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A B S T R A C T   

Study region: Gyeongsang province in Korea 
Study focus: Drought is a complex phenomenon influencing the natural, physical, and social 
sectors depending on the occurrence probability, regional characteristics, and the water supply 
and demand. To reduce the damage resulting from drought, it is necessary to assess the drought 
risk that can identify the impacts, causes, and vulnerability of drought. Previous drought risk 
assessment has usually been conducted by combining drought hazard and vulnerability, but such 
assessment is of limited value because the regional response capacity for drought is not consid
ered. Moreover, it contains high uncertainty because indicators and weighting factors are 
determined by subjective methods. In this study, the comprehensive drought risk was assessed 
including the drought response capacity and with consideration of the regional water supply 
system. To remove the uncertainty in the drought risk assessment, this study employed partial 
least squares – structural equation modeling (PLS-SEM) to select effective indicators including the 
regional drought response capacity, and also applied objective weighting methods such as en
tropy, principal component analysis (PCA), Gaussian mixture model (GMM), and Bayesian net
works to determine optimal weighting factors. 
New hydrological insights into the region under study: As a result of application to Gyeongsang 
province in Korea, PLS-SEM selected 10 indicators for drought risk assessment. Using the selected 
indicators and the objective weighting methods, this study determined that the drought hazard, 
vulnerability, response capacity, and risk were highest in GS26 (Ulleung), GS27 (Changwon), 
GS16 (Cheongsong), and GS28 (Jinju), respectively. The districts with large actual drought 
damage had high drought risk, indicating that the results of this study were reasonable and useful 
in the identification of the major impacts and risk of regional drought and may facilitate the 
decision-making process for selecting drought countermeasures to reduce drought risk.   

1. Introduction 

Drought may gradually progress over a long period and its impacts can continue for months or years even after the drought is 
relieved. Therefore, it is difficult to determine the start and end dates of a drought event. Drought can be considered to occur in various 
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fields depending on its impacts, and is generally categorized as meteorological, hydrological, agricultural, and socioeconomic (Wilhite 
and Glantz, 1985). In this sense, drought refers to a complex phenomenon composed of natural ecosystems, physical and social 
components. With a long-term lack of precipitation, the impact of drought reverberates throughout society and the economy. 

Even when regions have similar meteorological characteristics, their drought impact and damage will vary depending on regional 
characteristics or ability to cope with the drought. In other words, when different regions suffer from similar precipitation deficits, 
water resources or supplemental water sources sufficient to support population water use can reduce the impact of drought. In 2017, 
the drought forecasting and warning of meteorological drought in the southern part of Korea was ‘Red’ (certain), but some districts in 
the region had different drought impacts. For example, while Ulju issued the ‘Yellow’ (probable) because the reservoir storage rate for 
agricultural water fell to less than 10%, and Miryang had serious problems with domestic, agricultural, and industrial water because 
the water supply rate Miryang Dam was 18.2%, Gijang did not experience drought damage because Gijang continued to receive plenty 
of water from the Nakdong River. The 2017 drought taught us that drought impacts and damage depend on meteorological factors, 
characteristics of the affected area, and water resource capacity. Therefore, to identify regional drought risk, the overall situation of 
waters in the region needs to be considered. 

To quantitatively identify drought impacts, the concept of drought risk is introduced and evaluated. Prior to drought risk 
assessment, a definition of drought risk should be established. In this study, concepts related to drought risk were based on Inter
governmental Panel on Climate Change (IPCC) (2014) and various references (Ahmadalipour, 2017; Fan et al., 2017; Sam et al., 2017; 
Vargas and Paneque, 2017): drought hazard is a meteorological aspect indicating the probability of drought occurrence, drought 
vulnerability is a socioeconomic aspect of regional systems negatively related to drought, drought response capacity is the water 
supply capacity of regional water systems to mitigate drought damage, and drought risk is related to the potential damage caused by 
drought. 

Drought risk consists of three components: hazard, vulnerability, and response capacity. However, drought risk is generally 
assessed only based on hazard and vulnerability due to difficulties determining drought response capacity. A few studies considered 
drought response capacity; however, most applied the socioeconomic factors of the region, not the water supply capacity. For example, 
Blauhut et al. (2016) estimated the adaptive capacity consisting of corruption, drought awareness, drought recovery capacity, inability 
to finance losses, public participation, and river basin management plans. Vargas and Paneque (2017) calculated an adaptive capacity 
index of drought by assigning the same weight to public participation, drought management plan, reservoir capacity, and drought risk 
perception. It is very important to understand the water supply capacities of a region; however, it is difficult to assess the drought 
response capacity of the region using only simple water resource information or socioeconomic indicators. The drought response 
capacity should be correlated with information related to the water supply and demand of a particular region. 

Most water-related studies regularly analyze only water supply capacity from dams or reservoirs, rather than within a region. Kuria 
and Vogel (2014) estimated the reliability and uncertainty associated with water supply yields derived from surface water reservoirs. 
They identified the water supply capacity of the reservoir to document the uncertainty inherent in water supply yield estimates for a 
wide range of reservoir systems subject to the hydrologic variations and conditions. Choi et al. (2022) calculated the number of days 
available at upstream water intake sources for drought response using the Soil and Water Assessment Tool (SWAT). However, it is 
difficult to accurately evaluate drought risk in the region because most studies have individually estimated drought response capacity 
to link water supply and demand without considering the probability of drought occurrence within the drought risk assessment. 
Drought response capacity related to water supply and demand is a very important element that can reduce drought risk, so it should be 
considered within the drought risk assessment framework. Namely, comprehensive drought risk considering the occurrence proba
bility of drought, socio-economic vulnerability, and water supply capacity of the region should be quantified by combining drought 
hazard, vulnerability, and response capacity. As such, drought risk consists of various factors, so it is necessary to apply a method to 
determine drought response capacity that is intuitive and easy to calculate. 

