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Abstract: Game playing is an accessible leisure activity. Recently, the World Health Organization
officially included gaming disorder in the ICD-11, and studies using several bio-signals were con-
ducted to quantitatively determine this. However, most EEG studies regarding internet gaming
disorder (IGD) were conducted in the resting state, and the outcomes appeared to be too inconsistent
to identify a general trend. Therefore, this study aimed to use a series of statistical processes with
all the existing EEG parameters until the most effective ones to identify the difference between IGD
subjects IGD and healthy subjects was determined. Thirty subjects were grouped into IGD (n = 15)
and healthy (n = 15) subjects by using the Young’s internet addition test (IAT) and the compulsive
internet use scale (CIUS). EEG data for 16 channels were collected while the subjects played League
of Legends. For the exhaustive search of parameters, 240 parameters were tested in terms of t-test,
factor analysis, Pearson correlation, and finally logistic regression analysis. After a series of statistical
processes, the parameters from Alpha, sensory motor rhythm (SMR), and MidBeta ranging from the
Fp1, C3, C4, and O1 channels were found to be best indicators of IGD symptoms. The accuracy of
diagnosis was computed as 63.5–73.1% before cross-validation. The most interesting finding of the
study was the dynamics of EEG relative power in the 10–20 Hz band. This EEG crossing phenomenon
between IGD and healthy subjects may explain why previous research showed inconsistent outcomes.
The outcome of this study could be the referential guide for further investigation to quantitatively
assess IGD symptoms.

Keywords: internet gaming disorder; EEG parameter; in game; statistical process; key brain region;
crossing phenomenon

1. Introduction

Online games have become a major platform of digital entertainment. People are
easily exposed to games, especially after social distancing forced them to stay for long
hours at home due to COVID-19 [1]. Therefore, the risk of indulgence in online games has
become a serious social health issue.

In 2018, the World Health Organization (WHO) officially included gaming disorder in
the International Classification of Disease (ICD)-11 for the benefit of people suffering from
disorders who need medical attention as well as to prevent disease due to the excessive
use of games. However, despite the WHO’s attempt to enhance public health in this
regard, gaming disorder has been stigmatized as an addictive behavior similar to gambling
addiction, which is perceived as anti-social behavior. Lee [2] stated that gaming disorder
should be understood in terms of maladaptation or sickness rather than in terms of being
right or wrong. Aarseth et al. [3] urged the removal of the ICD-11 proposal to avoid causing
significant stigma to children and adolescents who play video games as a leisure activity
as part of a healthy lifestyle. Thus, it became challenging to correctly diagnose gaming
disorder without misidentifying healthy game players as game addicts.
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A questionnaire was employed to clinically categorize the gaming disorder group. To
identify the gaming disorder group, Young [4] developed a scale, the internet addiction
test (IAT), while Meerkerk et al. [5] developed the compulsive internet use scale (CIUS).
The reliability of these surveys has been validated when it comes to categorically assessing
the risk of internet addiction or compulsive use. However, subjective questionnaires have
a limitation in individually specifying the level of disorder to decide whether the subject
needs serious medical attention.

To identify the level of internet game disorder (IGD), various efforts have been made
to quantify the individual status at resting state electroencephalogram (EEG). Lee et al. [6]
also measured the resting-state EEG for the internet addiction group with and without
depression. The absolute power of the delta and beta decreased in the internet addiction
group without depression. However, for the group with depression, an increased relative
theta power and decreased relative alpha power were observed. However, a previous study
reported contradictory results in terms of delta power. Kim et al. [7] compared 20 patients
with IGD with healthy subjects for 6 months. In this study, patients with IGD showed
increased delta and theta power activities in the resting state. After 6 months of treatment,
the increase in delta band activity normalized, which was significantly correlated with a
decrease in IGD symptoms.

