
entropy

Article

Quantum Contextual Advantage Depending on Nonzero Prior
Probabilities in State Discrimination of Mixed Qubit States

Jaehee Shin 1, Donghoon Ha 2 and Younghun Kwon 1,*

����������
�������

Citation: Shin, J.; Ha, D.; Kwon, Y.

Quantum Contextual Advantage

Depending on Nonzero Prior

Probabilities in State Discrimination

of Mixed Qubit States. Entropy 2021,

23, 1583. https://doi.org/10.3390/

e23121583

Academic Editor: Vladimir Man’ko

Received: 19 October 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Physics, Center for Bionano Intelligence Education and Research,
Hanyang University (ERICA), Ansan 15588, Korea; physics@hanyang.ac.kr

2 Department of Applied Mathematics and Institute of Natural Sciences, Kyung Hee University,
Yongin 17104, Korea; donghoon@khu.ac.kr

* Correspondence: yyhkwon@hanyang.ac.kr

Abstract: Recently, Schmid and Spekkens studied the quantum contextuality in terms of state dis-
crimination. By dealing with the minimum error discrimination of two quantum states with identical
prior probabilities, they reported that quantum contextual advantage exists. Meanwhile, if one notes
a striking observation that the selection of prior probability can affect the quantum properties of the
system, it is necessary to verify whether the quantum contextual advantage depends on the prior
probabilities of the given states. In this paper, we consider the minimum error discrimination of
two states with arbitrary prior probabilities, in which both states are pure or mixed. We show that
the quantum contextual advantage in state discrimination may depend on the prior probabilities of
the given states. In particular, even though the quantum contextual advantage always exists in the
state discrimination of two nonorthogonal pure states with nonzero prior probabilities, the quantum
contextual advantage depends on prior probabilities in the state discrimination of two mixed states.

Keywords: contextuality; ontological model; minimum error discrimination

1. Introduction

Quantum contextuality is an essential concept that reveals the nonclassicality of quan-
tum mechanics. Kochen and Specker [1] proved that quantum mechanics could not be
described using a deterministic hidden variable model independent of the measurement.
Later, Spekkens [2] defined noncontextuality by introducing a noncontextual ontological
model, which is based on an operational theory.

State discrimination is to figure out what the given state is. The problem can be
clarified as follows. First, a sender prepares a state with a specific prior probability. Next,
the sender sends the state to the receiver, and the receiver determines what the state
is. In the state discrimination, there are many strategies such as minimum error dis-
crimination (MED) [3–15], unambiguous discrimination [16–23], discrimination with a
fixed error [24–27] etc. In particular, the MED is the optimal measurement strategy that
minimizes the average error probability. In the MED, a general solution exists for two
quantum states [3] but a general solution to more than two quantum states does not exist.
Nevertheless, state discrimination is used in wide application of quantum information
processing [28–34].

Schmid and Spekkens [35] investigated noncontextuality in terms of state discrimi-
nation. They studied noncontextuality by considering the minimum error discrimination
of two nonorthogonal pure quantum states with identical prior probabilities. They found
that the maximum success probability(guessing probability) of the minimum error dis-
crimination in the noncontextual model is lower than that in the quantum model. In
other words, quantum contextual advantage, which the preparation-noncontextual model
cannot achieve, exists in the MED of two pure qubit states with identical prior probabilities.
Therefore, state discrimination may be a valuable tool for quantum contextual advantage
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that noncontextual ontological models cannot achieve.
According to a recent investigation, the selection of prior probability can affect the

quantum properties of the system [36,37]. Therefore, it is necessary to verify whether
the quantum contextual advantage depends on the prior probabilities of the given states
when the MED of two pure quantum states with arbitrary prior probabilities is considered.
Furthermore, it should be determined whether the quantum contextual advantage occurs
in the MED of two mixed quantum states with arbitrary prior probabilities.