Before assessing the drought risk, it is very important to extract drought influencing indicators that are usually selected under the 
subjective judgment of the researcher. Structural equation modeling (SEM) was recently introduced to explore influencing indicators 
and ensure objectivity in selecting indicators. SEM is regarded as one of the most robust statistical techniques capable of analyzing 
complex interrelationships among variables in terms of quantifying complex relationship models in many different fields (Zhou et al., 
2022). Fatemi et al. (2021) tested nine hypothetical relationships between the multi-layered and inter-connected dimensions of flood 
vulnerability, damage and risk reduction in Dhaka, Bangladesh, using structural equation modeling. Zhou et al. (2022) confirmed the 
relationship between multi-dimensional factors for the earthquake resilience of water supply systems by a method of triangulation 
through quantitative analysis of partial least squares-structural equation modeling (PLS-SEM) combined with qualitative literature 
analysis. Despite the advantages of SEM, there are few studies applying SEM to drought risk assessment. Using SEM to understand the 
relationship and influence of indicators on drought risk, we attempt to validate the selection of appropriate indicators by region. 

Drought risk has high uncertainty because various hydro-meteorological and socioeconomic factors are involved, especially in the 
determination of vulnerability. Weights are allocated to integrate these multiple factors in the assessment of drought vulnerability. 
Weighting is critical as it represents relative importance among indicators (Handayani et al., 2017). The equal-weighting method is 
commonly used due to the lack of information on the importance of indicators, in part because it is difficult to assign the relative 
contribution of each indicator. Survey methods are widely used by experts to allocate relative contributions, and the uncertainty of 
vulnerability assessment arises primarily from the human judgment “subjective nature” of weights and ratings assigned (Agossou and 
Yang, 2021). Thus, if probability and statistical methods are applied in the vulnerability assessment to give an objective weight to 
indicators, it is possible to calculate more reliable results by reducing the uncertainty associated with subjectivity. Balaganesh et al. 
(2020) developed a composite drought vulnerability index comprising both crop and dairy indicators for 30 districts of Tamil Nadu, 
India, and weights were assigned to each indicator based on principal component analysis (PCA). Mihunov and Lam (2020) examined 
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the dynamics of resilience to drought hazard for 503 counties in the South-Central USA using a Bayesian network approach, which 
modeled the interaction effects of the resilience variables from both the natural and human systems. Kim et al. (2021) applied the PCA, 
a Gaussian mixture model (GMM), and the equal-weighting method to objectively determine the weights for drought vulnerability 
assessment in Chungcheong Province, South Korea. Using these methods, it is possible to reduce the subjectivity introduce by re
searchers through calculating the objective weights in consideration of the characteristics of the indicators. Thus, we used objective 
weighting methods to reflect the characteristics of the indicators. 

Recently, there has been a growing emphasis on drought risk assessment. The main purpose of this study is to assess comprehensive 
drought risk that integrates response capacity while considering the regional water supply system as well as drought hazard and 
vulnerability. The comprehensive drought risk assessment procedure is described in Fig. 1. The novelty of this study is to quantify 
drought risk by drawing on a formula for drought response capacity that reflects the regional water supply network, which has close 
ties with human society and has a great impact on drought. In addition, to exclude the subjective influence of investigators, SEM is used 
for selecting drought influencing indicators and various objective weights are integrated for drought vulnerability assessment. 

Fig. 1. The drought risk assessment procedure proposed in this study.  
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2. Study area and data 

In this study, comprehensive drought risk based on the regional water supply system was assessed for the Gyeongsang (GS) 
province located in the southeastern part of Korea. As shown in Fig. 2, the GS province consists of 23 districts in the north, 18 districts 
in the south, and three metropolitan cities including Busan, Daegu, and Ulsan. The GS province is a mountainous region with an east 
high and west low topography, covers an area of 32,289 km2, and has a population of 12.78 million. The annual average temperature 
in the GS is around 11 – 15 ◦C and the annual average precipitation is about 1032 – 1930 mm. The GS suffered great and small droughts 
occur every few years, especially severe water shortage in 2017. Considering drought damage the drought impacts are evident from 
meteorological to hydrological perspectives. In addition, the area is very large, and the cities are developed along the coast, so there is a 
significant difference in characteristics between regions. In addition, the regional water resource characteristics of GS are spatially 
heterogeneous because there are 29 dams and the Nakdong River that passes through the GS from the north to south. Therefore, it 
would be advantageous to identify the pattern of drought risk according to regional characteristics. 

To build SEM and assess drought risk in this study, we determined influencing indicators related to hazard, vulnerability, response 
capacity, and risk of droughts. Influencing indicators are usually determined by the definition of drought risk. The preliminary 
influencing indicators consistent with the definition and concept of drought risk mentioned in Section 1 were collected (Appendix A: 
Table A1). Observed precipitation data collected from the Korea Meteorological Administration (KMA) were used to calculate the 
drought hazard, and socioeconomic data relevant to affecting drought damage were collected to analyze the drought vulnerability. The 
drought response capacity was investigated using water resource retention, water intake, and water usage. Finally, the drought risk- 
related data were collected for water damage and drought forecasting and warning. This risk-related data was also used as drought 
damage data compared to the drought risk index. All the data for influencing indicators must have the same spatial and temporal 
resolution, so the resolution for the drought risk index was set to that of from 2001 to 2019 for each district. However, precipitation 
data for drought hazard were analyzed for the observed period from 1976 to 2019 to calculate the probability of drought occurrence. 

Since the factors that affect drought risk in practice among the preliminary influencing indicators vary slightly depending on 
regional characteristics, we need to derive the main influencing indicators for drought risk. Because the preliminary influencing in
dicators were limited in indicating drought hazard, risk, and response capacity, the main influencing indicators were reassigned ac
cording to the definition based on the data presented in Table A1 (Appendix A). The main influencing indicators used as input data for 
structural equation modeling is presented in Table 1. The final indicators selected from SEM are consolidated to express drought 

Fig. 2. The map of this study areas.  
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hazard, vulnerability, and response capacity. The process of determining the indicators in Table 1 from Table A1 (Appendix A) is 
described in Section 3. For convenience of analysis and expression, the drought hazard is expressed as H, drought vulnerability is V, 
drought response capacity is expressed as C, and drought risk is expressed as R. 

