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A B S T R A C T   

To guarantee the right to move for residents in areas where public transportation is insufficient, 
research is needed to identify vulnerable areas and prepare measures. This paper defines the 
vulnerable regions of public transportation within various city types in Korea. In order to identify 
appropriate areas to apply the Demand Responsive Transit (DRT), the regions with vulnerability 
were compared with a specific city (Yangsan-si) which already the DRT system was successfully 
adopted. To collect monthly bus data, web-data crawling method was performed and processed 
with coordinating program by matching GPS coordinate. The public transportation demand was 
predicted for each grid cell size (100 m, 250 m, and 500 m) by different methodologies. Various 
data mining models based on regression were analyzed to predict bus demand of vulnerable areas. 
Among models, a modified model was suggested to combine Automated machine learning models 
for high prediction performance. The modified model outperformed other methods as 0.685 and 
prediction performance was appropriate at 100 m rectangle grid. Regional characters of DRT bus 
allocation areas were extracted by K-means clustering method and differentiate urban and sub-
urban types. The findings of this study provide valuable insights into conditions that DRT bus stop 
can be installed. The urban bus stop areas located in metropolitan cities and the suburban bus 
stop allocation areas located in countryside. The study results can be used as policy data for the 
successful introduction to prevent social exclusion and improve resident welfare in the future.   

1. Introduction 

1.1. Overview 

Public transportation, such as buses and subways, is the only means of transportation for citizens who do not have cars, and it is an 
essential service for living [1]. The administrative division of the Republic of Korea consists of 8 provinces and 1 special city. The 
province includes sub-administrative districts such as ‘si’ and ‘gun’. ‘si’ is an area with a population of 100,000 or more, and ‘gun’ is an 
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area with a population of less than 100,000. Population-induced demand significantly influences the availability of public trans-
portation. According to the ‘Resident Registration Population Statistics’ of Republic of Korea’s Ministry of Public Administration and 
Security, the population in the capital area (50.1 %) outnumbered that in the non-capital areas as of 2019. Thus, the capital areas are 
witnessing an increase in population density and the rural areas are showing decreased population density and outflow of people. As 
population density decreases, public transportation and service supply demands decrease, reducing the efficiency of traditional 
fixed-route bus-based public transportation systems. For example, fixed-route public transportation discontinued after a short oper-
ation period in rural transportation services owing to a fare cost recovery rate, limiting the utilization of important services [2]. Hence, 
public transportation in vulnerable areas is more crucial to people who have difficulty take transportation. Moreover, the freedom to 
migrate is limited for residents in public transportation vulnerable areas, contributing to social exclusion. Social exclusion refers to 
social problems related to the fragmentation of conventional social institutions, less involvement in regular societal processes, and 
increased deprivation among specific social groups [3,4]. A tackling social exclusion concerns involvement in activities which provide 
social interaction with others in the community [5]. It is becoming an essential component of social policy debate, but it is becoming to 
limit areas of economic poverty and income disadvantage [6,7]. To prevent social exclusion, an accessibility analysis such as medical 
facilities and public transportation is being performed in several studies [8,9]. Local governments are focusing on implementing a 
demand-responsive transit (DRT) system that combines the benefits of buses and taxis to reduce residents’ social exclusion in public 
transportation vulnerable areas and ensure mobility. The DRT system is a transportation service that adapts the route or schedule of 
vehicles to meet passenger needs [10]. This study considered introducing the DRT system to reduce social exclusion and expand 
mobility rights for residents in public transportation vulnerable areas. Yangsan-si, which adopted the DRT system, was used as a 
standard region to examine public transportation vulnerable areas around Gyeongsangnam-do. GIS analysis was used to create data, 
classify grids, and examine predictive performance by grid size using various datamining methods such as classification and regression 
tree (CART), random forest (RF), support vector machine (SVM), Multivariate adaptive regression splines (MARS), Automated ma-
chine learning (AUTOML)_default, and Automated machine learning (AUTOML)_modified model. And then conducting K-means 
clustering model to classify type of DRT bus stop allocation. The study chose a grid technique appropriate for the domestic envi-
ronment to derive characteristics that support demand-responsive bus stop construction and identify public transportation vulnerable 
areas and DRT system priority locations. 

1.2. Literature review 

In this study, several studies were reviewed to analyze for selecting and visualizing areas vulnerable to public transportation. 
Geographic information systems (GISs) and data mining models include various analysis methods and have been used in studies that is 
similar to this research topic. GIS analysis was considered for accessibility and visualization, and data mining models were considered 
for selecting public transportation vulnerable areas. 

1.2.1. Geographic information systems (GISs) 
GIS analysis was considered for accessibility and visualization, and data mining methodology was considered for selecting 

