
Some Notes on External Remerge*
1

Daeho Chung

(Hanyang University)

To constrain external remerge (or multi-dominance) including the

so-called quirky cases of remerge, de Vries (2009: 357) proposes a

condition called Root Condition (RC), which states that if α and β are

selected as input for merge, then α or β (or both) must be a root. He

also formalizes RC as No Proliferation of Roots Condition (NPRC),

which commands merge not to increase the number of roots. This paper,

however, disproves the formalization of RC as NPRC due to some

disparity between the two and then shows that neither RC nor NPRC

properly excludes quirky remerge cases without stipulating an

unmotivated order restriction on merge. Instead the current work

suggests a process-based explanation under some plausible assumptions

on the economy measure of merge and on process load variations

depending on the work space arrangement at a relevant point of

derivation.

Keywords: merge, remerge, extension condition, work space, Root

Condition (RC), No Proliferation of Roots Condition (NPRC)

1. Introduction: Restrictions on Remerge and Root Condition (de Vries

2009)

Merge, especially external merge, is a major and indispensable syntactic operation

if syntax is generative. As the operation traditionally called movement is also

recast as a complex operation including merge, or more precisely internal

remerge, one stand-out property that merge displays is that syntactic terms can

* I would like to thank Mark de Vries, Myung-Kwan Park, and Keun Young Shin for the

valuable discussions that I had with them. I also thank three anonymous reviewers for SGG for

constructive comments and suggestions which helped me reshape the paper, although I could not

incorporate them all in this paper. All remaining errors are solely my own.

1Studies in Generative Grammar, Volume 21, Number 3, 2011
501-516
Ⓒ 2011 by the Korean Generative Grammar Circle

Daeho Chung2

be recycled in the process of structure building. Given the legitimacy of internal

remerge, a natural question that arises is whether external remerge is also

available as a syntactic operation. In other words, can a term merge with another

term outside of the current work space? Various linguists claim or support the

existence of such an operation, although they give this operation various names,

as pointed out by de Vries (2009, 349): 'interarborial movement' (Bobaljik 1995,

Bobaljik & Brown 1997), 'sideward movement' (Nunes 2001, 2004),

'multidominance/multidomination/multiple dominance' (McCawley 1982, Ojeda

1987, Blevins 1990, Wilder 1999, 2008, Chen-Main 2006, Johnson 2007, Bachrach &

Katzir 2009), 'sharing' (Guimar ães 2004, Chung 2004, de Vries 2005,

Gracanin-Yuksek 2007), 'grafting' (van Riemsdijk 1998, 2006), and 'parallel merge'

(Citko 2005). (See Carnie 2008, chapter 10 for a brief overview. See also Park

2010, who proposes an interesting account of both so-called shared and

non-shared right node raising structures in terms of external remerge.)

How is then external remerge constrained? Before tackling this question, let

us first consider how merge in general is constrained. As far as external merge

and internal merge (in a work space) are concerned, Extension Condition

(Chomsky 1995: 190, 327) suffices to constrain the merge operation: As a

structure-building (not structure-changing) process, merge takes place at the edge

only and no counter-cyclic tampering is permitted. Consider the following

derivations (adapted from de Vries 2009: 354-356, his (14)-(16)).

(1) External Merge

D C a. O.K.E b. *C c. *C

A B D C E B A E

A B D A D B

(2) Internal Merge

C a. O.K D b. *C

A B C D

A B A B

(1) exemplifies instances of external merge in which an (external) element merges

with a previously built structure. In (1a) D is merged to the edge of the

previously built structure C and the result is legitimate. In contrast, (1b) and (1c),

where D is counter-cyclically merged with an internal element, A in (1b) and B

in (1c), violate Extension Condition (or No Tampering Condition). (2) exemplifies

instances of internal merge in which an element within a previously built

Some Notes on External Remerge 3

structure remerges, i.e., merges again. In (2a), B within C is taken and merges

with C, the root at the relevant point of derivation. A new structure being built

due to this remerge process, Extension Condition (or No Tampering Condition) is

satisfied. In contrast, (2b), where B is taken within C and merges with A,

another element within C, i.e., a non-root element, violates Extension Condition

(and No Tampering Condition), accounting for the illegitimacy of the newly built

structure.

