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Abstract: This study delves into the application of convolutional neural networks (CNNs) in evaluat-
ing spinal sagittal alignment, introducing the innovative concept of incidence angles of inflection
points (IAIPs) as intuitive parameters to capture the interplay between pelvic and spinal alignment.
Pioneering the fusion of IAIPs with machine learning for sagittal alignment analysis, this research
scrutinized whole-spine lateral radiographs from hundreds of patients who visited a single institu-
tion, utilizing high-quality images for parameter assessments. Noteworthy findings revealed robust
success rates for certain parameters, including pelvic and C2 incidence angles, but comparatively
lower rates for sacral slope and L1 incidence. The proposed CNN-based machine learning method
demonstrated remarkable efficiency, achieving an impressive 80 percent detection rate for various
spinal angles, such as lumbar lordosis and thoracic kyphosis, with a precise error threshold of 3.5◦.
Further bolstering the study’s credibility, measurements derived from the novel formula closely
aligned with those directly extracted from the CNN model. In conclusion, this research underscores
the utility of the CNN-based deep learning algorithm in delivering precise measurements of spinal
sagittal parameters, and highlights the potential for integrating machine learning with the IAIP
concept for comprehensive data accumulation in the domain of sagittal spinal alignment analysis,
thus advancing our understanding of spinal health.

Keywords: machine learning; convolutional neural network; sagittal alignment; pelvic incidence;
incidence angle of inflection points; lumbar lordosis; cervical lordosis

1. Introduction

The human spine exhibits a characteristic sagittal plane alignment known as lordosis in
both the lumbar and cervical regions. This alignment is essential for maintaining an upright
posture and facilitating a gait that enables the unrestricted use of both arms [1,2]. It has been
well-established that maintaining proper sagittal alignment of the spine is a critical factor
in the management of pain and disability in patients with adult spinal deformities [3,4].
Various sagittal angular parameters such as pelvic incidence minus lumbar lordosis, and T1
slope minus cervical lordosis have been reported as the primary parameters representing
cervical and thoracolumbar deformities, respectively [5,6]. However, most spinal sagittal
parameters require manual measurement by spine surgeons, which inevitably requires
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considerable time and effort. Moreover, this practice limits the scale of the collected data,
and is insufficient for comprehensively analyzing the characteristics of spinal alignment.

While originally introduced in the 1980s, artificial intelligence is currently exhibiting
rapid growth with the development of computational performance [7]. Deep learning, a
subconcept of machine learning, can process a large amount of information by generating
optimized weights while learning similarly to a human, and has an advantage in repetitive
tasks in a short time [8]. Convolutional neural networks (CNNs) are widely used to extract
features from image data, and a few studies have recently reported their application in
spinal sagittal analysis. For instance, Aubert et al. [9] introduced a pioneering technique
for the automated reconstruction of three-dimensional spinal structures. Their approach
involved the use of a convolutional neural network (CNN) to precisely fit a statistically
plausible model of the spine to medical imaging data. In a similar context, Weng et al. [10]
introduced a deep learning methodology employing regression techniques to accurately
estimate the sagittal vertical axis—a pivotal parameter characterizing sagittal alignment.
Extending the scope of vital spinal measurements, which encompass cervical lordosis, tho-
racic kyphosis, pelvic incidence minus lumbar lordosis, sagittal vertical axis, and pelvic tilt,
Cho et al. [11] conducted a comprehensive study utilizing the U-net architecture for precise
anatomical landmark segmentation in radiographic imagery. Additionally, Wu et al. [12]
proposed an innovative multiview correlation network architecture aimed at measuring
the Cobb angle, primarily relying on the detection of anatomical landmarks. However,
their approach did not specifically address parameters related to sagittal alignment. In the
pursuit of automating the measurement of spinal alignment parameters through machine
learning, Chae et al. [13] and Nguyen et al. [14,15] developed a sophisticated algorithm
grounded in distributed convolutional neural networks. Notably, their algorithm demon-
strated a significant correlation with manual measurements conducted by experienced
spine surgeons [16].

