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A temporal dependency feature 
in lower dimension for lung sound 
signal classification
Amy M. Kwon1 & Kyungtae Kang2*

Respiratory sounds are expressed as nonlinear and nonstationary signals, whose unpredictability 
makes it difficult to extract significant features for classification. Static cepstral coefficients such 
as Mel-frequency cepstral coefficients (MFCCs), have been used for classification of lung sound 
signals. However, they are modeled in high-dimensional hyperspectral space, and also lose temporal 
dependency information. Therefore, we propose shifted δ-cepstral coefficients in lower-subspace 
(SDC-L) as a novel feature for lung sound classification. It preserves temporal dependency information 
of multiple frames nearby same to original SDC, and improves feature extraction by reducing the 
hyperspectral dimension. We modified EMD algorithm by adding a stopping rule to objectively select 
a finite number of intrinsic mode functions (IMFs). The performances of SDC-L were evaluated with 
three machine learning techniques (support vector machine (SVM), k-nearest neighbor (k-NN) and 
random forest (RF)) and two deep learning algorithms (multilayer perceptron (MLP) and convolutional 
neural network (cNN)) and one hybrid deep learning algorithm combining cNN with long short 
term memory (LSTM) in terms of accuracy, precision, recall and F1-score. We found that the first 2 
IMFs were enough to construct our feature. SVM, MLP and a hybrid deep learning algorithm (cNN 
plus LSTM) outperformed with SDC-L, and the other classifiers achieved equivalent results with all 
features. Our findings show that SDC-L is a promising feature for the classification of lung sound 
signals.

Lung sounds are characterized by airflow resistance when they are produced within the chest cavity during the 
respiration cycle consisting of inspiration and expiration  phases1. Lung sounds are primarily categorized into 
vesicular and adventitious sounds. Vesicular sounds are ‘normal breathing sounds’ such as tracheal, bronchial 
and bronchovesicular  sounds2, and they generally occur between frequencies of 100 Hz and 1000 Hz, with a 
sharp drop at about 100–200  Hz3. Adventitious sounds are additional sounds being superimposed onto vesicular 
sounds, which are generally formed when the airflow is interrupted by pulmonary deficiency in the tracheobron-
chial tree due to lung tissue changes or positions of  secretion4–6. The adventitious sounds show different spectral 
contents to the vesicular sounds. In particular, adventitious sound signals are represented differently at specific 
frequency bands, intensities and time durations in different pathological  conditions7. Respiratory disorders are 
generally associated with more than one lung sound, which is a relevant indicator of pathological conditions. 
Auscultation is a noninvasive technique for diagnosing diseases based on those characteristics of the sounds, 
and it has become an effective tool diagnosing respiratory disorders in a clinical setting. However, the signal 
quality and format of the acquired sounds are often incomparable among different types of  sensors8. This has 
become an obstacle in research development among different laboratories. In addition, the auscultation process 
is highly subjective; hence, the diagnostic accuracy may vary depending on the physicians’ experience and skills 
in differentiating various sound  patterns9.

Several studies have made efforts to resolve the inconsistencies in research and diagnostic results by objec-
tively quantifying the characteristics of lung sounds. These efforts can be divided into two main directions. The 
first direction aims to digitize analog lung sounds; and to computerize the signal processing by considering 
sampling frequency, amplitude resolution, bandwidth of the signal, and calibration procedures for objective 
 assessments4,10,11. In the same vein, the computerized respiratory sound analysis (CORSA) is a multinational 
effort of more than 20 researchers from seven European countries developing guidelines for the standard proce-
dure for recording respiratory  sounds9. Owing to these efforts, the digitization procedures and signal processing 
techniques of lung sounds have become standardized to a certain extent considering the different types of sensors. 
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The second direction is focused on classifying pathological sound patterns based on quantified features, using 
modern techniques of artificial  intelligence6,12–16. Typical machine learning techniques such as support vector 
machine (SVM) and random forest (RF) have been consistently used in most previous studies, and deep learning 
techniques such as artificial neural networks (ANN) and convolutional neural networks (cNN) have also recently 
been applied. However, there has been no significant improvement in selecting better features for classification 
even though the classification performance can be significantly influenced by them. Although computerized sig-
nal processing enables high resolution with reduced noise, it is still challenging to extract significant features from 
nonstationary signals such as lung sounds and to classify the sound signals as relating to diagnostic conditions.