Now turn to the cases of external remerge. Whether external remerge

satisfies Extension Condition or not seems to depend on the choice of syntactic

terms to be merged. Consider the following typical example of external remerge,

where an (external) element merges with another element within a previously

built structure:

(3) External Remerge (de Vries 2009: 356, his (16c))

C E C

D A B D A B

C remains unchanged, apparently violating Extension Condition. However, E is

newly built due to the remerge operation, satisfying Extension Condition.

Now consider the cases where elements to be merged are both non-root

terms, as in the following structures:

(4) a. C *D C

A B A B

b. E *F E

A D A D

B C B C

Since the newly built structure does not tamper the previously built one, the

remerge operations in (4) do seem to satisfy Extension Condition. As such free

remerge comes into the picture, Extension Condition does not suffice.

To constrain merge in general (including external remerge), de Vries (2009:

357) proposes Root Condition (RC) in (5) below:

(5) Root Condition (RC) (= de Vries 2009, his (19))

If α and β are selected as input for merge, then α or β (or both)

must be a root.

Daeho Chung4

RC appears to well explain the contrast between (3) and (4). (3) satisfies RC

since D is a root, although A is not, when the two combine. (4a) and (4b),

however, violate RC since the two terms, A and B, are non-roots when they

combine for the second time.

de Vries (2009) claims that RC excludes what he calls quirky internal

remerge and quirk external remerge as well, as in (6) and (7) respectively, (cited

from de Vries 2009, 356-357, his (17) and (18),) where grey lines indicate yet-to-be

merge operations and exclamation marks indicate problematic instances of merge: 1

(6) (Merge (β, γ) → F) R

I

Merge (A, B) → C J H G

Merge (D, C) → E F E

Merge (F, E) → G β γ D C

! Merge (A, β) → J A B

Merge (H, G) → I

Merge (J, I) → R

(7) (Merge (D, E) → F) R

H

Merge (A, B) → C F G C

! Merge (E, A) → G D E A B

Merge (F, G) → H

Merge (H, C) → R

Instances of merge with an exclamation mark are problematic since two terms to

be merged are already used in the previous derivation, violating RC. In (6), J

results from merging β and A, both of which are non-roots since they are

previously used. Likewise in (7), G results from merging E and A, both of which

are non-roots.

de Vries (2009) further claims that RC can be formalized as follows:

1 de Vries (2009) calls derivations like (6) 'quirky internal merge': 'internal', since both input

elements for J come from the previously built structure (pp 356-357); 'quirky', because both input

elements are non-root (p 358). As expected, quirky external merge will then involve two non-root

inputs from two separate structures (or work spaces).

Some Notes on External Remerge 5

(8) No Proliferation of Roots Condition (NPRC, de Vries 2009: 358, his

(20))

If the derivation proceeds from stage i to i+1 through merge (α, β)

→ γ, then |{x∊{α, β, γ}: x is a root at stage i+1}| ≤ |{x∊{α, β}:

x is a root at stage i}|

To state informally, merge should not increase the number of roots. NPRC seems

to rule out the derivations in (6) and (7). Given the derivation order in (6), at

the stage where J is produced, merge increases the number of roots by one

(from one to two). Similarly in (7), at the stage where G is produced, merge

increases the number of roots by one (from two to three).

In this paper, however, it will be shown that RC and NPRC are not

co-extensional, casting doubt on the validity of the formalization of RC as NPRC,

and that neither RC nor NPRC properly excludes the quirky cases of remerge as

in (6) and (7). This work instead suggests a process-based account under some

plausible assumptions on the economy measure of merge (or remerge) and on

the process load variations depending on the work space arrangement.

2. Can RC be formalized as NPRC?

In this section, it will be first pointed out that de Vries' (2009) formalization of

RC as NPRC is incorrect since the two are not co-extensional. Notice first that

RC is based on the root vs. non-root property of the elements to be merged,

while NPRC compares the numbers of roots before and after a merge operation.

Thus, the two make different predictions, especially as to non-cyclic movement.

For example, consider the merge operations in (2), repeated below:

(2) Internal Merge

C a. O.K D b. *C

A B C D

A B A B

(2a) satisfies both RC and NPRC. At the relevant point of merge, B is a non-root

but C is a root node, satisfying RC. The number of roots remains the same

(from one to one), satisfying NPRC as well. Now consider the illegitimate

derivation in (2b). The non-cyclic merge operation violates RC, but not NPRC. D

results from merging two non-roots, violating RC. Notice, however, that the

Daeho Chung6

merge operation does not increase the number of roots, satisfying NPRC. The

number remains one since D is embedded under C.