To facilitate a more intuitive interpretation of spinal alignment, incidence angles of
the inflection points (IAIPs) have been introduced as valuable parameters that depict the
geometric relationships between the pelvis and the spine [17]. These inflection points,
specifically defined as L1, T1, and C2, give rise to corresponding incidence angles: L1
incidence (L1I), T1 incidence (T1I), and C2 incidence (C2I). These angles represent the
relationship between the extension of the pelvic tilt vector line and the perpendicular line
drawn from the upper endplate of each respective vertebra. These IAIPs represent the
cumulative geometric summation extending from the pelvis to each individual vertebra.
They are computed as the aggregate of the slope angle at each vertebral level combined
with the pelvic tilt, akin to the calculation of the pelvic incidence [18–24]. Therefore, in
this study, the IAIPs were measured using CNN-based machine learning, and the accuracy
of the thoracolumbar angular parameters derived through geometric relationships was
evaluated. The hypothesis of this study was that machine learning-based measurement of
global sagittal spinal parameters and estimates derived using spinal geometric equations
would show high accuracy.

2. Materials and Methods
2.1. Patient Enrollment

We analyzed the whole-spine lateral radiographs of 595 patients who visited a single
institution between March 2019 and August 2021. The inclusion criteria were patients
aged over 20 years with mild pain and a visual analog score of 4 or less, and none of the
patients had restrictions on walking for >30 min. The exclusion criteria were the patient
who underwent previous instrumentation surgery of the spine, hip and knee replacement
surgery, history of vertebral compression fractures, and pregnancy. All patients were
radiographically imaged using a standardized protocol, 36-inch full-length film. Following
the exclusion of subpar-quality images of the spinal endplates and both femoral heads, only
images of superior quality, suitable for meticulous contrast and brightness examination,



Bioengineering 2023, 10, 1236 3 of 14

were retained for analysis. This study received approval from our institutional review
board (2020-05-032-008).

2.2. Image Preparation and Measurement

For the whole-spine standing radiographs for parameter measurement, 563 whole-
spine lateral radiography sheets among the 595 high-quality images were analyzed. The
distribution of patient images along age and gender is shown in the Figure 1.
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Figure 1. Distribution of patient cases by age and gender.

Whole-spine standing radiographs were obtained with the hands naturally placed on
both clavicles, without holding the supporting bar, in a standing state, facing forward, with
the hip and knee joints extended as much as possible. Radiographs were obtained using
an X-ray scanner with an average size of 3240 × 1080 pixels. The ratio of the training and
validation sets was set at 9:1; training was performed with images from 500 patients, and
the measured values were validated with images from 63 patients.

3. Machine Learning-Based Analysis Program and Training Process

The inception of the CNN traces back to the pioneering work of Fukushima et al. [25]
in 1980, with the introduction of the ‘neocognitron’. This architectural design represents
a specialized neural network engineered to discern intricate features within images, and
establish the relationships between these features and desired outcomes. Comprising
input, output, and multiple intermediary layers, X-ray images are initially conveyed to
the network’s input layer. These intermediate layers serve the critical function of feature
extraction from the input images, thereby providing valuable insights for the assessment
of landmark positions, a key component of the anticipated outcomes. This function is
constructed using a training process, during which the weight factors, which represent
the relationship between the features and outcome, were optimized by comparing the
predicted and ground truth values. The weight factor adjustment is achieved by the
difference between the output Aj from the deep learning model containing the calculated
position value j for the input image and the label Yj, created based on the actual position of
the required points in the input image. This disparity is calculated using the mean absolute
error as a loss function, as expressed in Equation (1), with n labels in the dataset. The L
value then increases as the difference between Aj and Yj increases.

L =
∑n

i=1

∣∣∣Aj − Yj
∣∣∣

n
. (1)
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The optimization of the weight factor, wp
q , between the p and q nodes located in

the neighboring layer is performed based on the difference from the loss function in the
direction from the output to the input layer. After each training step, the weight factor
wq

p, is updated by ∆wq
p, which can be derived from Equation (2) with a learning rate, α,

determining the learning speed of the model [26,27], where zq denotes the summation of
the weighted input data multiplied by the weight factor, and oq is the output signal of the
node, as shown in Figure 2.

∆wq
p = −α ∂L

∂oq

∂oq

∂zq

∂zq

∂wq
p

(2)
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Figure 2. Structure of a convolutional neural network model.