3. Methodology 

3.1. PLS-SEM for selecting indicators 

SEM is a combination of PCA, regression analysis, and factor analysis to infer the influential relationship between various indicators 
and to stand for the structural relationship between variables in the form of a linear equation. SEM can provide objectivity and validity 
by inferring relationships between the indicators of drought risk and using them to adopt appropriate indicators for each region. SEM is 
a method of estimating the causal relationship between variables by simultaneously considering the relationship between measure
ment variables and latent variables. Measurement variables refer to directly observed variables, and latent variables are indirectly 
measured variables that depend on measurement variables but are not measured or observed directly. If explanatory variables are not 
measurable or observed, SEM can solve the problem by introducing latent variables. It can analyze the relationship between the latent 
and observed variables, as well as the cause–effect relationship in the latent variables path coefficient of the path analysis diagram to 
measure the influence degree between variables or the effect of variables (Wang et al., 2021). 

SEM can be classified into covariance based-SEM (CB-SEM) and partial least squares-SEM (PLS-SEM). Compared with CB-SEM, PLS- 
SEM has the advantage of not making assumptions about the population or scale of measurement and sample size and is therefore 
suitable for the construction of theoretical models and exploratory research (Huang, 2021). The general conceptual diagram of 
PLS-SEM is shown in Fig. 3, which comprises a measurement model and a structural model. The measurement model represents the 
relationship with the measurement variable explaining the latent variable, and the structural model represents the relationship be
tween the latent variables. The causal relationship between variables is indicated by a unidirectional arrow, and the direction and 
value of the causal relationship can be determined through the path coefficient. PLS-SEM is expressed in Eqs. (1) - (3) as: 

X = λXξ+ δ (1)  

Y = λY η+ ε (2)  

η = γξ+ ζ (3)  

where X and Y are the observed variables, and λX and λY are the path/regression coefficient for X and Y, respectively. δ and ε represent 
the error of exogenous and endogenous latent variables, respectively. In the measurement model (Eqs. (1) and (2)), ξ is the exogenous 
latent variable, and η is the endogenous latent variable. In the structural model (Eq. (3)), the regression coefficients between exogenous 

Table 1 
The main influencing indicators for structural equation modeling.  

Code Indicators 

H1 SPI-30 (30-day SPI) 
H2 SPI-60 (60-day SPI) 
H3 SPI-90 (90-day SPI) 
H4 SPI-120 (120-day SPI) 
H5 SPI-270 (270-day SPI) 
H6 SPI-360 (360-day SPI) 
V1 Population 
V2 Farm population 
V3 Recipients of basic living 
V4 Solitary senior citizen 
V5 Total area of district 
V6 Agricultural area 
V7 Area of industrial complex 
V8 Ratio of water leakage 
V9 Daily water supply per capita 
V10 Water supply ratio 
C1 Water supply capacity 
C2 The amount of available precipitation per capita 
C3 The amount of potential groundwater development per capita 
C4 The ratio of effluents of sewage treatment 
C5 The ratio of sewage reuse 
C6 The ratio of rainwater reuse 
R1 The number of occurrences of restrictive/carrying water rationing 
R2 Population of restrictive/carrying water rationing 
R3 Drought damage articles 
R4 The number of days of restrictive/carrying water rationing 
R5 Drought forecasting and warning  
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and endogenous latent variables are represented by γ, and the residual terms are represented by ζ (Chai et al., 2020). 
PLS-SEM can be used to evaluate the causal relationship between the model and variables divided into a measurement model and a 

structural model. We evaluated how well measurement variables represent latent variables through the internal consistency reliability, 
convergent validity, and discriminant validity, and evaluated the validity of the relationship between latent variables through the 
multicollinearity, coefficient of determination, and model’s goodness-of-fit. Table 2 shows the criteria of evaluation for PLS-SEM. In 
this study, PLS-SEM was employed to select the final indicators for drought risk assessment, and the appropriateness of PLS-SEM was 
verified by using evaluation criteria. Based on PLS-SEM theory, the SmartPLS was used for data analysis such as inferring the path 
coefficient and evaluating relationship between the model and variables. 

3.2. Drought hazard index using copula functions 

Drought hazard represents the potential occurrence of meteorological drought, which can be quantified using the drought index. 
The standardized precipitation index (SPI) is a commonly used drought index because it can consistently quantify drought in certain 
regions and periods. The calculation of SPI can be found in McKee et al. (1993). In addition, it can identify the beginning and end of a 
drought event and monitor long- and short-term droughts depending on the time scale. Using daily SPIs with different time scales of 30, 
60, 90, 180, 270, and 360 days, a drought event was identified when the values of SPI are consecutively lower than − 1.0. Each drought 
event has a duration defined by its beginning and end, a magnitude defined the cumulative sum of SPI values, and an intensity defined 
as the average SPI value during the drought event which is given by the ratio of magnitude and duration. Drought duration and in
tensity were calculated for drought events, and the optimal marginal distributions of duration and intensity were determined based on 
the Kolmogorov-Smirnov (K-S) test for nine probability distributions including exponential, normal, Gamma, lognormal, Poison, 
Weibull, generalized extreme value, and Gumbel distribution. The joint probability distribution was calculated by applying the 
marginal distribution to the three Archimedean copula functions such as Clayton, Frank, and Gumbel, as given in Eq. (4). 

F(x, y) = C(u, v) = C(FX(x),FY(y)) (4) 

Fig. 3. The general structure of PLS-SEM.  

Table 2 
Evaluation criteria for PLS-SEM.  