Obviously, non-cyclic operations like the one in (2b) can be ruled out by

Chomsky's (1995) Extension Condition on merge (or Chomsky's 2008 NTC, no

tampering condition). Although de Vries (2009) does not explicitly propose to

replace Extension Condition by RC/NPRC, he seems to intend to do so, when he

(2009: 358) claims that RC can also be interpreted as a requirement that

'derivation is always "active at the top"' (p 358). The illegitimacy of cases like

(2b) indicates, however, that RC, especially when it is equated with NPRC, does

not perfectly replace Extension Condition.

3. Neither RC nor NPRC Excludes Quirky Remerge Structures

In this section it will be shown that neither RC nor NPRC appropriately excludes

the so-called quirky internal or external remerge structures.2 Consider the

structures in (6) and (7), repeated below:

(6) (Merge (β, γ) → F) R

I

Merge (A, B) → C J H G

Merge (D, C) → E F E

Merge (F, E) → G β γ D C

! Merge (A, β) → J A B

Merge (H, G) → I

Merge (J, I) → R

(7) (Merge (D, E) → F) R

H

Merge (A, B) → C F G C

! Merge (E, A) → G D E A B

Merge (F, G) → H

Merge (H, C) → R

What de Vries (2009) crucially assumes to rule out such quirky cases of internal

2 The distinction between quirky 'internal' vs. 'external' remerge turns out to be meaningless, if

the discussion in this section is on the right track. What they have in common is that there are two

(or possibly more) nodes are shared at the relevant stage of derivation.

Some Notes on External Remerge 7

or external remerge is that the problematic remerge applies latest at the relevant

stage of derivation. In (6), for example, Merge (A, β) → J follows Merge (β, γ)

→ F and Merge (A, B) → C. Similarly in (7), Merge (E, A) → G follows Merge

(D, E) → F and Merge (A, B) → C.

Notice, however, that such an order restriction on external remerge cases

comes from nowhere. When the 'problematic' merge operation with an

exclamation mark applies prior to at least one of the other two, the derivation

should go through without violating RC or NPRC. All the following orders of

derivations should be legitimate as to RC or NPRC as well: JFC, JCF, FJC, or

CJF in (6); GFC, GCF, FGC, or CGF in (7). 3 For example, suppose that, in (6), J

is first formed and then F and C follow. Then the derivation will satisfy both

RC and NPRC, as the following table illustrates:

(9)

Derivation Order
Root vs. non-root

status of inputs
RC

Root numbers before

and after merge
NPRC

a. Merge (A, β)

→ J
(R, R) √ 2 → 1 √

b. Merge (β, γ)

→ F
(nR, R) √ 1 → 1 √

c. Merge (A, B)
→ C (nR, R) √ 1 → 1 √

d. Merge (D, C)
→ E (R, R) √ 2 → 1 √

e. Merge (F, E)

→ G
(R, R) √ 2 → 1 √

f. Merge (H, G)
→ I (R, R) √ 2 → 1 √

g. Merge (J, I)

→ R
(R, R) √ 2 → 1 √

As shown in the table, all the merge operations in this order of derivation

combine two roots or a non-root plus a root. There is no instance in which two

non-roots merge, satisfying RC. All the operations either reduce the number of

the roots by one (operations a, d, e, f and g), or maintain it (operations in b

and c)), satisfying NPRC. Thus, the derivation in this order poses no problem

with respect to RC or NPRC. As the readers can verify, orders like JCF, FJC, or

3 Mark de Vries (p.c.) admits that his system faces such a problem.

Daeho Chung8

CJF in (6), and GFC, GCF, FGC, and CGF in (7) will also satisfy RC and NPRC.

To sum up, de Vries' (2009) RC or NPRC works only when a special order

of derivation is stipulated. Since such an order restriction comes from nowhere,

however, neither RC nor NPRC appropriately rules out the quirky cases of

remerge.