The accurate detection of landmarks is of paramount importance in this context, as
it directly influences the precision of angle parameter measurements. To address this
critical need, we employed a decentralized CNN model [13–16], previously established
as a robust landmark detection technique for medical images. This method offers the
distinct advantage of narrowing the region of interest (ROI) on a per-order basis, effectively
reducing the influence of extraneous features on results, and enhancing the diversity of
the training dataset. Our proposed decentralized CNN model, as depicted in Figure 3,
comprises three orders. The 1st order serves to provide a rough detection of the regions
encompassing the cervical, lumbar, and hip bones. The 2nd order then refines this detection
by locating specific vertebrae, while the 3rd order is tasked with the precise localization of
landmarks on each identified vertebra. This multitiered approach was devised to tackle
the inherent complexity of landmark detection. The required angular parameters can be
measured from the detected landmarks. Each angle α consists of two vectors, vα1 and vα2 ,
which are shaped by two pairs of landmarks

(
Pα1

1 , Pα1
2
)
,
(

Pα2
1 , Pα2

2
)
. Therefore, the angle

was calculated using Equation (3), as follows:
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α = arccos


−−−−→
Pα1

1 Pα1
2 .
−−−−→
Pα2

1 Pα2
2∣∣∣∣∣−−−−→Pα1

1 Pα1
2

∣∣∣∣∣
∣∣∣∣∣−−−−→Pα2

1 Pα2
2

∣∣∣∣∣

 (3)
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neural network with 1st (yellow), 2nd (red) and 3rd (blue) CNN models.

4. Measurement of Parameters after the Training Process

After training an algorithm that recognizes 11 points at the center of both femoral
heads, endplates of the sacrum, L1, T1, C2, and the center of the sacrum for 500 people, the
pelvic parameters of pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS), along with
three incidence angles of L1, T1, and C2, were measured using a self-made program. The six
test parameters of lumbar lordosis (LL), thoracic kyphosis (TK), C2–C7 lordosis (C2–7 L),
L1S, T1S, and C2S were calculated using the following equations using the concept of
IAIPs. Table 1 and Figure 4 present the definitions and calculation equations for the sagittal
parameters.
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Figure 4. Schematic drawings of radiographic parameters of spinal sagittal alignment. Lumbar
lordosis = L1 incidence − pelvic incidence; thoracic kyphosis = T1 incidence − L1 incidence; C2–C7
lordosis = T1 incidence − C2 incidence; L1 slope = L1 incidence − pelvic tilt; T1 slope = T1 incidence
− pelvic tilt; C2 slope = C2 incidence − pelvic tilt.

All parameters were defined as negative for lordosis and positive for kyphosis to
ensure the uniformity of measurements. The incidence angle was defined as positive
when the perpendicular line of the corresponding endplate was located on the right side
compared with the PT line, similar to the pelvic incidence, and negative for the left side.
The slope angle was defined as positive for the right upside open angle, such as the sacral
slope, and negative for the left upside open angle.
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Table 1. Definitions of radiographic parameters.

Parameters Definition

Pe
lv

ic
pa

ra
m

et
er

s

Pelvic incidence
The angle between a line drawn from the center of the femoral
heads to the midpoint of the sacral superior endplate and a line
perpendicular to the sacral superior endplate.

Pelvic tilt
The angle between a line drawn from the center of the femoral
heads to the midpoint of the sacral superior endplate and the
vertical line.

Sacral slope The angle between the sacral superior endplate and the
horizontal line.

In
ci

de
nc

e
an

gl
e

C2 incidence
The angle between a line from the center of the femoral heads to the
midpoint of the sacral superior endplate and a line perpendicular
C2 inferior endplate.

T1 incidence

The angle is measured as the deviation between a line drawn from
the center of the femoral heads to the midpoint of the sacral
superior endplate and a line that is perpendicular to the superior
endplate of the T1 vertebra.

L1 incidence

The angle is defined as the angle formed between a line extending
from the center of the femoral heads to the midpoint of the sacral
superior endplate and a line that is perpendicular to the superior
endplate of the L1 vertebra.

Te
st

pa
ra

m
et

er
s

Cervical lordosis The angle between the inferior endplate of C2 and the superior
endplate of T1.

C2 slope The angle between the horizontal and inferior endplate of C2.

Thoracic kyphosis The angle between the superior endplate of T1 and the superior
endplate of L1.

T1 slope The angle between the horizontal and superior endplate of T1.

Lumbar lordosis The angle between the superior endplate of L1 and the superior
endplate of S1.

L1 slope The angle between the horizontal and superior endplate of L1.