A significant feature plays an essential role in classification, but there have been only limited types of fea-
tures for classification of lung sound signals. In general, cepstral based features, such as mel-frequency cepstral 
coefficients (MFCCs) have been commonly  used2,14,17–19. MFCCs are obtained by applying a discrete cosine 
transform to a number of coefficients from filter banks. Because the mel-filter is sensitive to small changes in 
lower frequencies, similar to the human hearing system, it is widely applied in speech recognition fields. Moreo-
ver, wavelet coefficients and short-time Fourier transformation have been used for lung sound classification in 
some  studies2,20; however, for respiratory segments, MFCCs have been reported to be more effective in classify-
ing abnormal breathing events, such as cough, in comparison with wavelet  coefficients2. In addition, Fourier 
transformation is known to be less effective in extracting information from nonstationary signals such as lung 
sounds. Meanwhile, power  spectrum21 and summary  statistics22,23, such as kurtosis and quantiles, have been 
used to detect abnormal breathing sounds, with fair performance results. However, unlike in other topics, there 
is still no standard features that represent lung sounds with a limited variety. Thus, it is imperative to identify a 
new feature to characterize lung sounds better.

In this study, we suggest shifted-δ cepstral coefficients in lower-subspace (SDC-L) as a novel feature to charac-
terize lung sounds. The shifted-δ cepstral coefficients (SDC) have been used to represent different levels of energy 
in vowels in speech recognition, and we applied SDC after reducing the hyperspectral dimension according to 
the empirical mode decomposition (EMD) algorithm to avoid deteriorating the classification performance due 
to high dimensionality. The remainder of this paper is organized as follows: we introduce the properties of a new 
feature, SDC-L, and of reference feature, MFCCs. Then, we describe the database used in the study, and highlight 
quantitative results in terms of precision, recall, accuracy and F1 score. Finally, we summarize our work by briefly 
discussing its strengths and limitations along with future research plans.

Methods
Lung sounds are composed of complicated nonlinear and nonstationary multi-scale signals. Although these 
signals are denoised in advance, they are mostly unpredictable, which makes the extraction of significant features 
difficult. However, the features considerably affect performances of classifiers. Features are generally derived 
from the hyperspectral domain or a combination of temporal and hyperspectral domains rather than the tem-
poral domain because linearity can be preserved in short time intervals, which are typically used to generate 
cepstral features in hyperspectral domain. However, most hyperspectral features lie in a high dimensional space 
and increased dimensionality can deteriorate classification  performance24. As a solution, dimension reduction 
of cepstral features may improve the classification performance. demir successfully improved the classifica-
tion accuracy by reducing the dimension of hyperspectral image data using the EMD algorithm. Based on this 
literature, our study proposes a novel temporal dependency feature, SDC-L using the EMD algorithm for the 
same purpose as the previous study.

Mel-frequency cepstral coefficients. As a filter-bank parameterization approach, MFCCs are widely 
used for classification to represent sound signals, and were also used as the reference feature in our experiments. 
MFCCs can be computed similarly to linear frequency cepstral coefficients but, they are imposed on the mel-
scale frequency spectrum, which simulates the perceived frequency of sound signals in the human auditory 
system. The original frequency in the unit of Hz can be transformed to the mel-scale frequency using Eq. (1).

where f  is the frequency. MFCCs are obtained by taking the cosine transformation to the logarithmic power of 
the mel-frequency. We extracted the first 13 parameters per sound signal using Librosa library in Python 3.9 The 
extraction procedure is illustrated in the right box in Fig. 1