4. A Process-based Account of Restrictions on Merge

This section suggests that the restrictions on external remerge should be

accounted for by process considerations under some plausible assumptions on

economy measure of merge and on the process load variations depending on the

work space configuration. Before directly undertaking the quirky remerge cases,

let us first consider the so-called right node raising (RNR) construction like (10)

below. The RNR construction instantiates a simple remerge (simple parallel merge

or multi-dominance) structure under the multi-dominance analysis of the

construction (McCawley 1982, Wilder 1999, 2008, Abels 2004, Chung 2004, among

others), as roughly represented in (11) below. 4

4 As pointed out by an anonymous reviewer, (11) is not the unique structure for RNR

constructions. In his series of paper, for example, Park (2005, 2007, 2009, 2010) proposes a new version

of the multi-dominance syntax of the RNR construction, called a 'midway conjunction analysis': the

rightmost element in each conjunct is taken and then remerged respectively into the specifier position

and the complement position of a base generated &P, which itself is adjoined to the second (or more

generally final) conjunct, as schematically represented in (i) below:

(i) &P

TP &’

… XP & TP

X a … XP

XP &P

X b &’

&

The midway conjunction analysis is primarily motivated by the so-called non-shared RNR constructions,

as in (ii) below:

(ii) a. John loves and Mary hates oysters and clams, respectively. (Postal 1998: 134)

b. Greg captured and Lucile trained 312 frogs all together. (Postal 1998: 137)

Park claims that the so-called shared RNR constructions as in (10) result when a=b in (i) and some

morphological adjustments take place within the &P adjoined to the second (or final) conjunct.

Some Notes on External Remerge 9

(10) John likes, and Peter hates noodles.

(11) &P

TP &'

DP VP and TP

John V DP VP

likes Peter V DP

hates noodles

After DP noodles is built up, it merges with verb hates and verb likes. There are

several possibilities to form such a multi-dominance structure. One possibility is

that hates and the DP first merge, forming a VP, and then the DP remerges, i.e.,

merges again, with likes, forming another VP, as in (12) below. Another

possibility is to reverse the order: the DP first merges with likes, forming a VP,

and then remerges with hates, forming another VP, as in (13). A third possibility

is to merge the DP with both of the verbs simultaneously, forming two VPs at

the same time, as in (14).

(12) a. VP1 b. VP2 VP1

hates noodles likes likes hates noodles

(13) a. VP2 b. VP2 VP1

likes noodles hates likes hates noodles

(14) VP2 VP1

likes hates noodles

The three options produce the same final structure, but they differ in the timing

of 'remerge'. Derivations in (12) and (13) include a process, as a separate step of

derivation, in which DP noodles is remerged. In such derivations, since the DP is

a non-root term when a second merge is about to occur, a sort of tree-traversing

search is required to properly implement the second merge.5 In contrast, when a

simultaneous merge takes place as in (14), there is no burden of such a

search-down procedure for an obvious reason. I assume that the third possibility

I do not assess the theoretical mileage of the midway conjunction analysis in this paper. (See

Shin and Chung 2011 for some remarks.) I just would like to point out that Park's system is

compatible with the process based explanation to be suggested in Section 4, as long as the remerge

operations take place in a simultaneous fashion: b simultaneously merges with X in the second

conjunct and &; a simultaneously merges with X in the first conjunct and &'.
5 The later the remerge operation occurs, the severer the burden becomes. In (11), for example,

the search down burden will become greater when the shared element remerges after &' is generated

than when the VP in the second conjunct is generated.

Daeho Chung10

is more economical than the other two due to the absence of the tree-traversing

(or search-down) procedure.6 Of course, the simultaneous merge should take into

consideration two (or multiple) work spaces at the same time.7 However, it is

inevitable to do so as far as two complex nodes, for example, X' and its

specifier, merge at all (Uriagereka 1999).

With this assumption in mind, let us now turn to the quirky remerge

structures in (6) and (7). They both contain the following structure at a certain

point of derivation.8

(15) E F G

A B C D

They crucially differ from the structure in (14) in that more than one element is

shared at the point of simultaneous merge. One may try to first form E and F

via simultaneous merge of B with A and C, and then merge of C with D,

forming G at a later stage, as shown in (16) below:

(16) a. E F b. E F G

A B C D A B C D

6 In this sense, the so-called external remerge is a misnomer: terminology like

parallel/simultaneous/multiple merge sounds more appropriate. In contrast, internal merge necessarily

includes a step of 'remerge' since the node that the element remerges with is yet-to-be built.
7 An anonymous reviewer questions why the derivation in (12) and (13) includes a

counter-cyclic search-down procedure, which was claimed in the previous version of this paper. The

reviewer is right in pointing out that the derivation in (12) and (13) may not include a counter-cyclic

derivation unless every phrase is assumed to be a cycle. So I dropped the non-cyclicity part in this

revised version. The reviewer further questions why a search down process is problematic. If a search

down process is allowed in internal merge, why not in external merge? My answer to this question is

"Avoid it unless it is necessary." In cases of external (re)merge, a search down process can be

avoidable, while in cases of internal (re)merge, it is inevitable. Then the question lies whether a search

down procedure is costly. It does seem so, as far as the merge-over-move principle is viable. The same

reviewer suspects that, in the perspective of derivational steps, the derivation in (12) and (13), rather

than the one in (14), appears to be more economical. I do not fully follow what the reviewer means

by the perspective of derivational steps. If he or she intends to mean that merge prefers binarity, I

would respond that the simultaneous merge does not discard binarity, either; rather it keeps it in a

simultaneous fashion, when two or more work spaces share an element.
8 Two of the anonymous reviewers worry that the proposed explanation may not apply to

quirky internal cases of merge. I would like to stress, however, that the so-called quirky internal merge

and external merge become indistinguishable when the order restriction disappears, as discussed in the

previous section. They both include a sort of 'sideward movement' operation in the sense of Nunes

(2001, 2004).

Some Notes on External Remerge 11

Then the last stage of derivation should include an undesirable search-down

operation to properly merge D and C, the latter being already embedded.9 Thus,

such a derivation will lead to the aforementioned problem.

It cannot be simply said that (15) is excluded because three work spaces are

involved at the same time. Notice that one element can be shared by three (or

more) sisters. Consider, for example, a RNR construction in (17a) and the

relevant VP structure in (17b):

(17) a. John loves, Mary likes, and Tom hates noodles.

b.

loves likes hates noodles

Though three work spaces are involved in (17a), no special problem arises as to

the merge operation.

What then crucially distinguishes between the structure in (16) and (17b)? I

claim the decisive difference lies in the arrangement of the work spaces at the

relevant time of merge. In (17b), all the work spaces at a certain point of

derivation share one and the same element, while in (16) there is no element

shared by all the work spaces at the relevant point of derivation. Figuratively,

(16) has the arrangement of work spaces as in (18b), while (17b) has the one in

(18a):

(18) a. S1 S2 b.

a ● b ● S1 S2 S3

x◎ a● ◎x ◎y ●b

●c

S3

In (18a), all the work spaces (S1, S2, and S3) are adjacent to each other by

sharing the unique remerged element x. In contrast, the adjacency relation cannot

be obtained in (18b). S1 and S2 are adjacent to each other by sharing the

remerged element x, and similarly, S2 and S3 are by sharing the remerged

element y. S1 and S3, however, shares no element. Suppose only adjacent work

spaces are tolerable at each point of merge, probably due to the heavy process

9 The same search-down operation is required when A, instead of D, merges at the last

moment.

Daeho Chung12

load when mutliple spaces are processed at the same time. Then, the structure in

(18b) conveys a heavier process load than the one in (18a).

The process load may have to do with the syntactic relation that the shared

element and its sisters have. In (18a), the shared element and its sisters have a

uniform relation: if the shared element functions as a head, then its sisters as

non-heads and vice versa. In contrast, shared elements x and y in (18b) have

non-uniform syntactic functions: if x is a head, so is b, while a and y are

non-heads; if x is a non-head, so is b, while a and y are heads. In other words,

all the work spaces in (18a) can be scanned in a breath, while those in (18b)

cannot be.

Finally, let us consider the special cases of merge in (4), repeated below:

(4) a. C *D C

A B A B

b. E *F E

A D A D

B C B C

In (4a) and (4b), two work spaces share two remerged elements and there will

be no added process load, if only the work space adjacency matters. 10 (4b),

however, seems to be ruled out due to the simultaneous merge requirements for

shared elements. Since A and B are shared, their sisters have to be merged at

the same time. But notice that D is produced only after B and C merge, which

makes it impossible to merge A, B, C, and D simultaneously. Although (4a) does

not suffer from such a problem, it seems to be independently ruled out due to

some sort of uniformity violation: Merge produces a unique syntactic object.