5. Validation Process

In addition to the training set of 500 individuals, whole-spine standing radiographs of
63 individuals who had not been included in the training set were used for the validation
process. Each spinal sagittal parameter was manually measured twice at 2-week intervals
by two spine surgeons. The mean values were employed as the established reference
standards. To assess the accuracy of the parameters measured by machine learning, the
success rate was determined using a Bland–Altman plot. Success rates were defined as the
proportion of cases where the mean absolute error, as measured by the CNN, fell below a
predefined error threshold.

To evaluate the accuracy of the proposed equation, the concordance between the direct
measurement values of the six test parameters and the values derived from the calculated
equation was analyzed. Concordance was analyzed by comparing the mean and standard
deviation (SD) error, Pearson correlation coefficient, and coefficient of determination. In-
terobserver reliability and intraobserver reproducibility were analyzed using intraclass
correlation coefficients (ICCs).

6. Results

The descriptive data of the CNN and standard reference values for the 63 validation
sets are listed in Table 2. The success rates of the parameters were high for PI and C2I, and
low for SS and L1I (Figure 5).
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Table 2. Descriptive data for the radiographic measurements of sagittal parameters.

Parameters
CNN (n = 63) Standard Reference (n = 63)

Mean ± SD Min. Max. Mean ± SD Min. Max.

Pelvic incidence (◦) 52.16 ± 12.24 29.14 83.31 51.76 ± 12.47 27.94 80.18
Pelvic tilt (◦) 14.99 ± 8.03 −3.00 44.55 14.21 ± 8.94 −5.36 46.55

Sacral slope (◦) 37.22 ± 9.40 15.20 59.95 33.13 ± 9.42 9.69 56.46
L1 incidence (◦) 2.46 ± 13.05 −22.42 55.76 −0.56 ± 13.3 −23.69 54.78
T1 incidence (◦) 39.77 ± 11.33 13.73 62.78 39.07 ± 11.74 12.50 64.85
C2 incidence (◦) 26.87 ± 11.03 4.53 50.15 26.21 ± 11.26 2.76 53.06

Lumbar lordosis (◦) −49.71 ± 14.34 −82.82 −6.05 −49.85 ± 14.63 −80.98 −5.34
Thoracic kyphosis (◦) 37.30 ± 10.31 7.02 61.62 36.89 ± 10.53 7.62 63.71

C2–C7 lordosis (◦) 12.89 ± 12.32 −9.82 45.84 12.37 ± 12.37 −12.21 46.81
L1 slope (◦) −12.48 ± 7.80 −28.37 12.60 −12.84 ± 8.22 −25.34 13.66
T1 slope (◦) 24.82 ± 7.71 11.06 44.80 24.64 ± 8.04 8.76 48.34
C2 slope (◦) 11.93 ± 8.37 −7.58 31.87 11.32 ± 9.05 −10.17 32.40
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Figure 5. Success rates for 12 parameters by error threshold; (a) pelvic incidence, pelvic tilt, and sacral
slope angles measured by CNN; (b) L1 incidence, T1 incidence, and C2 incidence angles measured
by CNN; (c) lumbar lordosis, thoracic kyphosis, and C2–C7 lordosis angle measured by CNN and
calculated from the equations; and (d) L1 slope, T1 slope, and C2 slope angles measured by CNN
and calculated from the equations.
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The proposed method demonstrated notable efficiency in measuring various parame-
ters, including PI, PT, T1I, C2I, LL, C2-7 L, L1S, T1S, and C2S, achieving a detection rate of
80%, at an error threshold of 3.5◦ for these angles. Furthermore, visualized results exhibited
distinct characteristics when compared to the remaining outcomes, particularly in cases
where they achieved a 0.8 detection rate at an error threshold of 7.5◦ for SS and 4.5◦ for L1I.

The test results of our method were graphically represented through Bland–Altman
(B-A) plots, as depicted in Figure 6. These plots include horizontal lines indicating the
mean difference (represented by the red solid line) and the mean difference ± 1.96 standard
deviations (indicated by the blue dashed lines). Remarkably, the entire measurement
process required less than 1 s to complete.

Tables 3 and 4 present the mean and standard error of the absolute differences be-
tween the values computed using the proposed equation and the corresponding standard
reference values obtained via the CNN method for the six test parameters. The mean
absolute differences between the calculated values and those directly measured by the
CNN were 0.045 in L1S, T1S, and C2S; and 0.006 in LL, TK, and C2-7 L, with a coefficient
of determination of 1.0 (p < 0.01). The mean absolute difference value between the value
calculated by CNN and the standard reference was 1.8, with a coefficient of determination
of 0.96 (p < 0.01). All test parameters showed statistically significant ICC value over 0.9
with statistical significance (Table 5, p < 0.01).