Therefore, in this study, we investigated the dependence of quantum contextual ad-
vantage on the prior probabilities of the given states by considering the MED of two
pure(mixed) quantum states with arbitrary prior probabilities. As a result, we showed that
the quantum contextual advantage exists regardless of nonzero prior probabilities in MED
of two nonorthogonal pure qubit states. However, we observed that in the MED of two
nonorthogonal mixed qubit states, the quantum contextual advantage depends on nonzero
prior probabilities.

2. Preliminaries
2.1. Quantum Theory and Discrimination between Two Mixed Qubit States

In the quantum theory, a state of a two-level system(or qubit state) is expressed by a
density operator in two-dimensional complex Hilbert spaceH. A measurement performed
on the qubit system is expressed using a positive operator-valued measure(POVM) that
consists of positive semidefinite operators Mi on H satisfying ∑i Mi = 1. Here, 1 is the
identity operator on H. In addition, when a measurement {Mi}i is performed on qubit
state ρ prepared in the qubit system, the probability of obtaining the measurement outcome
corresponding to Mi is expressed as Tr(ρMi), according to Born’s rule.

Now, let us consider the case where using measurement {M1, M2}, one discriminates
two qubit states ρ1 and ρ2 of the qubit state ensemble {ηi, ρi}2

i=1,

η1 = 1
2 (1 +

√
1− r), ρ1 = εψ1 + (1− ε)12 , 0 < r ≤ 1,

η2 = 1
2 (1−

√
1− r), ρ2 = εψ2 + (1− ε)12 , 0 < ε ≤ 1,

(1)

where ηi is the probability that the qubit state ρi is prepared and ψi is a pure qubit state
satisfying 0 < Tr(ψ1ψ2) < 1. Please note that the mixed states ρ1 and ρ2, which will be
used throughout this paper, can be understood as the outputs of the quantum channel with
white noise for the state inputs ψ1 and ψ2. When Mi is a measurement for detecting ρi, the
probability that the given state can be correctly guessed becomes

pQ
s ({ηi, ρi}2

i=1) = η1Tr(ρ1M1) + η2Tr(ρ2M2). (2)

The MED of {ηi, ρi}2
i=1 is to maximize pQ

s ({ηi, ρi}2
i=1). Based on the Helstrom bound [3],

the maximum of pQ
s ({ηi, ρi}2

i=1) can be expressed as follows:

pQ
max({ηi, ρi}2

i=1) =
1
2 (1 + Tr|η1ρ1 − η2ρ2|) =

{
η1 for 0 < r ≤ rQ,
pQ for rQ < r ≤ 1,

(3)

where
cQ = Tr(ψ1ψ2), rQ = 1−ε2

1−cQε2 , pQ = 1
2 (1 + ε

√
1− cQr). (4)

In the region of 0 < r ≤ rQ, the optimal success probability pQ
max({ηi, ρi}2

i=1) can be
determined by guessing the given state as ρ1 without a measurement [38]. However, within
the region of rQ < r ≤ 1, pQ

max({ηi, ρi}2
i=1) cannot be obtained without measurements.

The optimal measurement consists of two orthogonal rank-one projectors mapping onto
eigenspaces of η1ρ1 − η2ρ2 [3].
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2.2. Operational Theory and Preparation-Noncontextual Ontological Model

Let us understand the quantum theory from the perspective of operational theory, to
explain preparations and measurements through primitive laboratory operations. In the
operational theory, when every measurementM to two preparations P and P ′ provides
the identical statistics, P and P ′ are operationally equivalent [2,35], i.e.,

P(k|M,P) = P(k|M,P ′) ∀M ∀k ⇒ P ' P ′, (5)

where P(k|M,P) is the probability that the measurement outcome is k when measurement
M is performed on preparation P . We use Pρ to represent the preparation of a quantum
system corresponding to a density operator ρ. Therefore, every preparation of a quantum
system, expressed by an identical density operator, is operationally equivalent.