vulnerable areas for public transportation. GIS can be used to select a facility’s location based on geographical distribution and spatial 
structure. Moreover, it can analyze information on spatially distributed phenomena [11]. It is necessary to create data for analysis by 
combining geographical data by grid through the GIS program. At this time, since each data affects a range of total data characteristic, 
it is necessary to establish standards of data scope through the literature in which GIS analysis has been performed. Ma, Q. et al. used 
GIS analysis to develop a shared electric scooter and subway connection plan. Land use data and location data were used, and res-
taurants within an OD(Origin-Destination) of 100 m were counted [12]. Sadeek used a GIS map to create rectangular grids ranging 
from 50 to 400 m and analyzed to examine transportation accessibility, crime trends, and land use. Through using SVM and GIS 
analysis, a 300 m*300 m grid was proposed as the best outcome [13]. Yao determined the predictive demand for public transportation; 
the SOM algorithm, a data mining tool. It was used to assign weights with the results classified and shown in the GIS using the natural 
break method [14]. Xue et al. investigated bus and subway accessibility to forecast house values based on transportation accessibility 
[15]. Yi and Kim examined medical facility accessibility and determined the optimal radius at 2100 m [16]. Kim et al. used a GIS buffer 
analysis to confirm the spatial distribution of vulnerable classes of public transportation services with the range of influence of the bus 
stop set to 300 m, while isolated areas where is more than 300 m from bus stop were assessed as public transportation vulnerable areas 
[1]. Lee et al. used a buffer analysis to assess the impact on student obesity. For comparison, the impact ranges for schools (elementary, 
middle, and high school) were set to 1000 m or 1500 m, respectively. The parameter stated in “Rules for determination, structure, and 
installation criteria of si/gun planning facilities” was elementary school walking distance [17]. Rattan et al. used GIS analysis to assess 
walking distance. The maximum walking distance in the analysis was 400 m from each public transportation method and 1500 m to an 
elementary school [18]. The buffer range for hospitals, elementary schools, middle schools, and high schools was set at 2100 m, 1000 
m, 1000 m, and 1500 m, respectively, and the bus stop buffer range at 300 m and 500 m. 

1.2.2. Data mining techniques 
Data mining has been used as an analytical technique in various scientific domains for years [19]. The prediction accuracy was 

improved by introducing and comparing data mining techniques to overcome the constraints of the statistical empirical model. To 
select public transportation vulnerable areas, we reviewed similar data mining topic in the regression analysis series that can compare 
predictive performance with the same evaluation indicators. Xue et al. revealed that the RF model predicts regression well. RF models 
have allowed for complex non-linear interactions in modeling numerous variables through the substantial use of big data [15]. 
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Tehrany et al. assessed flood-vulnerable areas using SVM and GIS. The study proved the accuracy of the SVM model and demonstrated 
their efficiency for generating maps in the GIS environment [20]. Pradhan compared decision trees(DT), SVM, and neural fuzzy 
inference system models for analyzing landslide vulnerability. The DT model generated the most accurate predictions, although all 
three methods produced efficient results [21]. Rahmati et al. used RF and MARS models to find and map potential groundwater areas. 
Both models performed well and It was an example that demonstrated the performance of the tree-based model [22]. Chen et al. 
compared the spatial prediction methodologies of RF, LMT, and CART for landslide vulnerability assessment and determined that the 
RF model generated the best results [23]. Lee et al. assessed the best personal mobility service area using an ensemble-based data 
mining technique. Though RF and gradient boost methods(GBM) offered excellent performance, the gradient boost analysis was more 
accurate than RF. They evaluated model performances using the root mean square error (RMSE) and coefficient of determination (R2) 
metrics [24]. Cong et al. developed a traffic prediction model using the least square SVM model and evaluated it using the mean square 
error (MSE) and mean absolute percentage error (MAPE) [25]. Stadler et al. forecasted bus demand for rural area using XGBoost, RF, 
and Naïve bayes model. The best prediction performance is 87 % and the model was RF. They used a different time of day intervals and 
weather to predict dynamic result [26]. Khan et al. performed bus optimization, such as predicting the number of passengers and 
allocating scheduling. Based on the MARS algorithm, they tried to predict the optimal demand, and predicted the number of passengers 
on all routes, including date, day of the week, time, and seats [27]. Imhof & Blättler modeled demand of DRT service by using rural 
area data in Swiss. they analyzed service area by 300*300 m raster and use the random forests algorithm to predict demand within and 
across areas [28]. Caicedo et al. developed the LSTM forecasting model to predict short-term public transportation demand using smart 
cards and time series data. It was mentioned that the LSTM model is suitable for predicting demand in dynamic situations due to 
COVID-19 [29]. Ma et al. performed a time series analysis to predict short-term bicycle sharing demand and introduce a system. They 
made predictions based on stations and proposed the STGA-LSTM (Spatial-Temporal Graph Attentional Long Short-Term Memory) 
framework, which focuses on both temporal and spatial dimensions [30]. Yang et al. used a multivariate linear regression model and 
SVR (Support Vector Regression) to determine the influence of environmental factors on the spatial distribution of bicycles, and 
analyzed it on a 500 m*500 m grid. The performance of SVR based on the Gaussian Radial Basis function was better, and it was 
confirmed that regional factors such as financial institutions, residential areas, and commercial areas had a significant influence on the 
installation area of shared bicycles [31]. Cui et al. (2018) focused on the recommendation of the number of shared bicycles near the 
subway station and take the volume of the station’s outbound passenger flow as the potential demand. They developed a novel 
passenger flow forecast model on advanced Xgboost method and the idea of sliding window and recommended a suitable number of 
shared bicycles for a subway station [32]. 

Based on previous studies, GIS analysis was conducted to combining data and visualizing results by applying buffer analysis, data 
combination, and Jenks’ natural break method. This combined data was processed to be analyzed and used for various data mining 
models. CART, SVM, RF, MARS, and AutoML were used among the data mining models, and the prediction results were compared and 
evaluated through RMSE, MAE, and R2. 