Model Criteria Note 

Measurement model Internal consistency reliability Cronbach’s alpha Cronbach’s alpha ≥ 0.6 
Convergent validity AVE AVE > 0.5 
Discriminant validity Fornell-Larcker ̅̅̅̅̅̅̅̅̅

AVE
√

> Max(Correlation coefficient)
Cross loading Outer loading > Cross loading 

Structural model Multi-collinearity Inner VIF Inner VIF < 5.0 
Model’s goodness-of-fit R2 High: R2 > 0.26 0.13 ≤ R2 < 0.26 Low: R2 < 0.13 

f2 High: f2 > 0.26 0.13 ≤ f2 < 0.26 Low: f2 < 0.13 
Predictive relevance Predictive relevance ≥ 0.6 
Goodness-of-fit High: > 0.36 0.25–0.36 Low: 0.10–0.25  
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where, FX(x) = u and FY(y) = v are the marginal distributions of duration and intensity, respectively. 
When drought characteristics was identified and the joint probability distribution was estimated using the copula function, the 

drought hazard index (DHI) was determined by applying the ranking method considering the drought frequency and severity 
developed by Yu et al. (2021). The nine classes of drought severity were ranked, and their weights were simply decided by the rank that 
ranges from zero to unity, as described in Table 3 (Yu et al., 2021). The DHI was calculated by weighting the probability of occurrence 
of each drought class as expressed in Eq. (5). For example, the occurrence probability of drought with duration of less than 30 days and 
intensity of less than − 1.0 is multiplied by a weight of 0.1, and the occurrence probability of drought with duration between 90 and 
120 days and intensity less than − 1.0 is multiplied by a weight of 0.2. The DHI is calculated as Eq. (5). 

DHI =
∑rank

k=1
rkf (dk,mk) (5)  

where, rk is the weight of the kth drought stage, f(dk,mk) is the occurrence probability of drought with duration (dk) and intensity (mk). 

3.3. Objective weighting method for drought vulnerability index 

To avoid the subjectivity of the researcher for determining weights of influencing factors to drought vulnerability index (DVI), this 
study used three objective weighting methods. The entropy method developed by Shannon (1948) has been applied in various studies 
(Ge et al., 2013; Xu et al., 2018; Yi et al., 2018), and PCA has also been applied in many references (Mainali and Pricope, 2017; 
Balaganesh et al., 2020; Yu et al., 2021). GMM was commonly used in computer and industrial engineering and was first applied to 
drought risk assessment in Kim et al. (2021). 

The entropy method is an information weight model that has been extensively studied and practiced. If the information entropy 
value is small, it means that the data are provided by numerous useful attributes. Then, the weight assigned to the evaluation object 
should be larger and vice versa (Bai et al., 2020). Therefore, entropy is an objective means of defining the weights of indicators based 
on the useful information in the available data (Taheriyoun et al., 2010). 

The PCA is a dimension reduction technique to transform a high-dimensional dataset into a low-dimensional one while preserving 
the information content (Conlon et al., 2020). It can be handy for identifying the most critical variables or the main contributing factors 
to the phenomenon based on the common factors under investigation and to conclude the linear relationship between variables by 
extracting the most relevant information in the dataset (Wu et al., 2022). The PCA can be used for creating a composite index, which 
can be used to derive statistically the weights of individual variables and components (Mainali and Pricope, 2017). The process of 
weighting using the PCA is as follows: the first step is to create correlation matrices of the indicators. From this, the principal 
component (PC) loadings are calculated, and the variance explanation is calculated by estimating the eigenvalues and eigenvectors 
(Kim et al., 2021). The PC scores that are the weights of the indicators are determined by combining PC loadings and variance 
explanation. 

The GMM the probabilistic model that assumes all the data are generated from a mixture model of a finite number of Gaussian 
distributions with unknown parameters (Kim et al., 2021). In the GMM, it is important to estimate the model parameters such as the 
weight αi of the ith element to distinguish the categories to which the data belong (Moraru et al., 2019). The weight is calculated by 
performing an expectation-maximization (EM) algorithm on the probability distribution of indicators. To estimate the parameters, the 
EM algorithm is performed that alternately applies the expectation step (E-step) of calculating the expectation of log-likelihood and the 
maximization step (M-step) of obtaining the variable value that maximizes this expectation. It is possible to draw confidence ellipsoids 
for multivariate models and compute the Bayesian Information Criterion (BIC) to evaluate the characteristics of GMM in the indicators 
(Kim et al., 2021). 

Detailed processed of determining weights using Entropy, PCA, and GMM methods are described in Eqs. (B.1) - (B.8) in Appendix B. 
Because each method reflects specific information in weighting, it is more appropriate to consider all methods than to adopt one 
method. The integrated weight was finally calculated by arithmetically averaging the weights of each of the three methods. 

Table 3 
Description of drought classes and weights corresponding to rank.  

Rank Duration (dk) (days) Intensity (mk) Weight (rk) 

1 30 − 1.0 (moderate)  0.1 
2 90  0.2 
3 120  0.3 
4 30 − 1.5 (severe)  0.4 
5 90  0.6 
6 120  0.7 
7 30 − 2.0 (extreme)  0.8 
8 90  0.9 
9 120  1.0  
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3.4. Drought response capacity index using a Bayesian network 

Since drought response capacity refers to a factor related to water resources and water supply capabilities of regional systems, it can 
be quantified through regional water resource information. However, there is a limit to judging the regional water supply capacity 
simply from the raw data of the water resource information. Qin and Zhang (2018) developed a formula for a supply matching index to 
measure the regions’ ability to provide water resources using water supply, water demand, water utilization rate, and groundwater. 
Kang and Lee (2012) developed a formula to estimate the water supply capacity of a dam using factor analysis and multiple regression 
model of the basin area, the inflow, reservoir, and water usage that affect water. Thus, we employed the Bayesian network to calculate 
the water supply capacity in consideration of the regional water supply system and integrate the water supply capacity and various 
water resource information. The indicators of the drought response capacity are mainly composed of water supply capacity, the 
amount of available water resources, and ratio of reuse. The amount of available water resources is a measure of regional water 
resource conditions, which is calculated by precipitation per capita (C2 =c22/c23) and potential groundwater development per capita 
(C3 =c15/c23). The ratio of reuse is calculated considering the ratio of effluents of sewage treatment (C4 =c19/c20), sewage reuse 
(C5 =c16), and rainwater reuse (C6 =c18/(c21 ×c22)). 