Now, let us briefly explain the ontological model of the operational theory. In the op-
erational theory, every system of an ontological model has an ontic state space Λ revealing
its physical properties. Furthermore, the preparation P and measurementM of the system
are described by the epistemic state µP and {ξk|M}k being a set of response functions, which
satisfy the following relations:

µP (λ) ≥ 0 ∀λ,
∫

Λ µP (λ)dλ = 1,

ξk|M(λ) ≥ 0 ∀λ ∀k, ∑k ξk|M(λ) = 1 ∀λ.
(6)

The probability that the measurement outcome is k, when measurementM is performed
on preparation P , is expressed as follows:

P(k|M,P) =
∫

Λ ξk|M(λ)µP (λ)dλ, (7)

where µρ and ξk|M are the epistemic state and the response function, respectively, cor-
responding to preparation Pρ and measurementM. We use {ξψi |Bi

, ξψ⊥i |Bi
} to describe

the response functions corresponding to the measurement Bi := {ψi, ψ⊥i }, where ψ⊥i is
the pure qubit state orthogonal to ψi. If experiments of state preparations ψi,ψ⊥i , and
measurements Bi are expressed by an ontological model, the model should produce the
following relations: ∫

Λ ξψi |Bi
(λ)µψi (λ) = Tr(ψiψi) = 1 ∀i,∫

Λ ξψi |Bi
(λ)µψ⊥i

(λ) = Tr(ψ⊥i ψi) = 0 ∀i,∫
Λ ξψj |Bj

(λ)µψi (λ) = Tr(ψiψj) = cQ ∀i 6= j.
(8)

The ontological model, which assigns an identical epistemic state to two operationally
equivalent preparations, is called preparation noncontextual [2,35]. In this work, we consider
a preparation-noncontextual ontological model to describe the preparation of the system.
For instance, the preparation of the mixed qubit state ρi, defined in Equation (1), is opera-
tionally equivalent to the preparation of the qubit system where pure qubit state ψi and
maximally mixed state 1

2 are prepared with the probabilities of ε and 1− ε, respectively.
Therefore, the preparation noncontextuality implies that

µρ1 = εµψ1 + (1− ε)µ 1

2
, µρ2 = εµψ2 + (1− ε)µ 1

2
. (9)

As another example, preparation P 1

2
of the maximally mixed state 1

2 is operationally

equivalent to the preparation of a qubit system where two orthogonal states ψi and ψ⊥i are
prepared with identical probabilities. Then, preparation noncontextuality indicates that

µ 1

2
= 1

2 µψ1 +
1
2 µψ⊥1

= 1
2 µψ2 +

1
2 µψ⊥2

. (10)
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Because, in preparation-noncontextual model, supp(µ 1

2
) is Λ, from Equations (8) and (10)

we can obtain the following relations [2,35]:

supp(µψ1)
⋃

supp(µψ⊥1
) = Λ, ξψ1|B1

(λ) =

{
1, λ ∈ supp(µψ1),
0, λ ∈ supp(µψ⊥1

),

supp(µψ2)
⋃

supp(µψ⊥2
) = Λ, ξψ2|B2

(λ) =

{
1, λ ∈ supp(µψ2),
0, λ ∈ supp(µψ⊥2

),

(11)

where supp(µρ) and supp(ξk|M) are the supports of the epistemic state µρ and response
function ξk|M, respectively, i.e.,

supp(µρ) = {λ ∈ Λ | µρ(λ) > 0}. (12)

Considering outcome-determinism of Equation (11), we obtain∫
Λ ξψ2|B2

(λ)µψ1(λ)dλ =
∫

Λ ξψ1|B1
(λ)µψ2(λ)dλ = cQ,∫

Λ ξψ⊥2 |B2
(λ)µψ1(λ)dλ =

∫
Λ ξψ⊥1 |B1

(λ)µψ2(λ)dλ = 1− cQ.
(13)

Equation (13) represents the expressions to ideal confusability of two pure states in the
preparation-noncontextual model.