In this study, it is the main novelty that used successful cases of DRT operation as a reference and predicted bus demand in the supra 
regions of successful cases by considering the results according to regional characteristics. demand-responsive transit is a trans-
portation which effects are depending on the installed location, so selecting a site is important According to the scope of bus stop 
influence, the study area was divided into three grid sizes (100 m, 250 m, 500 m). Since there are differences in results depending on 
bus demand, regional location and characteristics, data which may affect bus demand were collected and combined. Existing literature 
used time series data and performed time series analysis. However, in this study, bus demand data, which is the dependent variable, 
can be used to collect monthly demand data for each stop through a web-data crawling method, resulting in various results depending 
on the scope of influence of the bus stop. Following is a summary of the specific research objectives and its essential intellectual merits.  

1. We proposed a combination among the AutoML model packages not only using best model: Deep Neural Network(DNN), Gradient 
Boosting Model(GBM)  

2. To suggest best performance model and grid size, we used comparison of evaluation indicators such as RMSE, MAE, R2. We can 
identify the lower values of analysis results.  

3. A novel definition and standards of public transportation vulnerable area with prediction results were proposed; simply an area 
where there is a bus demand and far from bus stop, or an area where the demand is numerically above a certain value and far from 
bus stop over 300 m.  

4. It was identified that vulnerable areas can be divided two types of DRT allocation area; urban DRT bus stops and suburban DRT bus 
stops and each type of area has common characteristics. 

2. Materials and methods 

2.1. Methods 

Methods for measuring access to public transportation are divided into infrastructure-based accessibility measurements, location- 
based accessibility measurements, human-based measurements, and utility-based measurements [33–35]. In this study, accessibility is 
measured based on location. We combined each data using buffer analysis with 100, 250, and 500 m grids and assessed the predictive 
performances of specific vulnerable grid of total data. Many researchers have used various methodologies such as statistical methods, 
time series analysis, machine learning, deep learning to develop bus demand forecasting or prediction models. We used tree-based 
CART and RF, SVM, MARS, and AutoML models to predict public transportation bus demand. After evaluating outcomes, the grid 
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size and model with the highest prediction were chosen. Based on the results of regression models, we established definition of public 
transportation vulnerable areas. Through using K-means clustering model, regional characteristics of areas where DRT bus stops might 
be introduced were obtained by matching with grid where DRT bus stops are installed. Fig. 1 depicts a simplified framework of the 
analysis process. 

2.1.1. Classification and regression tree(CART) 
CART is a non-parametric model that specifies the functional form and does not rely on predictor additivity assumptions. If the 

output is a categorical variable, the Gini index is employed as an impurity measure; if the output variable is continuous, binary 
separation is conducted using a variance. The branching process begins with variables of high importance. Its goal is to reduce the 
“impurities” of nodes in a classification tree [36]. 

2.1.2. Random forest regression(RF) 
RF is an ensemble technique for tree-based prediction models, such as decision trees, developed to solve the problem of decision 

tree analysis [37]. It reaches consensus by gathering classification data from several trees built through training. Data is sampled 
randomly for each tree, the parameters are adjusted to diversify the tree’s properties, and the classification results of each tree are 
collected to form a forest [15]. 

2.1.3. Support vector machine regression(SVR) 
SVM is a supervised learning model that learns from training data containing labels for classification or regression analysis. The 

hyperplane classifies data, and after training on the given data, it learns the class of the new data [38]. The model is developed as 
Equations (1)–(4): 

y=
(
wT.Φ(x)+ b

)
+ noise

)
(1)  

1
2
wT.w+C

∑N

i=1
εi + C

∑N

i=1
ε • I (2)  

wT.Φ(ε)+ b − yi ≤ ϵ + ε • i (3) 

Fig. 1. An overview of the framework.  
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ε • i, εi ≥ 0, i = 1 (4) 

The noise parameter (ε) in the regression model is expressed as error tolerance. w is the coefficient vector, b is a constant, and Φ 
represents the kernel function. C is a positive constant that controls the degree of loss when an error occurs, N is the sample size, and ϵ X 
are slack variables that specify the upper and lower calibration errors of ε [39]. 

2.1.4. Multivariate adaptive regression splines(MARS) 
The MARS method is appropriate for high-dimensional regression problems with several input variables. It is a generalization of 

stepwise linear regression or an enhancement of decision trees. MARS employs a piecewise linear regression basis function as 
(x − t)+(t − x)+ at knot points defined at value t, where (x)+ = x(f(x > 0)) reflects only the positive component of the value x in 
parenthesis as Equation (5): 

(x − t)+ =

{
x − t, x〉t

0 otherwise (5)  

(t − x)+ =

{
t − x, x〈t

0 otherwise 

The class of the basis function is expressed as splines with observed values x1j as knot points for each input variable Xj. The MARS 
model is expressed as Equation (6): 

B=
(
Xj − t

)

+
,
(
t − Xj

)

+
: t∈ x1j,⋯, xnj for j= 1,⋯, p (6) 

Bm (X) is a basis function in B or the product of two or more basis functions that belong to B. Rather than using the original input 
values, forward-step linear regression is used for modeling. When Bm (X) is given, we estimate the Bm coefficients that minimize the 
sum of squared errors, and the β0 is intercept as Equation (7): 

μ(X)= β0 +
∑M

m=1
βmBm(X) (7) 

If only one basis function in B is used, the model is additive and solely employs the primary effect. The basis function in MARS is 
chosen using forward selection. Thus, β0(X) = 1 is fed to the model, variables and knot points that minimize the sum of squared errors 
at each step are determined, and the corresponding basis function pair is added to the model. Equation (8) is the criterion for selecting 
a basis function: 

GCV(m)=

∑n

i=1
(yi − μ̂m(xi))

2

(1 − C(m)/n)2 (8)  

where μ̂m is the fitted value of μ(x) based on m terms, n is observations, and C(m) is the complexity function defined by the number of 
parameters. Finally, a model with m* terms where m* = argminGCV(m) is selected [40]. 