Thus, D cannot differ from C. If sharing is involved at all, the higher node C (=

D), not its daughters A and B, is to be shared at the relevant point of

derivation, due to the A-over-A principle that generally applies to syntax

(Chomsky 1964, Ross 1967).

5. Conclusion

It seems to be intuitively correct that merge does not increase the number of

roots, as de Vries' (2009) No Proliferation of Roots Condition (NPRC) tries to

10 If the number of shared elements matters, the process load for (4a) and (4b) will be as

heavy as the cases like (18b) since there are two elements shared.

Some Notes on External Remerge 13

capture. This paper has shown, however, that de Vries' (2009) account of

restrictions on merge, expecially so-called quirky remerge cases, in terms of Root

Condition (RC) or NPRC does not work due to the fact that these conditions

may or may not be satisfied, depending on the variation on the order of

remerge. It was also shown that the two conditions are not co-extensional, casting

doubt on the validity of de Vries' (2009) formalization of RC as NPRC.

This work instead has attributed the restrictions on merge, especially the

so-called quirky remerge, to the process load based on some plausible

assumptions on the timing of merge and on process load variations depending

on the arrangement of work spaces involved. It was first assumed that, as far as

external remerge is concerned, syntactic terms merge as many times as possible,

in order to avoid the less-economical search-down procedure that would

otherwise occur. Thus, the external remerge structure is to be produced by an

instantaneous multi-merge operation, but not by a 'remerge' or recycling

operation. It was then assumed that the availability of remerge or more correctly

multi-merge depends on the arrangement of the work spaces involved: Only the

adjacent work spaces are permitted at each stage of merge operation. Given these

two assumptions, the so-called quirky cases of remerge are ruled out since they

violate the adjacency condition on work spaces at the relevant time of merge.

One important issue that is not dealt with in this paper is whether internal

remerge (movement) receives the proposed analysis. The remerged/moved element

cannot simultaneously merge with its sister in its original position and the sister

after remerge for an obvious reason: The latter is unavailable up until all the

nodes inbetween have been generated. Further research is definitely required to

solve such a problem (and many others), but for the time being I follow

Chomsky (2001) and Di Sciullo and Isac (2008) in assuming that internal merge

differs from external merge.

References

Abels, Klaus. 2004. Right node raising: Ellipsis or ATB movement? In Kier

Moulton and Matthew Wolf (eds.), Proceedings of the 34th North East

Linguistics Society, 44-59. Amherst, MA: GLSA Publications, Umass.

Bachrach, Asaf & Roni Katzir. 2009. Right-node raising and delayed spellout. In

Kleanthes K. Grohmann (ed.), InterPhases: Phase-Theoretic Investigations of

Linguistic Interfaces (Oxford Studies in Theoretical Linguistics 21), 283-316.

Oxford: Oxford University Press.

Daeho Chung14

Di Sciullo, Anna Maria and Daniela Isac. 2008. The asymmetry of merge.

Biolinguistics 2. 4: 260-290.

Blevins, James. 1990. Syntactic complexity: Evidence for discontinuity and

multidomination. Amherst, MA: University of Massachusetts dissertation.

Bobaljik, Jonathan David. 1995. In terms of merge: Copy and head movement.

MIT Working Papers in Linguistics 27: 41-64.

Bobaljik, Jonathan David & Samuel Brown. 1997. Interarboreal operations: Head

movement and the extension requirement. Linguistic Inquiry 28: 345-356.

Carnie, Andrew. 2008. Constituent Structure (Oxford Surveys in Syntax & Morphology).

Oxford: Oxford University Press.

Chen-Main, Joan. 2006. On the generation and linearization of multi-dominance

structures. Baltimore, MD: John Hopkins University dissertation.

Chomsky, Noam A. 1964. Current Issues in Linguistic Theory. The Hague: Mouton.

Chomsky, Noam. 1995. The Minimalist Program (Current Studies in Linguistics 28).

Cambridge, MA: MIT Press.

Chomsky, Noam. 2001 Derivation by phase. In Michael Kenstowicz (ed.), Ken

Hale: A Life in Language (Current Studies in Linguistics 36), 1-52. Cambridge,

MA: MIT Press.