Equations (10) and (13) hold in two arbitrary states ψ1 and ψ2. Therefore, the preparation-
noncontextual model of two pure orthogonal qubit states φ and φ⊥, which describe experi-
ments to state preparations φ and φ⊥ and measurementM = {φ, φ⊥}, should produce the
following relations:∫

Λ ξφ|M(λ)µ 1

2
(λ)dλ =

∫
Λ ξφ⊥ |M(λ)µ 1

2
(λ)dλ = 1

2 . (14)

If pQ
max({ηi, ρi}2

i=1) > η1 in the MED of {ηi, ρi}2
i=1, the optimal measurement is rank-one

projective. Therefore, if the maximum success probability achievable in the preparation-
noncontextual model is higher than η1, the measurement that provides the maximum
success probability satisfies Equation (14), i.e.,∫

Λ ξk|M?(λ)µ 1

2
(λ)dλ = 1

2 ∀k ∈ {1, 2} if ∑2
i=1 ηi

∫
Λ ξi|M?(λ)µρi (λ)dλ > η1, (15)

where M? is the measurement providing the maximum of ∑2
i=1 ηi

∫
Λ ξi|M(λ)µρi (λ)dλ

over all possible measurementsM with two outcomes k ∈ {1, 2}.

3. Results

In this section, we consider the preparation-noncontextual model that reproduces the
statistics of Equations (8) and (15).

First, let us consider a case discriminating two preparations Pψ1 and Pψ2 provided
by probabilities of η1 and η2, respectively, using measurement M with two outcomes
k ∈ {1, 2}. When the outcome k ofM indicates the detection of Pψk , the probability that
the given preparation is guessed correctly can be expressed as follows:

pNC
s ({ηi,Pψi}2

i=1) = ∑2
i=1 ηi

∫
Λ ξi|M(λ)µψi (λ)dλ

= 1
2 + 1

2

∫
Λ

(
η1µψ1(λ)− η2µψ2(λ)

)(
ξ1|M(λ)− ξ2|M(λ)

)
dλ,

(16)

where the second equality is obtained using the relation of η1 + η2 = 1 and the con-
straints of the response functions on Equation (6). Let the maximum of pNC

s ({ηi,Pψi}2
i=1)

be denoted as pNC
max({ηi,Pψi}2

i=1). The following lemma provides the upper bound of
pNC

max({ηi,Pψi}2
i=1).
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Lemma 1. pNC
max({ηi,Pψi}2

i=1) has an upper bound, expressed as follows:

pNC
max({ηi,Pψi}

2
i=1) ≤ 1− η2cQ. (17)

Proof. Suppose thatM is the measurement providing pNC
max({ηi,Pψi}2

i=1). For any ontic
state λ ∈ Λ, the inequality of |ξ1|M(λ)− ξ2|M(λ)| ≤ 1 holds and using Equation (16) we
obtain the following inequalities:

2pNC
max({ηi,Pψi}2

i=1)− 1 ≤
∫

Λ

∣∣η1µψ1 (λ)− η2µψ2 (λ)
∣∣dλ

=
∫

supp(µψ1 )∩supp(µψ2 )

∣∣η1µψ1 (λ)− η2µψ2 (λ)
∣∣dλ

+
∫

supp(µψ1 )∩supp(µ
ψ⊥2

)

∣∣η1µψ1 (λ)− η2µψ2 (λ)
∣∣dλ

+
∫

supp(µ
ψ⊥1

)∩supp(µψ2 )

∣∣η1µψ1 (λ)− η2µψ2 (λ)
∣∣dλ

+
∫

supp(µ
ψ⊥1

)∩supp(µ
ψ⊥2

)