2.1.5. Automated machine learning (AutoML) 
AutoML is a systematic model that automates the algorithm selection and hyper-parameter tuning processes. AutoML consists of the 

following three key components: a search space, a search strategy, and a performance evaluation strategy. The search space refers to a 
set of hyper-parameters and the range of each hyper-parameter. The search strategy refers to the strategy of selecting the optimal 
hyper-parameters from the search space. The performance evaluation strategy refers to the method used to evaluate the performance of 
the trained models. In the study, the H2O AutoML platform was adopted for the assessment of Bus demand. Generalized linear model 
with regularization (GLM) is an extended form of a linear model. Given the input variable x, the conditional probability of the output 
class falling within the class c of observations is defined as Equation (9) Where βC is the vector of coefficients for class c: 

ŷc =Pr(y= c|x)=
exT βC + βC0

∑K

k=1
(exT βk + βk0)

(9) 

The distributed random forest (DRF) is an ensemble learning approach based on decision trees. In the DRF training process, 
multiple decision trees are built. To reduce the variance, the final prediction was obtained by aggregating the outputs from all decision 
trees. Like the DRF, extremely randomized trees (XRT) is based on multiple decision trees, but randomization is strongly emphasized to 
reduce the variance with little influence on the bias. The following main innovations are involved in the XRT process: random division 
of split nodes using cut points and full adoption of the entire training dataset instead of a bootstrap sample for the growth of trees. The 
DNN in H2O AutoML is based on a multilayer feedforward artificial neural network with multiple hidden layers. There are many hyper 
parameters involved in DNN training, which makes it notoriously difficult to manually tune. Cartesian and random grid searches are 
available in H2O AutoML for DNN hyper-parameter optimization. GBM is an ensemble learning method. The basic idea of GBM is to 
combine weak base learners for the generation of strong learners. The objective is to minimize the error in the objective function 
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through an iterative process using gradient descent. In addition, stacked ensembles can be built using either the best-performing 
models or all the trained models [41]. AutoML allows you to select the optimal model without tuning hyper-parameters, but 
models that combine individual models presented in AutoML’s format can have excellent predictive performance. If the optimal model 
selected from the AutoML model is stacked ensemble, the result of combining various models is presented, so you can proceed with the 
analysis by combining individual methods. Therefore, in this study, the models were combined by two STEPs and AutoML_Modified 
was presented. 

STEP1. Consider the characteristic of data. As the analysis data in this study was collected through individual sources, there are 
many variables that have the same results depending on the administrative district. In the case of a 100 m grid, there is a variable 
having a value of ‘0’ because it is generated with multiple grids. Since data of the dependent variable is predicted from a range of 
1–6,000, the range of errors may be increased. The distribution of data can consider many dimensions due to the enormous number of 
explanatory variables, and it is necessary to apply a methodology that can clearly visualize the data. 

STEP2. Choose models to combine. Among the results excluding AutoML, the analysis result of the RF model was the highest. This is 
a model through a bagging algorithm and is one of the ensemble models. Since the bagging method analyzed in parallel, it has the 
characteristic of temporarily extracting and analyzing data. In contrast, the gradient boosting method is a method of extracting data 
and continuously reducing errors and has high predictive performance. Various tree-based prediction methods are compared in this 
study. The GBM model was suitable as an analysis model. The current research in Abdulhammed et al. and Leem et al. affirms that DNN 
and GBM are the best methods to predict performance [42,43]. The results indicate that GBM tends to be faster and more potent than 
DNN due to its lower processing requirements. GBM is hence the preferred method for credit scoring prediction [44]. The result of a 
GBM single model that can reduce errors in data for each grid and consider all various characteristics is not a high-ranking model, so to 
improve prediction performance, DNN model was combined. Deep learning models have high prediction performance and are usually 
evaluated with similar predictive performance to GBM models. In this study, the results were derived by combining DNN and GBM 
models to utilize total data collected for one month for analysis. Best model was used as default, and combination model was used as 
modified. 

2.1.6. Model validation 
The RMSE, MAE, and R2 indicators validate regression-based data mining analysis approaches and are used to evaluate the pre-

diction accuracy of models. The RMSE is statistic difference between an estimated or projected value and actual value. The MAE 
measures the average magnitude of the errors in a set of forecasts. The lower the MAE and RMSE, the better the regression model’s 
prediction accuracy. R2 describing the prediction performance, is calculated by dividing the sum of squared residuals (SSR) by the sum 
of squared total (SST). RMSE, MAE, and R2 are calculated as Equation (10)–(12). Where yi is the prediction result, ŷi is the observed 
value (real value), and n is the number of samples: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n2

i=1

(yi − ŷi)
2

n

√
√
√
√ (10)  

MAE=
1
n
∗
∑n2

i=1
|yi − ŷi | (11)  

R2 =
SSR
SST

(12)  

2.1.7. K-means clustering 
The k-means clustering model was first introduced by MacQueen [45]. This model partitions a set of data into k clusters in such a 

way that the sum of squared errors between the mean of each cluster and the existing data in the cluster is minimized. clusters are 
created by repeating the process of moving the center point to the center of the classified cluster. 