Water supply capacity is determined by the amount of water supply against the amount of water usage in the region (Kang and Lee, 
2012; Qin and Zhang, 2018), as given in Eqs. (6) - (10). 

WSdam =
WRdam

WUdomestic + WUindustrial
×

WIdam∫

districtWI
(6)  

WSriver =
WRriver

WUdomestic + WUindustrial
×

WIriver∫

districtWI
(7)  

WSreservoir =
WRreservoir

WUagricultural
×

WIreservoir∫

districtWI
(8)  

WSground =
Groundwater

WUground
×

WIdam∫

districtWI
(9)  

WSC =
{(

WSdam +WSriver +WSreservoir) × WSR+WSground
}
×

∫

districtWI
∫

regionWI
(10)  

where WS is the water stress that represents the ratio of Retention to Water Usage. WR is the water retention of dams, rivers, and 
reservoirs, and WU is the amount of usage of domestic water, industrial water, agricultural water, and groundwater. Groundwater is the 
amount of groundwater. WI represents the amount of water intake by each type of water retention, 

∫

districtWI is the total amount of 
water intake of the district, 

∫

regionWI is the total amount of water intake of the region. WSC is the water supply capacity and WSR is the 
water supply ratio. The reason for applying the water intake ratio and the water supply rate is to consider the dependence of the region 
on the source of water intake or water supply. 

The final indicators selected through PLS-SEM are integrated into the Drought Response Capacity Index (DRCI) using the Bayesian 
network, which is widely used to combine various factors. This study referred to Shin et al. (2020). The Bayesian network consists of 
nodes representing various variables and arcs representing dependencies between variables. Causal relationships between nodes are 
represented by probability information of variables. That is, the relationship between prior probability P(Y) and posterior probability 
P(Y|X) with variables X and Y as given in Eq. (11). 

P(Y|X) =
P(Y)P(X|Y)

P(X)
=

P(Y = y,X = x)
P(X = x)

(11)  

where, P(X) is known as a normalization constant using empirical values or observations. 
Among inference algorithms such as likelihood weighting, rejection sampling, and Gibbs sampling, the likelihood weighting 

method is usually applied because it is simple to utilize and can estimate the posterior probability even in continuous probability 
distribution. The process of inference of the likelihood weighting method is described in Eqs. (B.9) - (B.13) (Appendix B). 

3.5. Drought risk index combining hazard, vulnerability, and response capacity 

Since risk refers to the potential for consequences where something of value is at stake and where the outcome is uncertain, and 
recognizing the diversity of circumstances (IPCC, 2014), in this study, drought risk is defined as the potential damage that may result 
from drought in a specific region. Drought risk is characterized as a function of drought hazard, vulnerability, and response capacity. In 
practice, the three components are geometrically averaged, because they have multiplicative effects on the drought risk. The reason is 
that with greater regional exposure to drought hazard and vulnerability, the greater effect they have on drought risk (Guillaumont, 
2009). Thus, in this study, drought risk index (DRI) was calculated by multiplying a cubic root of the DHI, DVI, and DRCI, where the 
DRCI was modified as shown in Eq. (12) due to the opposite nature of risk unlike hazard and vulnerability. 
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DRI = {DHI × DVI × (1 − DRCI)}1/3 (12) 

When other factors remain constant, drought risk increases as drought hazard increases, which means that despite a magnifying 
hazard, drought risk can be mitigated by reducing vulnerability or increasing response capacity (Ahmadalipour, 2017). In addition, 
even if the local water supply system is vulnerable to drought, there is no risk of actual drought without a meteorological drought. If 
one factor appears to be zero in the drought risk assessment, the DRI is also calculated to be zero. 

The DHI, DVI, DRCI, and DRI have values between 0 and 1. The DHI, DVI, and DRI are more dangerous when they approach to 1, 
and less dangerous when they approach to 0. Conversely, the closer the DRCI is to 0, the more dangerous it is, and the closer the DRCI is 
to 1, the less dangerous it is. 

4. Results and discussion 

4.1. Selection of drought risk influencing indicators 

In this study, SEM was preliminarily constructed and evaluated by setting relationships among elements and indicators based on 
previous studies of drought hazard, vulnerability, response capacity, and risk. Drought hazard and vulnerability are common elements 
that increase risk, and drought response capacity is an element that reduces risk. In addition, it was assumed that the water resources 
and water usage of the region are affected by precipitation or population. As a result of evaluating the measurement and structural 
model of PLS-SEM in several combinations using SmartPLS, the final drought risk assessment model was constructed as shown in Fig. 4. 
The solid lines represent the relationship between elements and indicators that passed the evaluation criteria, and the red dotted lines 
indicate the relationship between elements and indicators that were excluded from the final model because they failed to meet the 
evaluation criteria. 

The suitability of PLS-SEM was mainly evaluated by dividing it into measurement and structural models. First, to evaluate the 
reliability and validity of the measurement model, internal consistency reliability, convergent validity, and discriminant validity were 
evaluated. The internal consistency reliability that determines the consistency of the measurement variables constituting the latent 
variable was evaluated as composite reliability. The composite reliability of hazard, vulnerability, response capacity, and risk were 
0.78, 0.92, 0.67, and 0.70, respectively, indicating that the factors were consistent. The convergent validity of determining the 
relationship between the measurement variable and the latent variable was evaluated through average variance extracted (AVE). The 
AVEs of the four latent variables were calculated as 0.65, 0.67, 0.57, and 0.55, respectively, indicating that all satisfied the criteria. The 
discriminant validity of determining that the measurement variable is not related to other latent variables was evaluated with Fornell- 
Larker criteria and cross-loading. As shown in Tables 4 and 5, the Fornell-Larker criterion showed that the square root of the AVE of 
each latent variable exceeded all the largest correlations between the latent variables, and the outer loading of all indicators exceeded 
the cross-loading. The results confirmed that most of the measurement variables explain the latent variables well. 

