expertise [3], [5]. Moreover,
diagnostic accuracy can vary based on the clinician’s expe-
rience, as the primary basis of diagnosis lies in visual data,
such as endoscopic, CT, and MRI images [5]. Studies have
indicated that the average diagnostic accuracy of pediatri-
cians and otolaryngologists is <70%, indicating that their
diagnostic precision is not high [39]. Hence, incorporating
AI technology into otolaryngology could assist in making
objective judgments when diagnosing ear diseases. Studies
on the automated diagnosis of ear diseases suggest that deep
learning models based on endoscopic images of the TM
can considerably assist physicians [40]. Most AI research
in otolaryngology utilizes eardrum images [7], [10], [11].
However, if only endoscopic images of the TM are used in
a deep-learning model, there is a risk of misdiagnosing ear
diseases that appear similar to a normal eardrum [12]. In
previous research, the fusion of medical images and EHR

has been employed to overcome the challenge of diagnosing
complex clinical situations using only medical images [18].
In otolaryngology, eardrum images and PTA data can be used
to diagnose ear diseases [1], [14], [15]. Therefore, applying
PTA data and endoscopic images of the TM to our deep
learning model, we solved problems such as the misdiagnosis
of images similar to normal eardrums or patients with hearing
problems who exhibited normal eardrum images, as shown
in Figure 5. In addition, our MMMF model achieved supe-
rior diagnostic performance compared with traditional deep
learning models that only use conventional feature fusion
methods and endoscopic images of the TM.

Our proposed MMMF model, using 1,480 endoscopic
images of the TM and PTA data, automated the diagnosis
of five ear diseases with an accuracy of 92.9% and a recall
of 90.9%. These results demonstrate improvements of 1.4%
and 3.3% over those of the CNNmodels that used only endo-
scopic images of the TM for diagnosing the four ear diseases.
In our proposed model, the EfficientNet-B7 model accu-
rately classified specific ear diseases by pinpointing the exact
location of the eardrum and affected area in the otoendo-
scopic image. The PTAmodel accurately classified a patient’s
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FIGURE 7. Comparison of heat maps of the Grad-CAM of the EfficientNet-B7 and MMMF models for
each disease condition. The closer the color is to red, the greater the influence on the model’s
classification of ear diseases. Heat maps for the (a) normal, (b) perforation, (c) retraction,
(d) cholesteatoma, and (e) normal (hearing loss) classes.

eardrum condition as normal or abnormal. Therefore, we not
only classified an additional normal (hearing loss) class by
merging the CNN and PTAmodels but also enhanced the per-
formance of automatic ear disease diagnosis. Furthermore,
our proposed method represents the first attempt to apply a
multi-fusion method in otolaryngology and is also an inaugu-
ral study to classify the normal (hearing loss) class of ear dis-
ease. This validates the capabilities of our MMMFmodel and
multi-fusion method to diagnose a broader spectrum of ear
diseases more efficiently than previous diagnostic strategies.
Moreover, it validates the enhanced utility of concurrently
using endoscopic images of the TM and PTA data over solely
relying on endoscopic images of the TM in deep learning
models.

The medical significance of this study first, lies in the fact
that it is a study of this type in developing countries, where
otologists are not readily available for patients’ hospital care.
Using both PTA and endoscopic images of the TM to increase

diagnostic rates may also be employed in telemedicine in
developing countries, while endoscopic images of the TMand
PTA data may be sent for analysis and diagnosis in a cheaper
and cost-efficient manner. Moreover, physicians with endo-
scopic systems but different specialties, such as pediatrics,
internal medicine, or family medicine, may examine features
that signal chronic ear diseases, such as attic destruction or
minimal TMperforations. The automatic diagnosis of chronic
otitis media may assist medical doctors in diagnosing patients
with such features. Finally, the current study not only enables
the discrimination of normal TM from hearing loss but also
facilitates the diagnosis of the aforementioned diseases in
clinical situations.

However, our proposed method has the limitation of not
implementing data augmentation. Moreover, despite the con-
current use of endoscopic images of the TM and PTA data in
our proposedMMMFmodel, it only classifies five ear disease
categories. Previous studies indicated that increased amounts
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of data could enhance the accuracy of automatic diagnostic
systems for ear diseases [40]. Nevertheless, patient medical
data collection is challenging owing to various regulations
such as the Privacy Act [41]. Hence, previous otolaryngol-
ogy studies have used data augmentation techniques such as
image rotation and flipping [9], [40], [42]. In our approach,
we similarly augmented the eardrum endoscopy data. How-
ever, for the PTA data, data augmentation generates duplicate
PTA data, equivalent to the number of augmented eardrum
endoscopic images. Therefore, we could not perform data
augmentation. Despite this, our study demonstrated excellent
performance with a relatively small dataset of 1,480 sam-
ples. If we manage to amass a larger dataset consisting of
more eardrum endoscopy images and PTA data, our proposed
MMMFmodel can potentially be used to diagnose more than
six classes. Therefore, future studies should aim to collect
more data and conduct tests to diagnose various ear diseases.
Furthermore, a more detailed exploration of the relationship
between the endoscopic images of the TM and PTA data,
or the adoption of state-of-the-art technologies, might prove
beneficial in classifying not just the ‘normal with hearing
loss’ category but also in introducing new categories for
diagnosis.

V. CONCLUSION
In this study, we developed an MMMF model for automati-
cally diagnosing five ear disease classes: normal, perforation,
retraction, cholesteatoma, and normal (hearing loss), employ-
ing endoscopic images of the TM and PTA data. Our model
demonstrated the best performance when EfficientNet-B7
was applied, with an accuracy of 92.9% and recall of 90.9%.
Furthermore, the proposed multi-fusion method exhibited
superior performance over the single-fusion method, and our
model demonstrated excellent results across all datasets in
a five-fold cross-validation. Despite using a feature fusion
method, our model categorizes ear diseases by referring to
the precise locations of the eardrum and affected areas in
the endoscopic images of the TM. Thus, the proposed model
outperformed traditional single-feature fusion methods, and
CNN models that solely utilize endoscopic images of the
TM. Considering that our PTA model was integrated with a
conventional CNNmodel in this study, the additional classifi-
cation of the normal (hearing loss) class could be attributed to
the PTA model. Furthermore, considering the application of
the multi-fusion method to multi-modal data, the enhanced
performance of ear disease diagnosis can be attributed to
the multi-fusion method. Consequently, the proposed method
demonstrates that deep learning models can leverage new
semantic information from eardrum endoscopic images of
the TM and PTA data to diagnose complex ear diseases
further, thereby achieving high diagnostic performance. This
indicates the potential benefits for future clinical scenarios,
such as telemedicine and diagnostic support systems.
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