Table 1 
Hyperparameter list of models.  

Models Libraries Hyperparameters 100 m grid 250 m grid 500 m grid 

CART rpart, fit.tree, prune bestcp(nsplit) 9 12 13 
RF System.time, trainControl, rf, RandomizedSearchCV n_estimators 250 300 250 

max_depth 4 4 4 
SVM SVR, RandomizedSearchCV C 5.76 21.83 38.84 

Gamma 0.34 0.09 0.10 
Kernel rbf rbf rbf 

MARS caret, earth degree 2 2 2 
AutoML_Default H2O(h2o.automl) max_model 50 50 50 
AutoML_Modified nfolds 10 10 10 

fold_assignment Modulo Modulo Modulo 
distribution gaussian gaussian gaussian 

K-means clustering wss, kmeans NbClust – 5 -  
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2.1.8. Hyperparameter list for bus demand prediction models 
To predict bus demand, the analysis process was conducted in Python and R programming language. the libraries and hyper-

parmeters implemented for each individual model are presented in Table 1. Random search method or the best model was selected. 
The CART model considered ‘bestcp’, and the RF model considered ‘n_estimator’ and ‘max_depth’. The SVM model adjusted ‘C’, 
‘Gamma’, and ‘Kernel’, and the MARS model considered the ‘degree of interaction’. AutoML adjusted ‘max_model’, ‘nfolds’, ‘fol-
d_assignment’, and ‘distribution for deep learning’, and the K-means model considered ‘NbClust’. 

2.2. Data preparation 

Gyeongsangnam-do was chosen as the analysis region in this study except Changwon-si, Geoje-si, and Geochang-gun due to issues 
with data collection. Data were composed by referring to Foda and Osman [46], which collected data such as population, income 
quintile, and bus stop to predict the number of bus passengers, and cases that classified data by various characteristics such as de-
mographic characteristics, service characteristics, land use and socioeconomic index characteristics [14,47–50]. As population-related 
variables affect bus demand in rural areas, the number of single-person families and the number of people aged sixty-five and older 
were collected. Demand data by bus stops were collected by web data crawling method with the number of passengers and routes 
served. Bus data was derived from 0:00 to 24:00 for one month from April 1, 2022. The number of bus passengers was the dependent 
variable indicating public transportation demand, whereas the other variables served as explanatory variables. Table 2 lists all the data 
used in the analysis. As shown in Fig. 2, data was mapping at GIS map by grid sizes. 

3. Results 

3.1. Descriptive statistics of prediction data with models 

We performed correlation analysis on the processed data, and analysis was performed using significant variables derived through 
correlation analysis for each grid size. Outlier data that was different from the general bus stop demand was removed, and scaling was 
performed to equalize the scale of the data. We attempted to perform analysis and compare the performance of each analysis result. 
Table 3 lists the descriptive statistics of the predicted number of bus passengers. Descriptive statistics is consisted of mean, standard 
deviation, minimum, maximum values. The prediction results were examined by grid sizes and models (CART, RF, SVM, MARS, and 
AUTOML). The higher the value of the statistics, the more bus demands are projected. The standard deviation (SD), which is the square 
root of the positive variance and represents a value for addressing the overestimation problem, is used to calculate the difference 
between variances based on the mean. The bigger SD, the easier it is to compare the visualization impacts [24]. The 100 m *100 m grid 
consists of 877,169 grids. The 250 m*250 m grid is composed of 208,592 grids. The 500 m*500 m grid consists of 37,694 grids. Since 
this results are normalized, the maximum value is 1 and the minimum value is 0. Since SD is the smallest and mean is the largest, the 
visualization will not be clear in SVM model. In the MARS model, both SD and mean values are small. Therefore, the visualization 
results will be ambiguous. 

3.2. Validation 

AutoML_Modified model applied 1 DNN and 1 GBM. Table 4 shows the analytical model’s prediction accuracy for each grid size. 
When the prediction performance of all models was compared with models in existing literature, it was confirmed that they had similar 

Table 2 
List of variables and four data types of local characteristics.  

Data type Variable Source 

Socioeconomic Data Population(grid) National Spatial Information Portal 
No. of single person household Statistical Geographic Information Service 
No. of people aged 65 and over 
No. of employees 
No. of businesses 
Income National Spatial Information Portal 
No. of hospital 
No. of high school 
No. of middle school 
No. of elementary school 

Locational Data Location of bus stop Address Information Portal 
Location of DRT bus stop 

Public transportation Data No. of bus passenger Transportation Card Big Data Integrated Information System 
No. of bus Route 
Walking satisfaction National Statistical Office 
Link/Node KTDB 
Distance matrix GIS based data 

Land Data Slope National Spatial Information Portal 
Special-Purpose Area  
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Fig. 2. Mapping bus stop location and depicted analysis grid sizes.  

Table 3 
Descriptive Statistics of Prediction results by grid sizes.  