Multicollinearity, coefficient of determination, and model’s goodness-of-fit were evaluated for the suitability of structural model. 
Internal variance inflation factor (VIF) was used for the multicollinearity to determine whether there is a strong correlation between 

Fig. 4. Model structure for drought risk assessment using PLS-SEM.  
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endogenous latent variables. The hazard and response capacity to risk, and vulnerability to response capacity were all 1.0, which is less 
than 5.0. The coefficient of determination, which is the predictability of structural model, defined as the square correlation between 
the actual value and the predicted value was calculated very high at an average of 0.32. The effect size, which means the contribution 
of exogenous latent variables to the coefficient of determination of the endogenous latent variable, had a vulnerability to response 
capacity of 1.42, and the hazard and response capacity of risk were 0.02 and 0.04, respectively. However, all evaluation criteria can be 
found to be satisfied. Finally, the structural model had the predictive relevance of 0.15 for endogenous latent variables. Considering all 
results of evaluation, the overall goodness-of-fit of PLS-SEM was low at 0.22. However, this model met the most evaluation criteria 
through combinations of several factors. 

Consequently, SPI-60 and SPI-90 (H2 and H3) were selected for the drought hazard, which are related to the short and medium- 
term drought. The population, recipients of basic living, solitary senior citizens, areas of industrial complex, water supply ratio, and 
sewage supply ratio (V1, V3, V4, V7, V10 and V11) were selected for drought vulnerability. Water supply capacity, available water 
resources per capita, and groundwater development per capita (C1, C2, and C3) were selected for the drought response capacity, 
indicating that water supply capacity and available water resources were highly related to the drought response capacity. 

4.2. Drought hazard assessment 

Drought hazard is a meteorological factor that means the occurrence probability of drought. In this study, using daily precipitation 
data, the SPIs were calculated for six timescales to assess the meteorological drought hazard. Drought characteristics according to the 
SPI selected from PLS-SEM were confirmed, and the probability of drought occurrence was quantified using the copula function. As 
shown in Fig. 4, the SPI-60 and SPI-90 were selected to calculate the DHI of GS from PLS-SEM. Using the SPI-60, GS17 (Yeongyang) had 
the longest average duration of about 23.63 days, and GS12 (Moonkyung) had the highest average intensity of about 0.85. Using the 
SPI-90, GS26 had the longest average duration of about 28.38 days and GS18 (Yeongdeok) had the highest average intensity of about 
0.82. The drought duration was large in the inland region of GS, and the drought intensity was high in the coastal region of GS. 

The optimal distribution for each district was determined based on the p-value of the KS-test for nine probability distributions, and 
the optimal marginal distribution for the duration and intensity were dominated by the lognormal and normal distribution, respec
tively. Based on the likelihood of the maximum likelihood method, the optimal copula function was adopted to combine the marginal 
probability distributions for each region, and the Frank function dominated as the optimal distribution function. For example, Fig. 5 
provides the probability of drought occurrence for SPI-60 and SPI-90 in GS1 (Busan). Using the SPI-60 and SPI-90, GS26 and GS9 had 
four and nine extreme droughts with probabilities of occurrence of less than 5%, respectively. 

The DHIs were calculated in consideration of drought duration, intensity, occurrence probability, and the weights in Table 3. For 
example, in GS1 (Busan), Eq. (5) was applied to calculate the DHI, resulting in 0.27 for the SPI-60 and 0.24 for the SPI-90. The final DHI 
in GS1 (Busan) determined by averaging the two values is 0.30. The DHIs of GS are shown in Fig. 6. GS26 (Ulleng) had the highest DHI 
within the GS, which has very high average duration and intensity of drought as well as a very high probability of drought occurrence. 
GS24 (Bonghwa) had the lowest DHI, which is less likely to cause drought damage. DHI was overall high in the northeast coast. 
Moazzam et al. (2022) evaluated drought characteristics with SPI and SPEI, and similar to our results, both the frequency of occurrence 
and duration were calculated as high in the northeast coastal area in a short-term SPI. The reason is that Taebaek Mountain, located 

Table 4 
Fornell-Larcker criteria for assessment components.   

Hazard Vulnerability Response capacity Risk 

Hazard 0.81    
Vulnerability 0.03 0.82   
Response capacity -0.04 -0.77 0.79  
Risk 0.13 0.23 -0.20 0.74  

Table 5 
Cross loading criteria for indicators.  

Indicator Hazard Vulnerability Response capacity Risk 

H2 0.63 -0.02 -0.03 0.05 
H3 0.95 0.04 -0.04 0.14 
V1 -0.02 0.90 -0.64 0.16 
V3 -0.05 0.86 -0.70 0.19 
V4 0.03 0.90 -0.66 0.24 
V7 0.03 0.64 -0.48 0.12 
V10 0.09 0.77 -0.57 0.20 
V11 0.06 0.83 -0.68 0.21 
C1 -0.01 -0.09 0.42 -0.07 
C2 -0.09 -0.58 0.81 -0.19 
C3 0.01 -0.69 0.86 -0.15 
R3 0.11 0.19 -0.19 0.88 
R5 0.08 0.16 -0.10 0.57  
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from the northwest to the southeast, divides the region and allows little precipitation in the northeast. GS24 (Bonghwa), located in 
Taebaek Mountain, which has the least amount of precipitation, has the lowest probability of occurrence, resulting in low DHIs. It is 
worth noting that using an effective drought index, which is a hydrological drought index, resulted in high DHIs in eastern coastal 
areas (Kim et al., 2015). 