Chomsky, Noam. 2008. On phases. In Robert Freidin, Carlos Peregrín Otero and

Maria Luisa Zubizarreta (eds.), Foundational Issues in Linguistic Theory. Essays

in Honor of Jean-Roger Vergnaud, 133-166. Cambridge, MA: MIT Press.

Chung, Daeho. 2004. A multiple dominance analysis of right node raising

constructions. Language Research 40: 791-812.

Citko, Barbara. 2005. On the nature of merge: External merge, internal merge, and

parallel merge. Linguistic Inquiry 36: 475-496.

Gracanin–-Yeksek, Martina. 2007. About sharing. Cambridge, MA: MIT

dissertation.

Guimarães, Maximiliano. 2004. Derivation and representation of syntactic

amalgams. College Park, MD: University of Maryland dissertation.

Johnson, Kyle. 2007. LCA + alignment = RNR. Paper presented at the workshop

on Coordination, Subordination and Ellipsis, Tübingen. [Eberhard-

Karls-Universität Tübingen, 7-8 June 2007.]

Kayne, Richard S. 1984. Connectedness and binary branching. Dordrecht: Foris.

McCawley, James. 1982. Parentheticals and discontinuous constituent structure.

Linguistic Inquiry 13: 91-106.

Nunes, Jairo. 2001. Sideward movement. Linguistic Inquiry 32: 303-344.

Nunes, Jairo. 2004. Linearization of Chains and Sideward Movement (Linguistic Inquiry

Monograph 43). Cambridge, MA: MIT Press.

Some Notes on External Remerge 15

Ojeda, Almerindo. 1987. Discontinuity, multidominance, and unbounded

dependency in generalized phrase structure grammar: Some preliminaries.

In Geoffrey J. Huck and Almerindo E. Ojeda (eds.), Discontinuous

Constituency (Syntax and Semantics 20), 257-282. New York: Academic Press.

Park, Myung-Kwan. 2005. When things are cumulated or distributed across

coordinate conjuncts. Paper presented at the SICOGG 7.

Park, Myung-Kwan. 2007. RNR in Korean as right-edge coordination. Studies in

Generative Grammar 17.1: 85-97.

Park, Myung-Kwan. 2009. Right node raising as conjunction reduction fed by

linearization. Language Research 45.2: 179-202.

Park, Myung-Kwan. 2010. RNR as midway conjunction = external remerge. Studies

in Modern Grammar 61: 25-50.

Postal, Paul M. 1998. Three investigations of extraction. Cambridge: The MIT Press.

Shin, Keun Young and Daeho Chung. 2011. Remarks on the midway conjunction

analysis of RNR constructions. Studies on Generative Grammar 21.1, 97-116.

van Riemsdijk, Henk. 1998. Trees and scions―science and trees. In Chomsky 70th

Birthday Celebration Fest-Web-Page. Retrieved from

http://cognet.mit.edu/Books/celebration/ essays/riemsdyk.html.

van Riemsdijk, Henk. 2006. Grafts follow from merge. In Mara Frascarelli (ed.),

Phases of Interpretation (Studies in Generative Grammar 91), 17-44. Berlin:

Mouton de Gruyter.

Ross, John R. 1967. Constraints on variables in syntax. Cambridge, MA: MIT

dissertation.

Uriagereka, Juan. 1999. Multiple spell-out. In Samuel D. Epstein and Nobert

Hornstein (eds.), Working Minimalism, 251-282. Cambridge, MA: MIT Press.

de Vries, Mark. 2005. Ellipsis in nevenschikking: Voorwaarts deleren, maar

achterwaarts delen. Tabu 34: 13-46.

de Vries, Mark. 2009. On multidominance and linearization. Biolinguistics 3.4:

344-403.

Wilder, Chris. 1999. Right node raising and the LCA. In Sonja Bird, Andrew

Carmie, Jason Haugen, and Peter Norquest (eds.), WCCFL18 Proceedings,

586-598. Somerville, MA: Cascadilla Press.

Wilder, Chris. 2008. Shared constituents and linearization. In Kyle Johnson (ed.),

Topics in Ellipsis, 229-258. Cambridge University Press.

Daeho Chung

Department of English Language and Culture

Daeho Chung16

Hanyang University

1271 Sa-3-dong, Ansan-si

Gyeonggi-do 426-791

Korea

cdaeho@hanyang.ac.kr

Received: 2011. 7. 13

Revised: 2011. 8. 15

Accepted: 2011. 8. 20