In addition, there have been studies on beta power decreases in the IGD group. Choi
et al. [8] measured the resting-state EEG of an internet addiction group. They reported that
high impulsivity and impaired inhibitory control were observed in the internet addicted
group. Moreover, it was said that there was a decrease in the absolute power of the beta
band and an increase in the absolute power of the gamma band in the internet addiction
group. They also mentioned that these differences were related to impulsivity in the internet
addiction group. This result corresponds to the outcome of Lee et al. [6]. However, there
was a previous study that reported increased beta power. Rabadanova and Taygibova [9]
investigated the EEG patterns of subjects with non-chemical addictions, such as gaming
and internet addiction. They showed that the EEG shifted to a high-amplitude wave,
including beta1 (13.0–19.9 Hz) and beta2 (20.0–35.0 Hz), in terms of the manifestation index
(%) when game dependence was observed.

These contradictory results have also been observed in the alpha power domain. Wang
and Griskova-Bulanova [10] investigated the association between resting prefrontal alpha
rhythm and internet use by EEG in a non-clinical population. This study indicated a
positive correlation between the alpha power of the frontal lobe and scores on the internet
addiction test when the eyes were closed. However, Son et al. [11] found that the absolute
alpha power of the gaming disorder group was lower than that of the other groups when
they compared the resting state of EEG among subjects with gaming disorder, alcohol
dependency, and healthy subjects.

As summarized in Table 1, the above results are too inconsistent to identify a common
trend for IGD in relation to EEG measurement during a resting state. This is likely due to
the variability of EEG response patterns among the IGD group in the resting state, and other
studies were initiated to measure the EEG while subjects were playing real games. Hafeez
et al. [12] recorded EEG measurements during mobile gaming to identify the different wave
patterns between game addicts and non-addicts. They used cluster analysis and cross-
correlation analysis to mathematically define the significantly different signal patterns of θ
and θ/σ in the right occipital lobe. They reported an 86.9% (±9.49) detection rate in terms of
the addicted group and an 88.0% (±10.41) detection rate in terms of the non-addicted group
based on a θ parameter measurement at O2 (right occipital region). Kim et al. [13] used
heart rate variability (HRV) parameters to examine the patterns of players with gaming
disorders during internet game playing. They used the IAT and CIUS tests to group the
subjects. The time series and frequency-based HRV parameters were thoroughly tested to
determine the most effective parameters to differentiate the groups. They identified the
following key parameters: the root mean square of successive differences (RMSSD) between
normal heartbeats, the frequency activity (LF) at the 0.04–0.15 Hz, and the proportion of
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successive interval differences (pNNI20) ≤ 20 ms within all intervals. The logistic regression
model indicated a nearly 70% accuracy when distinguishing the two groups. These studies
demonstrate the potential statistical power of using quantifiable parameters, although the
accuracy needs to be further improved after cross-validation.

Table 1. Summary of various EEG outcomes associated with presumably IGD subjects. All results
were tested during resting state.

Studies Observed Contradictory Signs of IGD

Lee et al. [6]

Decrease in absolute power of the delta and
beta without depression; increase in relative
theta power and decrease in relative alpha

power with depression

Kim et al. [7] Increased activity of slow-wave (delta and
theta) EEG

Choi et al. [8]
Decrease in the absolute power of the beta

band and increase in the absolute power of the
gamma band

Rabadanova and Taygibova [9] EEG shifted to a high-amplitude wave (beta
power domain)

Wang and Griskova- Bulanova [10] Positive correlation between the alpha power
of frontal lobe and internet addiction test scores

Son et al. [11] A relatively low absolute alpha power
EEG, electroencephalogram; IGD, internet gaming disorder.

Therefore, in this study, we used a different experimental setting. That is, the EEG
sign of IGD among the subjects was measured when they were actively exposed to gaming
events. In particular, the authors performed a series of statistical processes to determine the
critical parameters and brain region genuinely reflecting the characteristics of IGD among
subjects. This study also used a logistic regression model to quantitatively differentiate be-
tween the IGD and healthy groups to find the most effective EEG parameters in identifying
IGD characteristics.

This paper consists of methods, results, discussions, and conclusions. In the method
chapter, the process of recruiting subjects, apparatus setting, experimental design, and
statistical analysis methods are described. In the results, it is shown how the effective
parameters were selected through t-test, factor analysis, Pearson correlation coefficient,
and logistic regression analysis. Importantly, the crossing phenomenon, which was newly
observed in this study, is emphasized. The performance of parameters is finally reported.
In the discussion, the critical findings of the study are outlined and the conclusions are
summarized.