Grid Models Statistic Indicator 

Mean Standard deviation Minimum Maximum Observation 

100(m)*100(m)  0.061 0.051 0.000 1.000 877,169 
RF 0.086 0.071 0.000 1.000 
SVM 0.180 0.036 0.000 1.000 
MARS 0.160 0.042 0.000 1.000 
AutoML_Default 0.063 0.047 0.000 1.000 
AutoML_Modified 0.073 0.043 0.000 1.000 

250(m)*250(m) CART 0.217 0.217 0.000 1.000 208,592 
RF 0.143 0.136 0.000 1.000 
SVM 0.187 0.103 0.000 1.000 
MARS 0.037 0.037 0.000 1.000 
AutoML_Default 0.136 0.126 0.000 1.000 
AutoML_Modified 0.149 0.120 0.000 1.000 

500(m)*500(m) CART 0.050 0.042 0.000 1.000 37,694 
RF 0.129 0.081 0.000 1.000 
SVM 0.140 0.055 0.000 1.000 
MARS 0.370 0.033 0.000 1.000 
AutoML_Default 0.111 0.063 0.000 1.000 
AutoML_Modified 0.041 0.047 0.000 1.000  

Table 4 
Model Precision Accuracy evaluated with indicators.  

Grid Evaluation Indicator CART RF SVM MARS AutoML 

Default Modified 

100*100(m2) RMSE 0.200 0.167 0.154 0.178 0.162 0.149 
MAE 0.126 0.099 0.077 0.109 0.093 0.087 
R2 0.437 0.606 0.439 0.550 0.625 0.685 

250*250(m2) RMSE 0.290 0.171 0.151 0.178 0.163 0.146 
MAE 0.221 0.100 0.076 0.109 0.095 0.085 
R2 0.482 0.588 0.475 0.554 0.623 0.700 

500*500(m2) RMSE 0.197 0.168 0.157 0.176 0.161 0.149 
MAE 0.122 0.098 0.079 0.107 0.094 0.089 
R2 0.452 0.602 0.421 0.564 0.624 0.685  
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performance. AutoML_Modified model showed best RMSE performance in 100 m*100 m grid. The value is 0.149. MAE performances 
were good at the SVM model. AutoML_Modified and AutoML_Default model outperformed other models with R2. If predicted results 
showed larger variance, the visualization expected to be more pronounced [24]. The standard deviation of bus passengers (dependent 
variable) is more than 2300 and the value must be scaled due to affecting final results. Normalization was performed on the entire data, 
and the data was used for analysis. The SVM model is sensitive on the distribution of data. The variation of the results is smaller than 
other models. The CART model tended to vary depending on the number of branches of the data, and the accuracy was the highest in 
the 500 m grid, but the accuracy was the lowest in the overall model’s results. In addition, when comparing the accuracy of MARS and 
CART models based on tree techniques, the prediction performance of the MARS model was higher, and the error rate was lower. The 
AutoML model outperformed other models and RF model performed well than CART, SVM, MARS. This is the same as the results of Sun 
et al. comparing SVM, RF, and LR models in previous studies [51]. When comparing grid-specific analysis from 50 m to 400 m in 
various previous studies, the 300 m grid showed the highest accuracy [12,51]. In this study, the 250 m grid was most accurate. 

3.3. Prediction results and visualization 

The prediction results for each model are visualized in Fig. 3. As a result, Gimhae-si, Yangsan-si, and Hamyang-gun appeared in dark 
colors. Gimhae-si and Yangsan-si have the highest population and are classified as metropolitan areas in Gyeongsangnam-do. 
Hamyang-gun has small the population, but transportation infrastructure facilities were well established. In the region where is the 
well-equipped transportation facilities, prediction performance was accurate [52]. In CART model result of the 100 m*100 m grid, the 
branch conducted nine times but it is not suitable to classify about 880,000 grids. In RF model, 100 m *100 m grid result was visually 
clarified than 250 m*250 m grid. When comparing results between AutoML models, the visualization results from modified model 
reflect the distribution of darker colors. In case of modified model, there is a difference in metropolitan cities compared with other 
regions. In county with a small population, such as Uiryeong-gun, the population density compared to metropolitan cities is more than 
twenty times. This finding was similar to previous studies showing that high population density affects travel [53]. The distribution of 
population showed a difference in demand forecasting, and most regions in Yangsan-si and Gimhae-si have high prediction perfor-
mance in visualization. 

3.4. Characterizing the public transportation vulnerable areas 

The DRT bus stop area installed in Yangsan-si is characterized by K-means clustering model. The appropriate number of clusters was 
derived through Within-Cluster-Sum of Squares (WSS), and the number of clusters was found to be 5. The results are visualized in 

Fig. 3. Visualization of predicted demand result by models.  

Fig. 4. Visualization of K-means clustering analysis results using 250 m*250 m grid prediction values.  
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Fig. 4. The cluster 3 includes non-urban or rural areas, and these results overlapped with The DRT Routes 1, 2, 7, and 8. The cluster 2 
included industrial complexes or urban areas and overlapped with DRT routes 3, 4, 5, and 6. 

Table 5 represent urban and suburban DRT bus stops characteristics. Urban DRT bus stops have nice transportation accessibility 
compared to underdeveloped areas. but compared to convenient transportation environments, they are allocation areas to resolve 
inconvenience. Its economic affordability is higher than that of Suburban DRT bus stops, and it is in a commercial or residential area. 
Suburban DRT bus stops have a small population, negative economic affordability, and inconvenience to access, so they need to be 
improved. They need to install the result of the area near the apartment complexes, or a company located at the end of an industrial 
complex that is little far from the bus stop. And they are in an area with a high slope and inconvenient to move on foot, so an urgent 
installation is recommended rather than an Urban DRT bus stop. The number of population was found to be the most important spatial 
and local characteristic to predict DRT demand. Increasing number of population per grids lead to higher demand predictions. This 
may be explained as increasing the number of population increases the number of potential users, underscoring the principle of the 
“rural mobility problem” caused by low population size and density [28,54]. The finding on the interrelation between population 
density and demand for trips is in line with previous research on urban flexible transport services [28,55,56]. 