∣∣η1µψ1 (λ)− η2µψ2 (λ)
∣∣dλ

= (η1 − η2)
∫

supp(µψ1 )∩supp(µψ2 )
µψ1 (λ)dλ

+η1
∫

supp(µψ1 )∩supp(µ
ψ⊥2

) µψ1 (λ)dλ

+η2
∫

supp(µ
ψ⊥1

)∩supp(µψ2 )
µψ2 (λ)dλ

= (η1 − η2)
∫

Λ ξψ2|B2
(λ)µψ1 (λ)dλ

+η1
∫

Λ ξψ⊥2 |B2
(λ)µψ1 (λ)dλ + η2

∫
Λ ξψ⊥1 |B1

(λ)µψ2 (λ)dλ

= 1− 2η2cQ,

(18)

where the first three equalities are derived using preparation noncontextuality and Equation (11),
and the final equality is obtained by Equation (13). Therefore, the above inequality (17)
holds.

Now, let us investigate the relationship between pNC
max({ηi,Pψi}2

i=1) and pQ
max({ηi, ψi}2

i=1).
It may be observed that within the region of 0 < cQ < 1, a nonzero gap between
pNC

max({ηi,Pψi}2
i=1) and pQ

max({ηi, ψi}2
i=1) exists, as follows:

pNC
max({ηi,Pψi}2

i=1) ≤ 1− η2cQ < 1
2 (1 +

√
1− cQr) = pQ

max({ηi, ψi}2
i=1), (19)

where the inequality holds because of Lemma 1 and the equality holds because of the
Helstrom bound of Equation (3). Therefore, in the case of discrimination of two pure
qubit states such as {ηi, ψi}2

i=1, the quantum contextual advantage, which means that
pQ

max({ηi, ψi}2
i=1) is higher than pNC

max({ηi,Pψi}2
i=1), exists regardless of nonzero prior prob-

abilities. The following theorem summarizes the result.

Theorem 1. For the MED of two pure qubit states ψ1 and ψ2 with 0 < Tr(ψ1ψ2) < 1, the
quantum contextual advantage exists regardless of the nonzero prior probabilities of ψ1 and ψ2.

Let us now consider a situation discriminating two preparations Pρ1 and Pρ2 given by
probabilities of η1 and η2 using measurementM with two outcomes k ∈ {1, 2}. When the
outcome k ofM indicates the detection of Pρk , the probability that the given preparation is
guessed correctly can be expressed as follows:

pNC
s ({ηi,Pρi}2

i=1) = ∑2
i=1 ηi

∫
Λ ξi|M(λ)µρi (λ)dλ

= εpNC
s ({ηi,Pψi}2

i=1) + (1− ε)∑2
i=1 ηi

∫
Λ ξi|M(λ)µ 1

2
(λ)dλ,

(20)

where the second equality holds using Equation (9). Let us denote the maximum of
pNC

s ({ηi,Pρi}2
i=1) as pNC

max({ηi,Pρi}2
i=1). The following lemma provides an upper bound

for pNC
max({ηi,Pρi}2

i=1).



Entropy 2021, 23, 1583 6 of 9

Lemma 2. When pNC
max({ηi,Pρi}2

i=1) > η1, pNC
max({ηi,Pρi}2

i=1) has the following upper bound:

pNC
max({ηi,Pρi}

2
i=1) ≤ pNC, (21)

where
pNC = 1

2 + ε
2 − η2cQε. (22)

Proof. Suppose thatM is a measurement providing pNC
max({ηi,Pρi}2

i=1). From Equation (20)
and Lemma 1, we can obtain the following inequality:

pNC
max({ηi,Pρi}2

i=1) ≤ ε(1− η2cQ) + (1− ε)∑2
i=1 ηi

∫
Λ ξi|M(λ)µ 1

2
(λ)dλ

= ε(1− η2cQ) +
1
2 (1− η1ε− η2ε) = pNC,

(23)

where the first equality is obtained by Equation (15). Therefore, we can see that Equation (21)
holds.