Shifted δ-cepstral coefficients in lower-subspace. SDC-L is defined as a shifted δ-cepstral feature 
extracted from a finite sum of intrinsic mode functions (IMFs). IMFs are products of EMD where EMD is an 
adaptive signal decomposition algorithm that sequentially divides a nonstationary and multi-scale signal, into 
IMFs and a residue until a constant and monotonic function with few extrema is obtained, which is no longer an 
 IMF25. IMFs resemble filtered signals from the denoising process. The first IMF corresponds with a high-pass-fil-
tered signal, and the other IMFs are similar to bandpass-filtered signals with the center frequency decreasing in 
an octave band manner like in a filter-bank  approach26. Furthermore, IMFs form a basis for a subspace of dimen-
sionality equal to the number of IMFs that are nearly orthogonal to each  other24. Based on this characteristic, 
we refer to the shifted δ-cepstral coefficients obtained from several IMFs as SDC-L in our study. As illustrated in 
the left panel on Fig. 1, SDC-L is generated by projecting the sound signals onto lower hyperspectral subspace 
consisting of a finite number of IMFs, and the generation procedure is summarized as follows. 

(1)Mel(f ) = 2595× log

(

1+
f

700

)
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1. Signal decomposition
  The sound signals are decomposed into IMFs and residue by a sifting procedure according to the EMD 

algorithm in Eq (2) where yi(t) and rK (t) indicate the ith IMF and the residue, respectively. 

 The EMD algorithm continues to search for the next IMF until no further IMF is found, and there is no 
schematic guideline for how to select a subset of IMFs. Our study newly modified the EMD algorithm by 
adding a stopping rule to it for this purpose (Table 1). Once the kth IMF is found, we non-parametrically test 
whether the hyperspectral surface is significantly different at the significance level of α to the former surface 
constructed by a discrete Fourier transform by means of the L2 distance according to the wild bootstrapping 
 method27. The stopping rule is summarized in Table 2, and the test statistic can be calculated with Eq. 3. 

 where ω(·) is a smooth and positive weight function and m(·)i : R
2 → R are unknown but smooth 

regression functions.
2. Signal reconstruction
  The signals were reconstructed from the first IMF to the Kth IMF using Eq (4) according to the modified 

EMD algorithm with the stopping rule (Table 1). In the case of a discrete signal of length N, the number 
of IMFs is computed as log2 N at most: the dimensionality becomes much smaller than that of the original 
 signal24. Thus, the reconstructed signals with the chosen K IMFs are naturally spanned in the low dimen-
sional subspace with the IMFs forming an approximately orthonormal basis. The hyperspectral dimensional 
patterns based on discrete Fourier transform (DFT) by the ith IMF is shown in Experiment I in Section 3. 

3. SDC extraction from low-subspace
  A SDC is a relatively new feature that has not been applied in the biomedical field yet. The main advantage 

of the SDC is its ability to incorporate additional temporal information, spanning multiple frames. δ-cepstral 
coefficients have often been used as a static feature to add temporal dependency to a sequence of cepstral 
 coefficients28. SDC is computed by linking these δ-cepstral coefficients in multiple nearby frames, and its 
performance is superior to δ-cepstral  coefficients29. δ-cepstral coefficients are expressed as Eq. (5) where C [t] 
indicates a sequence of cepstral coefficients, and t and d indicate the tth frame and lag size, respectively. 

(2)x(t) =

K
∑

k=1

y(t)(k) + rK (t)

(3)TN =
∑

l≤i<k≤L

∫

(m̂i(x)− m̂k(x))
2ω(x)dx

(4)y(t) =

k
∑

i=1

yi(t)

Figure 1.  Block diagram of feature extraction.
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 SDC adds parameters of N, P and K to Eq. (5). N is the number of cepstral coefficients in each frame, K is 
the number of segments with concatenated δ-coefficients, and P is the size of the time shift. A sequence of 

(5)δ[t] = C [t + d] − C [t − d]

Table 1.  The modified EMD algorithm.