Table 3. Comparison of radiographic parameters between computed and measured values using
convolutional neural networks.

Parameters
Calculated Value
by CNN (n = 63)

Measured Value
by CNN (n = 63) Absolute Difference Value Correlation

Coefficient
Coefficient of

Determination p-Value

Mean ± SD Mean ± SD MAE (◦) STD of AE (◦)

Lumbar lordosis (◦) −49.71 ± 14.34 −49.71 ± 14.34 0.004 0.005 1.000 1.000 0.000
Thoracic kyphosis (◦) 37.30 ± 10.31 37.31 ± 10.31 0.008 0.363 1.000 1.000 0.000

C2–C7 lordosis (◦) 12.90 ± 12.32 12.90 ± 12.32 0.004 0.012 1.000 1.000 0.000
L1 slope (◦) −12.48 ± 7.80 −12.53 ± 7.80 0.046 0.005 1.000 1.000 0.000
T1 slope (◦) 24.83 ± 7.71 24.78 ± 7.71 0.044 0.006 1.000 1.000 0.000
C2 slope (◦) 11.93 ± 8.37 11.88 ± 8.37 0.045 0.006 1.000 1.000 0.000

Table 4. Comparison of radiographic parameters between calculated values by convolution neural
networks and standard reference.

Parameters
Calculated Value
by CNN (n = 63)

Measured Value of
Standard Reference

(n = 63)
Absolute Difference Value Correlation

Coefficient
Coefficient of

Determination p-Value

Mean ± SD Mean ± SD MAE (◦) STD of AE (◦)

Lumbar lordosis (◦) −49.71 ± 14.34 −49.85 ± 14.63 1.764 1.543 0.987 0.974 0.000
Thoracic kyphosis (◦) 37.31 ± 10.31 36.89 ± 10.53 2.019 1.399 0.973 0.947 0.000

C2–C7 lordosis (◦) 12.90 ± 12.32 12.37 ± 12.37 1.938 1.437 0.982 0.964 0.000
L1 slope (◦) −12.53 ± 7.80 −12.84 ± 8.22 1.843 1.326 0.961 0.924 0.000
T1 slope (◦) 24.78 ± 7.70 24.64 ± 8.04 1.773 1.315 0.961 0.924 0.000
C2 slope (◦) 11.88 ± 8.37 11.32 ± 9.05 1.882 1.454 0.967 0.936 0.000

Table 5. Intraclass correlation coefficient values of six test parameters.

ICC (2,1) 95% CI p-Value

Pelvic incidence 0.993 0.988–0.996 0.000
Pelvic tilt 0.975 0.958–0.986 0.000

Sacral slope 0.928 0.217–0.979 0.000
L1 incidence 0.985 0.203–0.997 0.000
T1 incidence 0.989 0.981–0.994 0.000
C2 incidence 0.987 0.978–0.992 0.000
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7. Discussion

This study conducted a machine learning-based geometric analysis of global spinal
alignment. The algorithms were able to accurately detect 11 key anatomical landmarks,
such as the center of the femoral head and sacrum upper endplate, each endpoint of
the superior sacrum, L1, T1 superior endplate, and C2 inferior endplate. CNNs are the
most optimized method for image learning, and are being actively studied in the field of
imaging medicine. In an early study on the analysis of spinal sagittal parameters using
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machine learning, Zhang et al. [28] automatically measured the Cobb angle in patients
with scoliosis. When 235 of 340 simple radiographic examinations were subjected to
machine learning and 105 were tested, the difference between the artificial neural network
and manual measurement by the spinal surgeon was more than 5◦. Similarly, Galbusera
et al. [29] reported the results of machine learning for measuring thoracic kyphosis of
T4–T12, lumbar lordosis, Cobb angle, pelvic incidence, sacral slope, and pelvic tilt based
on a fully convolutional neural network. After training on data from 443 individuals and
subsequent evaluation by 50 individuals, it was observed that all predicted parameters
exhibited a robust correlation with values assessed by experienced spine surgeons. The
standard error of the estimated parameters varied from 2.7◦ for the pelvic tilt angle to 11.5◦

for the lumbar spine.
Recently, Yeh et al. [30] also published a convolutional neural network model that