Fig. 5. Probability of drought occurrence in GS1(Busan).  
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4.3. Drought vulnerability assessment 

Prior to performing drought vulnerability assessment, standardization or normalization is necessary to integrate various indicators 
with different characteristics and units into one index. The ranking, Z-scoring, and re-scaling methods are generally used in practice. 
The re-scaling method was used in this study considering that it is the most appropriate when knowing the range of indicators and it 
has the advantage of not generating negative values. 

To estimate the drought vulnerability index, which represents the socio-economic sensitivity of the regional system to drought, 
weights representing the effects of vulnerability indicators were calculated. Entropy, PCA, and GMM methods were applied to in
dicators selected from PLS-SEM in this study, which are objective weighting methods. Final weights were calculated by averaging the 
weights obtained from the three methods, and the results are shown in Table 6. 

In the entropy, PCA, and GMM methods, the largest weights were calculated to be the solitary senior citizen, the solitary senior 
citizen, and the population (V4, V4, and V1), respectively. Since each method differs in the way in which importance is assigned, the 
weights were slightly different. To comprehensively consider this importance, we estimated the integrated final weight by averaging 
weights from the three methods. As a result, GS is a fast-aging region, which is why the weight of V4 was the highest. The DVI 
calculated with the final weight is shown in Fig. 7. GS2 (Daegu) had the highest DVI, meaning that it can be greatly damaged by 
drought within the GS. GS17 (Yeongyang) had the lowest DVI, indicating that it is expected to suffer less damage by drought than other 
districts with higher DVIs. Drought vulnerability was high around big cities. This is because the weight of drought vulnerability in GS is 
related to the number of people, and big cities have large populations and the elderly. In Kim et al. (2015), big cities had high drought 
vulnerability, but the pattern is slightly different. The reason is that the indicators and weights are different. 

4.4. Drought response capacity assessment 

It is very important to identify the regional water supply network and determine the drought response capacity in assessing the 
drought risk. The regional water supply network can be prepared by considering the water sources including rivers, dams, and res
ervoirs, the path of water supply, and the water balance within the watershed. The water supply capacity was calculated by applying 
the water intake source, water intake ratio, and water supply ratio to Eqs. (6) - (10) based on the regional water supply network. 
Indicators for the DRCI were selected from PLS-SEM among water supply capacity, precipitation per capita, potential groundwater 

Fig. 6. Drought hazard map for Gyeongsang province.  

Table 6 
Weights of indicators using entropy, PCA and GMM methods.  

Indicators Entropy PCA GMM Final weights 

V1 Population  0.15  0.13  0.23  0.17 
V3 Recipients of basic living  0.21  0.17  0.22  0.20 
V4 Solitary senior citizen  0.27  0.24  0.21  0.24 
V7 Area of industrial complex  0.12  0.11  0.01  0.08 
V10 Water supply ratio  0.13  0.15  0.22  0.17 
V11 Sewage supply ratio  0.12  0.20  0.11  0.14  
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development per capita, sewage treatment, sewage reuse, and rainwater reuse. Water supply capacity, precipitation per capita, and 
potential groundwater development per capita were selected as suitable for the GS and used as Bayesian network nodes. In this study, 
different methods of determining hazard, vulnerability, and response capacity were applied, because the characteristics are distinct 
from each factor as follows: For the DHI, frequency analysis using copula was appropriate, because the DHI has time-varying attributes. 
For the DVI, the weighting methods were applied because the DVI brought together various time-invariant factors. For the DRCI, the 
Bayesian network was applied because the DRCI combined diverse time-varying has characteristics that change with water conditions 
and time. Therefore, Bayesian network factors. 

Since the Bayesian network is based on the normal distribution, a standard normalization was applied to unify the range of the 
indicators with different units. To compute the parameters for accurate normalization, outliers were removed; the parameters of the 
normal distribution were calculated after excluding outlier data exceeding 99% of the confidence interval. The estimated probability 
distribution was applied to the Bayesian network model to determine the DRCI. The DRCI had a negative value because of using the 
standard normalization. Therefore, when determining drought risk, unlike DHI and DVI, it was standardized to display that the closer it 
is to zero, the worse the response capacity. 

The results of the drought response capacity assessment are shown in Figs. 8 and 9. Fig. 8 is the boxplot representing the variation of 
indicators of DRCI (C1, C2, C3, and C4) in GS. The red dots in the figure indicate the data of GS26 (Ulleng). GS26 (Ulleng) had the least 
amount of potential groundwater development per capita(C3), however the DRCI was high due to the greater amount of available 

Fig. 7. Drought vulnerability map for Gyeongsang province.  

Fig. 8. Boxplots of indicators of DRCI (C1, C2, C3, and C4) in GS.  
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precipitation per capita (C2). Although the water resources retention is small, the response capacity is sufficient. This is because the 
precipitation is high compared to the number of people and overall water usage is very low. Since it is comparatively rich in available 
water resources, it is judged to have the capacity to recover quickly during drought. On the other hand, GS16 (Cheongsong) had a low 
DRCI due to the low water supply capacity (C1). This is an area that relies on rivers, and the streamflow is not sufficient. In addition, as 
an agricultural area, the water usage is relatively high. This area is confirmed to have poor water supply capacity or low available 
water resources, and there is a high possibility of damage or long-lasting damage during drought. As shown in Fig. 9, the response 
capacity to drought was high in inland regions. Because the inland area is in mountains of Taebaek and Sobaek, the groundwater is 
very abundant, and the population is small, leading to low demand for waters. Whereas coastal areas with low drought response 
capacity have a large population compared to streamflow and reservoirs, leading to very high demand for waters. 

4.5. Drought risk assessment 

In this study, drought risk was defined as the potential damage that may result from drought in a specific region. Drought risk was 
quantified by integrating drought hazard, vulnerability, and response capacity. The validity of the drought risk index was verified by 
comparing the drought risk-related data mentioned in Section 2, that is, drought damage factors. 