2. Methods
2.1. Subject Grouping and Control

Concerning the two groups for the study, the IGD and healthy groups were determined
based on both the IAT (Table A1 in Appendix A) by Young and De Abreu [14] and the CIUS
test (Table A2) by Meerkerk et al. [5]. The subjects with scores of ≥50 in the IAT and a mean
≥2.5 in the CIUS test were categorized as the IGD group. Young [4] initially suggested that
IAT scores between 40 and 69 signify problems due to internet use. On the other hand,
Peng et al. [15] used ≥40 points to identify IGD individuals when they spent ≥4 h per
day and ≥30 h per week on internet gaming. Many researchers have employed the CIUS
score to group gaming disorders [16–18]. After self-reported scoring, 15 subjects each in
the IGD and healthy groups were recruited for the experiment. Subjects had a half day off
for the 3 h experiment to prevent accumulated fatigue from working. They were asked
not to consume any caffeine and alcohol on that day, and smoking was prohibited for 2 h
before the experiment. They played the game at the skill level they were used to playing to
maintain a consistent intensity. Each game lasted about half an hour, with a 10 min break,
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including warming-up practice. Two game trials were executed for data collection. No
physical fatigue was observed. Subjects were continuously monitored by experimenter,
and all the instructions for the subjects were standardized. The experiment was stopped
if any discomfort was reported by subjects. All the subjects were compensated at the end
of experiment. All the participating subjects submitted their demographic information
when they were filling in the addiction questionnaire. The age of healthy subjects and IGD
subjects was 24.3 (±2.74) and 22.7 (±2.20), respectively. Since the subjects were recruited
from a relatively homogenous student community, the demographic characteristics were
very similar each other. The gaming experience of all subjects was longer than 2 years.
Regarding the skill level of subjects, the healthy subjects ranged from “Bronze” tier to
“Platinum” tier, and the majority were “Silver” tier. Regarding the IGD subjects, they
ranged from “Bronze” tier to “Platinum” tier, and the majority were “Gold” Tier. Subjects
without a history of diagnosis of mental disorders such as depression and ADHD were
included in the experiment. At the end of measurement, the subjects were compensated for
the experiment.

2.2. Apparatus

League of Legends (LOL) from Riot Games Inc. (Los Angeles, CA, USA) was used
for the experiment. This game is known to be the most frequently played game among
internet game players [19]. For data acquisition, 16 channels of QEEG-64FX (LAXTHA
Inc., Daejeon, Republic of Korea) were used for the EEG measurements (Figure 1). The
electrode attachment sites were selected using the international 10–20 system that was used
in previous studies [6,11]. An additional Cz channel was used as a time marker to track the
first screen of the game during the experiment. A data collection program called Telescan
(LAXTHA, Inc.) was used. The data-sampling rate was set to 500 Hz. The experiment was
conducted in a room equipped with a computer, desk, and chair, in a space where other
external stimuli were suppressed.
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Figure 1. Experimental setting.

2.3. Experimental Design

The experiment was designed to test the null hypothesis: EEG parameters showed
no significant differences between subjects with IGD and healthy subjects. Therefore, a
between-subject design was employed in this study. The independent variable was set as
the addiction status of the group determined by the questionnaire score. For dependent
variables, 15 EEG parameters, including 6 frequency domain parameters and 9 additional
composite parameters, were used: the relative power of the Theta, Alpha, Beta, senso-
rimotor rhythm (SMR), MidBeta, HighBeta, Theta/Beta, Beta/Theta, Alpha/MidBeta,
Theta/MidBeta, MidBeta/Alpha, Alpha/Theta, (SMR+MidBeta)/Theta, Beta/Alpha, and
MidBeta/Theta [20–25]. These parameters were measured in 16 lobes of the brain, resulting
in a total of 240 dependent parameters in this study. Insignificant dependent parameters
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were eliminated in each step of the statistical analysis to build logistic regression models in
this study.