3.5. Selection of public transportation vulnerable areas 

This section shows the results obtained when the model was applied to the entire area of Gyeongsangnam-do. The higher the 
predicted value, the higher the demand. There are 36 predicted locations which urban DRT bus stops can be installed, and all of area 
are in Yangsan-si and Gimhae-si. In the case of suburban bus stops, it needs to be considered to secure mobility even when there is little. 
The maximum value of urban bus stop allocation area is 0.822, and the minimum value is 0.022. The highest demand was predicted in 
apartment complexes near Beomeo-ri of Yangsan-si. The least predicted area was found to be located near a shopping complex near 
Jinyeong-ri of Gimhae-si. Beomeo-ri, Gachon-ri of Yangsan-si and Jinyeong-ri, Yeorae-ri of Gimhae-si were classified as urban DRT bus 
stop sites. There are 108 predicted locations where suburban DRT bus stops can be installed. The areas are mountainous areas, but 
include cases where residents are lived in. Vulnerable areas were consisted of 71 areas in Gyeongsangnam-do. The areas that require 
installation with the highest priority are in gun areas. The maximum value of suburban DRT bus stop area is 0.058, and the minimum 
value is 0.004. Fig. 5 shows areas where have predicted Top 5 values of each bus stop type. Although the bus stop is currently located, it 
was selected as an area that requires a bus stop because it was not included in the data used in this study. This means that the prediction 
has been carried out appropriately. This results are similar to Lee et al. in that PM service areas are installed in places with high 
population density and developed commercial districts [24]. 

4. Discussion and conclusions 

In this study, we attempted to predict the demand of bus passengers in by selecting the optimal model, and to identify vulnerable 
areas of study area for public transportation by comparing with areas where demand-responsive bus stops are located. It is important to 
solve problems by quickly introducing transportation in areas where public transportation is vulnerable, and there are implications in 
that the research results were based on actual data. We collected data from web-data crawling method. Real bus demand data have 
been collected to train the regression models, and their performances are comparatively measured based on evaluation metrics 
described in Section 3.2. These metrics were also used to interpret the results of each applied machine learning model and based on 
which the best performing regression model is identified. Social demographic, location, public transportation, and land use data were 
collected and processed. Conducting GIS analysis, 100 m, 250 m, and 500 m rectangle grids were created, and data were combined. 
Various data mining models were used to predict the number of bus passengers. Among the AutoML models, the modified model 
consisted of one DNN and one GBM, with the highest prediction performance. The best model was ‘AutoML_Modified’, and analysis 
grid size was selected by 250 m. According to previous results, clustering analysis was performed and the characteristics were derived. 
The allocation areas of DRT bus stop can be divided into urban DRT bus stops and suburban DRT bus stops. The characteristics of the 
urban DRT bus stops location were identified as commercial areas and residential areas, 126 to 254 people, two lanes (one-way), 0–2◦

of slope, within 300 m of bus stops, and two to three quintiles of income. The characteristics of the suburban DRT bus stops location 
were identified in agricultural and forestry areas, 8 to 15 residents, 1 to 2 lanes (one-way), 1 to 2 quartiles of income, side roads, 
30–60◦ of slope, and more than 500 m of bus stops. This result suggests that the operation of the DRT system is more urgent, with most 
people engaged in the primary industry and several high-slope areas residing in agricultural and forestry areas. 

From a social perspective, DRT systems should improve mobility, minimize public transport travel and waiting times, increase 
public transport satisfaction, and increase public transport mode sharing. In addition, economic effects can be expected such as 
replacing public transportation (buses), reducing subsidies, revitalizing the local economy, generating profits for transportation 
companies, and inducing labor. If local governments implement it and create the possibility of development, the welfare of public 
transportation vulnerable areas will be improved. gun areas frequently experience lack of data and are tough to create raw data. A 
processing system that creates an accurate database using public transportation and regional data is required. When collecting and 
processing regional data becomes difficult, usage will be low and excluded from the analysis. Therefore, gun areas must supply raw and 
processed data on public transit and geographical characteristics. There is a disparity in public transportation supply by si and gun area, 
and further studies are needed to refer this. Management strategies such as establishing a DRT system must be adopted in locations as 
public transportation vulnerable areas. Various decision processes, such as region, branch, and route selections, are necessary to 
establish the DRT system. If a national policy based on this approach is formed, various regions across the country can consider for 
implementation. This study has a limitation in that data were compared for places with good access to public transportation. Further 

D. Oh et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e21213

12

research is needed to increase the mobility of residents in gun areas. Accuracy is improved by segmenting the analysis, such as securing 
monthly data and separating characteristics by time zone. The results can be used as policy data to reduce social exclusion and promote 
civic welfare by successfully introducing and settling demand-responsive bus stops in the future. 
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Table 5 
List of characteristics by the DRT bus stop types in the reference region.  