Table 2.  The stopping rule: determination of K.
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δ-cepstral coefficients is computed from 0 to K − 1 by shifting the time by the size of P for SDC in Eq. (6) 
where j = 0, . . . , (K − 1) . 

 The scale of Eq. (6) is recently adjusted by 2 · d ; we used this adjusted SDC in this study. SDC-L is defined 
as an SDC feature in the lower subspace because a sequence of cepstral coefficients, Cr[t] , comes from a 
reduced hyperspectral dimension that is formed by a finite sum of IMFs only. SDC-L is represented in Eq. 
(7) by replacing C (·) with Cr(·) in the original  formula30, and we used MFCC as a sequence of static features 
in the study. 

 The original SDC is also extracted for performance comparison, and the patterns of SDC-L are shown by 
the diagnostic condition in Fig. 2.

Classification algorithms. Numerous attempts have been made to classify lung sounds using machine 
learning techniques. According to a systematic review article that reported artificial intelligence techniques with 
lung sounds from 1982 to  201231, a total of 39 studies used artificial intelligence techniques to classify the sub-
jects based on the patterns of lung sounds. Moreover, after excluding the studies with sample sizes of less than 30 
subjects from the listed studies, only 18 studies (approximately 46%) remained. Most studies classified the sub-
jects as normal or with pathological conditions, and the pathological conditions were often replaced with abnor-

(6)δ[t + j · P] = C [t + j · P + d] − C [t + j · P − d]

(7)δ[t + j · P] =

∑d
d=−d d · Cr[t + j · P + d]

∑d
d=−d d

2

Figure 2.  The patterns of SDC-L by the diagnostic condition : Healthy, URTI, COPD on the first row, and 
Pneumonia and Bronchiolitis on the second row.
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mal breathing events such as wheeze and  crackle32,33. For the analysis techniques, hidden markov  model34,35, 
k-nearest neighbors (k-NN)14,36 and feedforward neural networks, wherein connections between nodes do not 
make a cycle, were used. The classification accuracies ranged from 69.59 to 98.34%31. Recently, SVM was used 
to classify the frequency bands of pulmonary  sounds37, and RF was also utilized to detect wheezing sounds with 
92.7%  sensitivity38. Although the classification accuracy seems to be fair, these techniques may not be directly 
comparable owing to various features and different portions of the training data. To compare the performances 
between SDC-L and MFCCs, we first selected three machine learning methods, namely: SVM, k-NN and RF, 
which have been consistently applied to lung sounds. Additionally, we used two standard deep learning algo-
rithms: multilayer perceptron (MLP) algorithm and cNN. In addition, we conducted a hybrid deep learning 
technique combining cNN with long short term memory (LSTM), which has most recently been applied to lung 
sound  classification39.

Results
Data sources. We used the audio samples from the International Conference on Biomedical and Health 
Informatics respiratory sound database (2017) which was created by two research teams in Portugal and in 
Greece over a period of 7 years. The database contains respiratory sound recordings from clinical and non-
clinical settings and is used to develop algorithms for sound  classification40. A total of 6898 respiration cycles, 
which were acquired from 126 subjects and 920 sound recordings, were available in the dataset. Each cycle was 
annotated separately as a binary form of 0 and 1 for the two events of crackles and wheeze by trained clinical 
experts. Subjects were originally labeled with 6 different types of diagnosis in addition to ‘healthy‘ label: these 
were asthma, bronchiectasis, bronchiolitis, chronic obstructive pulmonary disease (COPD), lower respiratory 
tract infection (LRTI), upper respiratory tract infection (URTI) and Pneumonia. However, the numbers of sub-
jects belonging to asthma, bronchiectasis and LRTI groups were less than 5, and these subjects were excluded 
from the study. Finally, we used 6302 respiration cycles with 836 sound recordings as the data set, and 5 types of 
diagnostic conditions were used as multiclass labels for classification: URTI, COPD, pneumonia, bronchiolitis 
and healthy.