We can see that pQ defined in Equation (4) is higher than pNC defined in Equation (22),
that is, pQ > pNC. In addition, it should be noted that when one guesses the given prepara-
tion as Pρ1 without measurement, the success probability becomes the prior probability η1

and we can see that pNC
max({ηi,Pρi}2

i=1) is higher than or equal to η1, i.e.,

pNC
max({ηi,Pρi}

2
i=1) ≥ η1. (24)

When η1 is equal to or higher than pNC, pNC
max({ηi,Pρi}2

i=1) becomes η1 due to Lemma 2
and Equation (24). Then, we can obtain the following relations:

pNC
max({ηi,Pρi}2

i=1) = η1, if r ≤ rNC,
pNC

max({ηi,Pρi}2
i=1) ≤ pNC < pQ if r > rNC,

(25)

where
rNC =

(1−ε)(1+ε−2εcQ)

(1−εcQ)2 . (26)

rNC is the boundary between regions of η1 ≥ pNC and η1 < pNC. We can easily see that
rNC is always higher than rQ, i.e.,

rQ < rNC. (27)

Now, let us analyze the property of the quantum contextual advantage in state dis-
crimination of two mixed qubit states, in terms of r. First, we can see that in the interval of
rQ < r ≤ 1, it holds that

pNC
max({ηi,Pρi}

2
i=1) < pQ

max({ηi, ρi}2
i=1), (28)

and the quantum contextual advantage occurs. However, we can observe that in the region
of 0 < r ≤ rQ, it holds that

pNC
max({ηi,Pρi}

2
i=1) = pQ

max({ηi, ρi}2
i=1) = η1, (29)

and the quantum contextual advantage does not exist. This implies that in 0 < ε < 1, the
quantum contextual advantage depends on nonzero prior probabilities of two mixed qubit
states. Figure 1 shows the behavior of pQ and pNC in terms of r ∈ (0, 1) at cQ = ε = 0.8. In
the Figure 1, we can see that pQ is lower than or equal to η1 for 0 < r ≤ rQ, but is higher
than η1 for rQ < r < 1. Moreover, we can observe that pNC is lower than or equal to η1 for
0 < r ≤ rNC, but is higher than η1 for rNC < r < 1. The following theorem summarizes
our results.
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Figure 1. Behavior of pQ and pNC for cQ = ε = 0.8. pQ(blue) is lower than or equal to η1(black)
for 0 < r ≤ rQ, but is higher than η1 for rQ < r < 1. pNC(red) is lower than or equal to η1 for
0 < r ≤ rNC, but is higher than η1 for rNC < r < 1.

Theorem 2. For the MED of two mixed qubit states ρ1 and ρ2 given by Equation (1), the occurrence
of quantum contextuality depends on the nonzero prior probabilities of ρ1 and ρ2.

4. Conclusions

In this work, we investigated quantum contextuality, a critical concept revealing
the nonclassicality of quantum mechanics. Noncontextuality was recently studied in
terms of state discrimination, which showed that quantum contextual advantage, which
a preparation-noncontextual model cannot achieve, exists in the MED of two pure qubit
states with identical prior probabilities. However, it should be emphasized that a recent
investigation tells us that the selection of prior probability could affect the quantum prop-
erties of the system. Therefore, it is necessary to check whether the quantum contextual
advantage depends on the prior probabilities of given states.

Therefore, in this study, we analyzed the dependence of the quantum contextual advan-
tage on the prior probabilities of given states by considering the MED of two pure(mixed)
quantum states with arbitrary prior probabilities. We found that the quantum contextual
advantage occurs regardless of nonzero prior probabilities in MED of two nonorthog-
onal pure qubit states. However, we observed that the quantum contextual advantage
depends on nonzero prior probabilities in MED of two nonorthogonal mixed qubit states.
It shows an interesting behavior of the quantum contextual advantage in the MED. There-
fore, it should be verified whether quantum contextual advantage exists in other state
discrimination types.
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