Type Characteristic Contents 

Urban DRT bus stop Special-Purpose Area Commercial and residential area 
Population 126 to 254 persons 
Number of lanes 2 to 3 lanes 
Road type Segregation road of pedestrian and vehicle 
Slope 0–2◦

Bus stop A distance within 300 m 
Income 2nd to 3rd quartile 

Suburban DRT bus stop Special-Purpose Area Agricultural and forestry area 
Population 8 to 15 persons 
Number of lanes 1 to 2 lanes 
Road type Side road(or sharing road of pedestrian and vehicle) 
Slope 30–60◦

Bus stop A distance farther than 500 m 
Income 1st to 2nd quartile  

Fig. 5. Visualization of Urban and Suburban DRT Bus stop allocation that fulfilled the characteristics.  
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Appendix tables  

Appendix A 
Descriptive statistics of training data  

Grid Variable 
Population(grid) 

Statistic Indicator 

Mean Standard deviation Minimum Maximum Observation 

100 m 
*100 m 

Population(grid) 51.328 116.498 0.000 1253.000 4,075.000 
Slope 8.809 18.491 0.000 80.000 
Income 2.350 0.559 0.000 4.467 
No. of single person household 1480.559 2390.278 0.000 11374.000 
No. of people aged 65 and over 402.317 443.966 0.000 1928.000 
Walking satisfaction 3.194 1.471 1.500 6.800 
Public transportation satisfaction 6.576 1.594 0.900 8.700 
Distance matrix 214.960 493.905 0.000 10842.975 
Link 1.439 0.755 1.000 4.000 
No. of hospital 0.814 0.389 0.000 1.000 
No. of high school 0.449 0.497 0.000 1.000 
No. of middle school 0.429 0.495 0.000 1.000 
No. of elementary school 0.574 0.494 0.000 1.000 
No. of bus Route 5.444 8.121 1.000 95.000 
Bus passenger 1315.889 3406.517 1.000 6000.000 

250 m 
*250 m 

Population(grid) 376.516 619.408 0.000 3548.000 3,964.000 
Slope 11.206 20.498 0.000 80.000 
Income 2.344 0.556 0.000 4.467 
No. of people aged 65 and over 1868.939 2180.265 0.000 9793.000 
Walking satisfaction 3.208 1.478 1.500 6.800 
Public transportation satisfaction 6.564 1.609 0.900 8.700 
Distance matrix 215.254 499.831 0.000 10842.975 
Link 1.438 0.747 1.000 5.000 
No. of hospital 0.827 0.379 0.000 1.000 
No. of high school 0.459 0.498 0.000 1.000 
No. of middle school 0.442 0.497 0.000 1.000 
No. of elementary school 0.600 0.490 0.000 1.000 
No. of bus Route 5.250 7.713 1.000 95.000 
Bus passenger 1281.860 3331.882 1.000 6000.000 

500 m 
*500 m 

Population(grid) 1320.145 1990.799 0.000 10288.000 3,983.000 
Slope 15.802 23.846 0.000 80.000 
Income 2.349 0.560 0.000 4.467 
No. of single person household 1480.823 2387.131 0.000 11374.000 
Walking satisfaction 3.202 1.479 1.500 6.800 
Public transportation satisfaction 6.564 1.605 0.900 8.700 
Distance matrix 212.141 497.313 0.000 10842.975 
Link 1.469 0.766 1.000 5.000 
No. of hospital 0.484 0.500 0.000 1.000 
No. of high school 0.849 0.358 0.000 1.000 
No. of middle school 0.491 0.500 0.000 1.000 
No. of elementary school 0.651 0.477 0.000 1.000 
No. of bus Route 5.278 7.723 1.000 95.000 
Bus passenger 1314.907 3405.429 1.000 6000.000   

Appendix B 
Urban DRT vulnerable areas lists  

Rank Administrative area Maximum prediction value 

1 Beomeo-ri, Yangsan-si 0.822 
2 Mulgeum-ri, Yangsan-si 0.723 
3 Gachon-ri, Yangsan-si 0.631 
4 Yeorae-ri, Gimhae-si 0.158 
5 Jinyeong-ri, Gimhae-si 0.123   

Appendix C 
Top20 of suburban DRT vulnerable areas lists  

Rank Administrative area Maximum prediction value 

1 Ugeo-ri, Haman-gun 0.058 
2 Gangju-ri, Haman-gun 0057 
3 Seodeuk-ri, Uiryeong-gun 0.055 

(continued on next page) 
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Appendix C (continued ) 

Rank Administrative area Maximum prediction value 

4 Gayeon-ri, Haman-gun 0.047 
5 Geomdan-ri, Haman-gun 0.048 
6 Mijo-ri, Namhae-gun 0.041 
7 Hyangyang-ri, Jinju-si 0.039 
8 Doyo-ri, Gimhae-si 0.038 
9 Neukdo-dong, Sacheon-si 0.036 
10 Gyesan-ri, Hapcheon-gun 0.036 
11 Songjeong-ri, Namhae-gun 0.036 
12 Daecheon-ri, Jinju-si 0.035 
13 Sanghyeon-ri, hapcheon-gun 0.033 
14 Jeokgok-ri, Uiryeong-gun 0.032 
15 Baegya-ri, Uiryeong-gun 0.030 
16 Songjin-ri, Changnyeong-gun 0.030 
17 Ugang-ri, Changnyeong-gun 0.029 
18 Songrim-ri, Hapcheon-gun 0.029 
19 Seongsan-ri, Uiryeong-gun 0.029 
20 Hyojeong-ri, Changnyeong-gun 0.029  
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