2.4. Procedure

EEG electrodes were placed according to a 10–20 system. Seventeen channels were
used in this experiment. The measurement channels were Fp1, Fp2, F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T7, T8, P7, P8, and Cz, with two reference electrodes (A1 for the left
ear and A2 for the right ear) and one ground electrode placed on the 7th cervical vertebra.
After explaining the experimental procedure to the subjects, the EEG sensor cap was
mounted, and the signal stability was checked for 1 min while they were relaxing. To
familiarize the subject with the environment, they played a ‘normal game’ prior to the
actual EEG measurement. Then, the subjects played a ‘ranked game’ twice with a 10-min
break between games. EEG data were collected during the game time, and the data analysis
for all parameters was performed based on the data obtained at 30–40 min. The subjects
were not informed about their questionnaire scores. Therefore, they did not know which
group they belonged to. The detailed experimental procedure is illustrated in Figure 2.
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2.5. Data Analysis

To preprocess the EEG data, the Telescan software provided by the manufacturer was
used. The collected raw EEG data were converted into a frequency band through fast
Fourier transform (FFT) with a Hamming window. The FFT window size of the EEG was
set to 20 min of actively playing games. The absolute power values of each frequency
range were calculated. The frequency ranges were specified as follows: Theta 4–8 Hz,
Alpha 8–12 Hz, SMR 12–15 Hz, MidBeta 15–20 Hz, HighBeta 20–30 Hz, and Beta 12–30 Hz.
Because the absolute power value could be affected by the subject’s scalp thickness, skull
thickness, and the skin contact quality of the electrodes, causing a random error, the relative
power value was used in this study. The relative power value is presented as the ratio of
the absolute power of a frequency band to that of the entire frequency band. The relative
power is a ratio value with no units and is represented between 0 and 1. The process of
preprocessing of the EEG data is illustrated in Figure 3.

An exhaustive search for the optimal combination of model parameters was performed
with a total of 240 parameters (15 variables × 16 channels) using SPSS (version 26). First,
the Kolmogorov–Smirnov normality test and t-test were performed to determine the
parameters that significantly differentiated the two groups in every lobe of the brain.
Fifteen parameters were selected for the process. Second, factor analysis was performed to
determine the main components and eigenvalues of the individual parameters that best
represented the discriminant features of the EEG signals. The four factors were sorted
based on eigenvalues > 1.0. Parameters with eigenvalues of 0.8 and above were selected as
candidate parameters for the statistical model building. Seven parameters were selected
for this process. Third, a correlation analysis was performed to examine the statistical
redundancy among the seven parameters to enhance the discriminant power of the logistic
regression model. Thus, four sets of four parameters with the least influence in terms of
multicollinearity were selected. Fourth, a backward elimination technique was used to
determine insignificant parameters in the candidate models. Finally, four models were
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suggested, and their sensitivity, specificity, and accuracy values were reported. Figure 4 is
an illustration of the parameter elimination process described above.
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2.6. Ethics

The experiment was conducted in accordance with the Declaration of Helsinki and
regulations under consideration of the Institutional Review Board of Hanyang University
in the Republic of Korea (IRB approval number: HYU-2019-08-004-1). All participants un-
derstood the study procedure and provided written informed consent before participation.
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3. Results
3.1. t-Test Results

A t-test was performed using the individual EEG and composite variables. A total of
240 parameters were tested, and the 15 parameters that showed significant results (p < 0.1)
are shown in Table 2. Each individual parameter was independently treated for the t-test.

Table 2. Fifteen parameters with significant t-test results (R = relative power).

Parameter t-Value p-Value Difference of Mean

R.Alpha (Fp1) −2.296 0.026 −0.01451
R.Alpha (F4) −2.034 0.047 −0.02014
R.Alpha (C4) −2.549 0.014 −0.04501
R.Alpha (O2) −1.893 0.064 −0.01973
R.SMR (Fp1) −2.367 0.022 −0.00763
R.SMR (F3) −2.171 0.035 −0.02230

R.MidBeta (C3) 1.788 0.080 0.01341
R.MidBeta (P3) 2.268 0.028 0.01185

Alpha/MidBeta (F4) −1.935 0.059 −0.47890
Alpha/MidBeta (C3) −2.509 0.015 −0.48591

Alpha/Theta (F3) −1.843 0.071 −0.04283
MidBeta/Alpha (C3) 2.218 0.031 0.16886
MidBeta/Alpha (O1) 2.287 0.026 0.11124
MidBeta/Alpha (O2) 2.283 0.027 0.09449

3.2. Factor Analysis

A factor analysis was performed using 15 parameters. As a result of the factor analysis,
four components were extracted, and eigenvalues were calculated. The results are shown
in Table 3.