detected 45 anatomical landmarks and measured major sagittal alignment parameters
using sagittal radiographs. The accuracy was improved using 2200 evaluation datasets
and was related to the number of detection points of the anatomical indicators. That is,
the accuracy of the parameters of the cervical and lumbar vertebrae composed of two
anatomical indicators was high, whereas the accuracy of the thoracic and pelvic indicators
composed of four indicators difficult to distinguish from the structures around the thoracic
vertebrae in the thoracic vertebrae was relatively low. The performance of the convolution
model was highest in the cervical vertebrae, and the error ranged from 1.75 to 2.64 mm,
followed by the lumbar vertebrae, with an error ranging from 1.76 to 2.63 mm. However,
the thoracic region showed a larger error, and the error range was 2.21~3.07 mm; the error
of the pelvic incidence was the highest, and the central error for the measurement of the
center of the femoral head was 3.39 mm. In their study, Yeh et al. localized 45 anatomical
landmarks; however, many of them were considered to have contributed to increasing error.
In addition, the localization error in finding the center of the femur head was the greatest
among all the anatomic landmarks, and the error distribution was the widest; therefore,
the accuracy of the pelvic parameters was low in their study.

The decentralized CNN employed in this study offers a decentralized approach across
multiple detection orders, enabling the attainment of high accuracy, even with a limited
number of training images—an aspect of paramount significance in the realm of medical
metrology. Based on the conventional CNN model structure for locating a landmark’s
horizontal and vertical positions, the developed method utilizes multiple trained CNN
models intentionally arranged in order. In increasing order, the landmark positions are
predicted from rough to precise accuracy, which consequently provides sufficient final
detected positions of the considered vertebrae, as well as good measured angles. This
advantage comes from the procedure of narrowing the ROI according to each order, which
not only reduces the number of unrelated features that can affect the results, but also
increases the diversity of the training dataset.

In this study, six geometrical equations were proposed to efficiently measure the
angular parameters from three pelvic parameters and the IAIPs. The accuracies of the
six test parameters were 99% between the measured values and those calculated by the
spine surgeons. For the manual measurement of a specific angular parameter, the observer
must set two vectors and measure the Cobb angle between them. Therefore, 24 vectors
must be obtained to measure 12 parameters, and measurement errors can occur during
this process. However, 12 angular parameters could be measured with high accuracy
using only 11 key anatomical landmarks, machine learning, and the equations proposed
in this study. In addition, lordosis of the cervical and lumbar spines should be defined
as negative; however, in clinical settings, absolute values are used with confusion. These
mistakes can occur frequently in parameters with ranges including zero, such as the L1
incidence, L1 slope, C2–7 lordosis, and C2 slope. If the orientational definition of angular
parameters is not accurately defined, large-scale data may be too heterogeneous to interpret
the sagittal alignment. Disorganized data increases the entropy of the data, and this can be
a confounding factor in revealing the characteristics of spinal sagittal alignment. Using the
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orientational definition of the slope and incidence angles, we collected homogeneous data
with high accuracy. The authors believe that the definitions proposed in this study will be
effective for large-scale data collection on spinal sagittal parameters.

The ICC values, as observed in this study, demonstrated a high level of accuracy in
the detection of anatomical points by the CNN when compared to direct measurements by
human experts. However, it is notable that as the detection rate of anatomical landmarks
located in regions overlapping with the rib cage and shoulder girdle diminished, the
ICC values for parameters such as T1 slope and T1 incidence exhibited reduced accuracy.
Consequently, we acknowledge the need for further algorithmic enhancements to improve
generalizability. This could entail adjustments in image contrast or substituting the T1
slope with the measurement of C7 slope.

Additionally, it should be noted that the algorithm for assessing distance parameters
could not be fully evaluated in this study, and ongoing efforts are dedicated to its refinement.
Lastly, we recognize the potential limitation posed by the use of spine images collected
solely from a single institution, which may restrict external validation. Therefore, there
is a compelling need for future algorithmic enhancements based on the incorporation of
multicenter image data to ensure broader applicability and robustness.

8. Conclusions

The CNN-based deep learning algorithm and the concept of IAIPs were able to
accurately measure the spinal sagittal parameters. Based on the three pelvic parameters
and three incidence angles used, six additional parameters were accurately estimated. The
advantages of machine learning and the concept of IAIPs shown herein suggest their utility
for large-scale data accumulation in sagittal spinal alignment.
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