The results of the drought risk assessment are shown in Fig. 10. Since drought risk assessment is usually conducted for regional 
comparisons, drought risk map is schematized according to rankings for clear comparison. The drought risks of GS28 (Jinju), GS27 
(Changwon), and GS4 (Pohang) were high, whereas the drought risks of GS26 (Ulleng), GS20 (Goryeong), and GS24 (Bonghwa) were 
low in a row. In fact, the drought risk in GS25 and GS7, where a lot of damage was incurred, were high at 0.38 and 0.34, respectively. 
On the other hand, the GS26 (Ulleng) had frequent occurrence of drought leading to high DHI, thus many drought warnings have been 
issued. However, drought damage did not occur due to low DVI and high DRCI. The risk of drought in GS was high in most big cities. 
Since ancient times, as cities have developed in the coastal areas of GS, the population has increased. However, since two mountains 
distinguish inland and coastal areas, precipitation is low and water resources are insufficient in coastal areas. Consequently, there is a 
lot of significant damage. Kim et al. (2015) showed the most serious drought risk in the eastern coastal regions because of the high DHI 
and DVI. However, the southern coastal area was low in risk, and inland cities were also low in risk. The reason is that water resources 
and water demand of the DRCI were not reflected. 

5. Conclusion 

Drought risk interacts with regional water supply capacity and socio-economic vulnerabilities, as well as meteorological hazard. 
Thus, drought risk can be determined by a function that includes drought hazard meaning meteorological hazard, drought vulnera
bility meaning socio-economic sensitivity of the regional systems to drought, and drought response capacity meaning regional water 
supply capacity. We assessed comprehensive drought risk by integrating drought hazard, vulnerability, and response capability 
considering the regional water supply system. Our main findings can be concluded as follows:  

1) Previous studies of drought risk have been conducted without considering the response capacity to drought based on the water 
supply system. It is important to measure the water supply capacity of the region to identify its capacity to cope with drought. 
However, due to difficulties in the calculation, it has often been conducted as independent research. To accurately quantify drought 
risk, response capacity should be accompanied by the probability of occurrence of drought in the region and the degree of 
vulnerability to drought risk. We assessed the drought risk by integrating response capacity with drought hazard and vulnerability. 
In particular, the drought response capacity was considered in a simple and intuitive way. This framework identifies the capacity to 
respond to drought, including the water supply system and capacity of the region. The findings from this study underscore the 
relevance of analyzing drought risk from a holistic and spatially explicit perspective. In addition, probability statistical methods 
were applied to select and weight indicators and to present regional drought risk assessment from an objective perspective. So far, 
many studies have selected indicators at the discretion of involved researcher and then weighted them by survey methods or 
arithmetic average (equal weight) methods. In this study, indicators suitable for GS were selected by SEM and weighted by 
averaging entropy, PCA, GMM, and Bayesian networks. It goes beyond previous studies by including a separate analysis of the 
elements of drought risk and subjective factors as well as assigned objectivity and validity.  

2) PLS-SEM selected the SPI-60 and SPI-90, population, recipients of basic living, solitary senior citizens, areas of industrial complex, 
water supply ratio, water supply capacity, available precipitation per capita, and potential groundwater development per capita for 
drought risk assessment. The regions with the highest DHI and DVI were GS26 (Ulleng) and GS27 (Changwon), respectively. 
Located on the right coast of Taebaek Mountain, this area had low precipitation and a large elderly population. Assessing the 
drought response capacity in consideration of regional water supply systems and networks, the GS16 (Cheongsong) was the lowest 
capacity. In GS16, the water supply capacity is very low due to low streamflow and large amount of water usage. Assessing drought 
risk by integrating drought hazard, vulnerability, and response capacity, the GS28 (Jinju) appeared to be dangerous within the GS 
due to highest risk. This is because this area has high DHI and DVI and low DRCI. In most regions with high risk, the number of 
occurrences, population of occurrences, and number of days were all high, confirming that the region was significantly damaged in 
the past. In addition, regions where the actual damage was very large showed a high risk of drought, suggesting that the accuracy of 
the results of this study was high.  

3) Due to various characteristics of drought, the damage caused by drought can be considerable. Risk management to facilitate action 
before drought occurs is needed. Drought reduction, which enable risk management from a long-term perspective based on risk 
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information, is very important. Through drought risk assessment, it is possible to analyze the interaction of drought impact factors 
and to identify drought risk and causes in advance. In other words, the results of this study can be used to identify the main causes of 
drought risk and to establish suitable countermeasures. Hazard is generally not an adjustable factor, and direct response capacity 
adjustment or indirect vulnerability management is required to reduce the risk. Areas with low response capacity can control 
supply by identifying water demand, improving dam and reservoir storage, or by collaborating with areas with good water supply 
capacity. There is also a way to increase the amount of available water resources or the ratio of reuse. Vulnerability can generally be 
complemented by policies. In GS, since the elderly population had a significant impact on vulnerability, policies related to the 
elderly or other vulnerable social groups can be established to adapt to drought. In the case of hazards, direct resolution is not 
possible, but it can be prevented through constant monitoring. GS26, which is in drought-prone areas or high-risk areas, should be 
intensively managed. 

The results and analysis process of this study will be useful in the decision-making process for enacting drought countermeasures by 
identifying major impact factors and risk areas for drought by region. In addition, drought mitigation from a long-term perspective is 

Fig. 9. Drought response capacity map for Gyeongsang province.  

Fig. 10. Drought risk map for Gyeongsang province.  
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possible based on risk information. Nevertheless, the study is currently limited to one province in Korea. An analysis of the whole 
country is needed to utilize it for national drought policies. The results of drought risk depend on the type and accuracy of data, which 
have a significant impact on the uncertainty of drought risk. In the future, it is important to improve the reliability of the model based 
on diverse and accurate data gathered in conjunction with national and local governments. In addition, drought is expected to become 
generally more serious due to climate change. Various future climate change scenarios can be used to consider drought risk outlooks 
and changes due to future climate change. The uncertainty of drought risk can be quantified if the range of changes of drought risk 
considering the data is identified. 
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