Table 3. Components and eigenvalues of 15 parameters.

Component

1 2 3 4

R.MidBeta (C3) 0.946

MidBeta/Alpha (C3) 0.904

Alpha/MidBeta (C3) −0.816

R.MidBeta (P3) 0.747

Alpha/MidBeta (F4) −0.502

R.Alpha (C4) 0.839

R.Alpha (F4) 0.794

R.Alpha (O2) 0.742

Alpha/Theta (F3) 0.629

R.SMR (Fp1) 0.842

R.Alpha (Fp1) 0.802

R.SMR (F3) 0.767

MidBeta/Alpha (O1) 0.843

MidBeta/Alpha (O2) 0.793

The seven parameters with eigenvalues of 0.8 and above were selected and are pre-
sented in Table 4.



Sensors 2023, 23, 1659 8 of 15

Table 4. Seven parameters representing the main components with eigenvalues of 0.8 and above.

Component 1 Component 2 Component 3 Component 4

R. MidBeta (C3) R.Alpha (C4) R.SMR (Fp1) MidBeta/Alpha (O1)

MidBeta/Alpha (C3) R.Alpha (Fp1)

Alpha/MidBeta (C3)

3.3. Correlation Analysis to Avoid Multicollinearity

The correlation coefficients of the seven parameters are listed in Table 5. Through this
correlation analysis, the multicollinearity among the selected parameters was examined.
Parameters with correlation coefficient values greater than the absolute value of 0.6 were
not coupled together to avoid multicollinearity for model development.

Table 5. Correlation coefficients of seven parameters.

Comp. 1 Comp. 2 Comp. 3 Comp. 4

R.MidBeta
(C3)

MidBeta
/Alpha

(C3)

Alpha
/MidBeta

(C3)
R.Alpha

(C4)
R.Alpha

(Fp1)
R.SMR
(Fp1)

MidBeta
/Alpha

(O1)

R.MidBeta (C3)
Coef. 1.000 0.848 −0.752 −0.163 −0.007 0.321 0.161

p-value 0.000 0.000 0.000 0.125 0.482 0.010 0.127

MidBeta
/Alpha (C3)

Coef. 1.000 −0.846 −0.403 −0.130 0.147 0.134

p-value 0.000 0.000 0.002 0.180 0.150 0.172

Alpha
/MidBeta (C3)

Coef. 1.000 0.686 0.209 −0.121 −0.416

p-value 0.000 0.000 0.069 0.196 0.001

R.Alpha (C4)
Coef. 1.000 0.364 0.223 −0.407

p-value 0.000 0.004 0.056 0.001

R.Alpha (Fp1)
Coef. 1.000 0.664 −0.254

p-value 0.000 0.000 0.034

R.SMR (Fp1)
Coef. 1.000 0.024

p-value 0.000 0.433

MidBeta
/Alpha (O1)

Coef. 1.000

p-value 0.000

To avoid multicollinearity in developing the logistic regression model, the following
parameter couples were not used in the model: R.MidBeta (C3) and MidBeta/Alpha (C3)
(ρ = 0.848), MidBeta/Alpha (C3) and Alpha/MidBeta (C3) (ρ = −0.846), R.MidBeta (C3) and
Alpha/MidBeta (C3) (ρ = −0.752), and Alpha/MidBeta (C3) and R.Alpha (C4) (ρ = −0.752).

Finally, four sets of four candidate parameters were prepared for logistic regression
analysis to discriminate between the healthy and IGD groups. The final candidate parame-
ters of each model are shown in Table 6.

Table 6. Four sets of parameters were selected without violating multicollinearity.

Model Candidates No. Final Candidate Parameters

1 R.MidBeta (C3), R.Alpha (C4), R.Alpha (Fp1), MidBeta/Alpha (O1)

2 MidBeta/Alpha (C3), R.Alpha (C4), R.Alpha (Fp1),
MidBeta/Alpha (O1)

3 R.MidBeta (C3), R.Alpha (C4), R.SMR (Fp1), MidBeta/Alpha (O1)

4 MidBeta/Alpha (C3), R.Alpha (C4), R.SMR (Fp1),
MidBeta/Alpha (O1)
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3.4. Logistic Regression Analysis

A logistic regression was used to find the best combination of parameters in terms
of calculating the best probability of accuracy. A backward elimination method was used
to find the best set of logistic models. The final models and accuracy values are listed in
Table 7. The equations used for the models are listed in Table 8. The final accuracy range
was 63.5% to 73.1%. The final parameters and brain regions are shown in Figure 5.

Table 7. Results of logistic regression analysis.

Model No. Model Variable B Value p-Value Sensitivity Specificity Accuracy

1

R.MidBeta (C3) 21.180 0.087

0.692 0.731 71.2%R.Alpha (C4) −13.835 0.093

R.Alpha (Fp1) −24.077 0.097

2

MidBeta/Alpha
(C3) 2.396 0.077

0.577 0.692 63.5%R.Alpha (Fp1) −25.345 0.079

MidBeta/Alpha
(O1) 3.383 0.099

3

R.MidBeta (C3) 31.525 0.020

0.692 0.731 71.2%R.SMR (Fp1) −94.126 0.004

MidBeta/Alpha
(O1) 4.589 0.045

4

MidBeta/Alpha
(C3) 3.218 0.026

0.731 0.731 73.1%R.SMR (Fp1) −84.173 0.007

MidBeta/Alpha
(O1) 4.888 0.037

Table 8. Final logistic regression models.

Model No. Equation

(1) ln
(

P
1−P

)
=

3.317 + 21.180 × R.MidBetaC3 − 13.835 × R.AlphaC4 − 24.077 × R.AlphaFp1

(2) ln
(

P
1−P

)
= −0.883 + 2.396 × MidBetaC3

AlphaC3
− 25.345 × R.AlphaFp1 + 3.383 × MidBetaO1

AlphaO1

(3)
ln
(

P
1−P

)
=

−3.234 + 31.525 × R.MidBetaC3 − 94.126 × R.SMRFp1 + 4.589 × MidBetaO1
AlphaO1

(4) ln
(

P
1−P

)
= −2.562 + 3.218 × MidBetaC3

AlphaC3
− 84.173 × R.SMRFp1 + 4.888 × MidBetaO1

AlphaO1

3.5. Crossing Phenomenon at a Particular Frequency Range

A reversal pattern in terms of EEG was observed between subjects with IGD and
healthy subjects in the SMR and MidBeta ranges of the EEG. This phenomenon can be
referred to as the EEG crossing phenomenon, that is, the relative power of the EEG among
IGD subjects became weaker than that of healthy subjects in the frequency range between
SMR and MidBeta. This phenomenon was observed in four lobes: Fp1, C3, C4, and O1.
The observed critical frequency range was approximately 10–20 Hz.
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4. Discussion
4.1. Resting State vs. Dynamic Gaming State

There is no standardized testing protocol to identify IGD subjects. In the literature,
most studies were conducted during a resting state and therefore had the advantage of
collecting a stable signal from a statically positioned subject in a relatively well-controlled
experimental setting; however, taken together they do not provide an agreeable conclusion.
Therefore, looking into the brain signal during the action of game playing was an inevitable
step, despite the difficulty in controlling subjects during the experiment. Hafeez et al. [12]
and Kim et al. [13] examined the bio-signals of IGD subjects during game playing and
found significantly different EEG and ECG patterns in the IGD group compared to the
healthy group. Moreover, the current study showed a 63.5%–73.1% accuracy in identifying
the IGD subjects. This was not a sufficient level of accuracy for diagnostic purposes. The
current outcome should be further examined by using various experimental conditions
and extended subject pools.

4.2. Limitation of Subject Categorization

The self-report survey could serve the purpose of categorizing IGD subjects (or po-
tential IGD subjects) and healthy subjects. To minimize type I errors, this study employed
both the IAT and CIUS for subject grouping, and only subjects who satisfied both classifi-
cations were allowed to participate in the experiment. However, despite such efforts, the
IGD subjects could not be confirmed as game addicted patients who required immediate
medical attention. This limitation in terms of the categorization of IGD subjects exists as
long as surveys are used without medical diagnosis. This could be the source of latent
experimental errors, which may have lowered the accuracy of the study. Therefore, further
collaboration with medical professionals is expected.

4.3. Controlling the Level of Immersion of Game Players

The experimenter could not control the participants’ thoughts. It was only possible to
ask the subjects to focus on the task, but it was difficult to ensure that they were willingly
conducting the experiment. Therefore, in this study, subjects were directed to play the game
using their own game account and keep the records of wins and losses so that they could
strongly immerse themselves to obtain a high score in the game. Simultaneously, the League
of Legends game itself has a function to match the player with the same tier group, which
makes the players feel competitive during game playing. The authors took advantage of
this function to maintain the highest level of immersion for the participating subjects.
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4.4. EEG Crossing Phenomenon EEG Characterizing the IGD

The IGD subjects showed a lower relative power value than the healthy subjects in
the Alpha and SMR band, and they showed a higher relative power value in the MidBeta
and HighBeta bands. This ‘crossing phenomenon’ is presented in Figure 6. This result
of this study is intriguing. That is, the beta relative power value can be higher or lower
depending on which frequency of the beta band is analyzed. In fact, in previous studies,
the beta value was either higher or lower among IGD subjects. Therefore, it can be said
that the crossing phenomenon might be the cause of inconsistent beta outcomes. The
range of the crossing phenomenon was located between the SMR band (12–15 Hz) and the
MidBeta band (15–20 Hz). This EEG band needs to be closely investigated in future studies
to determine any signature pattern in terms of IGD subjects, if it exists. This also suggests
that EEG frequency analysis for IGD should be performed with a detailed frequency index
including the SMR and MidBeta range.
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4.5. Key Location in the Brain

The current study also found that Fp1 was a critical location to observe EEG informa-
tion to identify the IGD symptoms, with this agreeing with many studies. Moreover, C3,
C4, and O1 were found to be important locations to see the signs of IGD symptoms during
game playing. C3 and C4 had a marginal correlation coefficient (0.686), and C3 alone could
contribute to make the best logistic regression, as was shown in model 4. That is, the odd
number locations were relatively sensitive sites of the lobe. This showed that the right and
left lobes respond differently. This also implies that the desynchronization of EEG signals
can be an important source for identifying the signal pattern of IGD [26–28].

4.6. Exhaustive and Continuing Search for the Best Model

All 240 EEG parameters were tested in this study. Multiple steps of the elimination
process were designed by using four steps of statistical operations. This was performed to
determine the most effective parameters. The current methodology includes tedious data
pre-processing, a series of statistical computations, and the model building technique, all
of which were laborious. However, these steps were necessary since no prior attempt has
made using such a thorough bottom-up selection process to identify IGD characteristics
during game playing. The current logistic regression model was used for finding the best
parameters. However, the final diagnostic model targeting an accuracy level of 80% and
above needs to be further developed for future study.

5. Conclusions

This study demonstrated the process to objectively select the most effective EEG pa-
rameters to identify IGD characteristics during game playing. The results of the study could
be a referential guide for future research to identify IGD symptoms for diagnosis. A series
of statistical analyses were performed, and this statistical operation can be referenced for
analyzing EEG data. This study also revealed that Fp1, C3, and O1 were important locations



Sensors 2023, 23, 1659 12 of 15

to observe the IGD features, and MidBeta/Alpha (C3), R.SMR (Fp1), and MidBeta/Alpha
(O1) were found to be the most effective parameters. A unique crossing phenomenon
concerning the relative EEG power at the SMR and MidBeta range was observed. This
relative power inversion between IGD subjects and healthy subjects should be further
investigated since it could provide the reason for previous inconsistent findings in the Beta
band range. The exhaustive steps of the parameter elimination process could provide an
unbiased picture of IGD subjects’ characteristics, particularly during game playing. The
current logistic regression model needs to be further improved by cross validation. The
diagnostic power of the model could be bettered in conjunction with another bio-signal in
future study.

Author Contributions: Each author drafted parts of the manuscript and reviewed and edited the
entire manuscript. J.-Y.K., D.-J.K. and S.-K.I. conceptualized the study concept and study design.
D.-J.K. and S.-K.I. conducted the data preprocessing, statistical analysis, and interpretation of data. H.-
S.K. extracted data through experiments. J.-S.P. recruited appropriate participants for the experiment.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by a National Research Foundation of Korea (NRF)
grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050786, Development of the
algorithm to identify the EEG pattern of game addicts), an Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-
0-01343, Artificial Intelligence Convergence Research Center [Hanyang University ERICA]), and an
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korean government (MSIT) (No. RS-2022-00155885, Artificial Intelligence Convergence
Innovation Human Resources Development (Hanyang University ERICA)).

Institutional Review Board Statement: The experiment was conducted in accordance with the Decla-
ration of Helsinki and regulations under consideration of the Institutional Review Board of Hanyang
University in the Republic of Korea (IRB approval number: HYU-2019-08-004-1). All participants
understood the study procedure and provided written informed consent before participation.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Used Questionnaires in the Experimental Setup

Table A1. Young’s internet addiction test (IAT).

Item How Often... Score

Q1 Do you find that you stay online longer than you intended?

Q2 Do you neglect household chores to spend more time online?

Q3 Do you prefer the excitement of the internet to intimacy with your partner?

Q4 Do you form new relationships with fellow online users?

Q5 Do others in your life complain to you about the amount of time you
spend online?

Q6 Do your grades or schoolwork suffer because of the amount of time you
spend online?

Q7 Do you check your email before something else that you need to do?

Q8 Does your job performance or productivity suffer because of the internet?

Q9 Do you become defensive or secretive when anyone asks you what you
do online?
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Table A1. Cont.

Item How Often... Score

Q10 Do you block out disturbing thoughts about your life with soothing
thoughts of the internet?

Q11 Do you find that you find yourself anticipating when you will go
online again?

Q12 Do you fear that life without the internet would be boring, empty,
or joyless?

Q13 Do you snap, yell, or act annoyed if someone bothers you while you
are online?

Q14 Do you lose sleep due to late night logins?

Q15 Do you feel preoccupied with the internet when offline or fantasize about
being online?

Q16 Do you find yourself saying “just a few more minutes” when online?

Q17 Do you try to cut down the amount of time you spend online?

Q18 Do you try to hide how long you’ve been online?

Q19 Do you choose to spend more time online over going out with others?

Q20 Do you feel depressed, moody, or nervous when you are offline, which
goes away when you are back online?

The answers were of Likert scale-type as follows: 0 = Not Applicable; 1 = Rarely; 2 = Occasionally; 3 = Frequently;
4 = Often; 5 = Always.

Table A2. Compulsive internet use scale (CIUS).

Item How Often... Score

Q1 Do you find it difficult to stop using the internet when you are online?

Q2 Do you continue to use the internet despite your intention to stop?

Q3 Do others (e.g., partner, children, parents) say you should use the
internet less?

Q4 Do you prefer to use the internet instead of spending time with others (e.g.,
partner, children, parents)?

Q5 Are you short of sleep because of the internet?

Q6 Do you think about the internet, even when not online?

Q7 Do you look forward to your next internet session?

Q8 Do you think you should use the internet less often?

Q9 Have you unsuccessfully tried to spend less time on the internet?

Q10 Do you rush through your (home) work in order to go on the internet?

Q11 Do you neglect your daily obligations (work, school, or family life) because
you prefer to go on the internet?

Q12 Do you go on the internet when you are feeling down?

Q13 Do you use the internet to escape from your sorrows or get relief from
negative feelings?

Q14 Do you feel restless, frustrated, or irritated when you cannot use
the internet?

The answers were of Likert scale-type as follows: 0 = Never; 1 = Seldom; 2 = Sometimes; 3 = Often; 4 = Very often.
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