Data processing. Respiratory sounds are meaningful indicators of pathological conditions, but most sound 
samples are highly noisy for various reasons. The quality of sound signals of some sound samples in the dataset 
that were recorded in non-clinical environments was deteriorated. In addition, heart sound signals from heart 
murmurs and the vibration of blood vessels in the cardiac cycle widely influence the frequency ranges; thus, 
the convoluted signals are challenging to interpret. High pass filters, such as finite impulse response filters, are 
commonly adopted to separate heart sound signals from lung sound signals by removing the signals with lower 
frequency ranges with a threshold frequency between 50 and 150  Hz41; however, lung sounds may begin from 
20  Hz depending on certain  conditions42. For that reason, this study used wavelet transform based station-
ary-nonstationary filter based on Daubechies wavelet function, which is a denoising algorithm using wavelet 
 coefficients43, and PyWavelets library in Python 3.9.

Experiments and results. Experiment I. We modified the EMD algorithm by adding a stopping rule to 
resolve the problem that a cepstral based feature in a high-dimensional hyperspectral space deteriorates clas-
sification performance. The main purpose of Experiment I is to examine the modified version of the EMD algo-
rithm. The EMD algorithm is completely data-dependent, and IMFs have different frequency contents according 
to the local properties of the  data25. To examine the effect of sub-space spanning by a finite number of IMFs, we 
randomly selected 50 samples, and conducted a stopping rule with 1000 bootstrapping at α = 0.05 if a new IMF 
is found. DFT was conducted by SciPy module in Python 3.9, and the results are summarized in Table 3. In Ta-
ble 3, the first two column show the test statistic and corresponding p-value when the number of IMFs is K, the 
other four columns show the classification performance of the SVM classifier with SDC-L, which was extracted 
from the first K IMFs where K = 2, 3, 4.

According to Table 3, the mean surface of hyperspectral subspaces was significantly different between K = 1 
and K = 2, but there were no further significant differences although the number of IMFs increased. In addi-
tion, we confirmed that the classification performances were not improved by increasing the number of IMFs. 
Therefore, we concluded that the subspace spanning by the first 2 IMFs is enough to define the hyperspectral 
dimension.

Experiment II. We extracted three different feature sets for Experiment II: MFCC, SDC and SDC-L. MFCC is 
a reference feature, and SDC is the shifted-δ cepstral coefficients in the original dimensional space. SDC-L is the 

Table 3.  Experiment result: determination of K.

K

Test results Performance

TN p value Accuracy Precision Recall F1 score

2 4.32e+08 0.0199** 0.81 0.93 0.81 0.86

3 1.03e+14 0.1393 0.81 0.93 0.81 0.85

4 3.93e+09 0.2139 0.81 0.93 0.81 0.86
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proposed feature whose hyperspectral dimension is reduced by the first 2 IMFs as determined by Experiment I. 
The purpose of Experiment II is twofold: to compare the performance of two different types of features, MFCC 
and SDC, and to compare the performance between MFCC, a reference feature and SDC-L, the proposed feature 
in this study. All features were independently extracted from sound samples as illustrated in Fig. 1. As reference, 
the first 13 MFCCs were chosen with a hop size of 512 ms per signal, and they were also used as static features 
for both SDC and SDC-L. For SDC and SDC-L, both the block size and time shift parameters were set to 2. 
With these independent feature sets, we compared the performances of six different classifiers, three machine 
learning techniques, two standard deep learning algorithms and one hybrid deep learning technique, in terms of 
accuracy, precision, recall and F1 score as follows.

where TP and TN are the number of true positive and negative subjects, respectively, and FP and FN are the 
number of false positive and negative subjects, respectively.

The performance results are summarized in Table 4. According to Table 4, all classifiers except cNN showed 
similar or better performances with the time dependency features of SDC and SDC-L in comparison with MFCC. 
In the case of cNN, the overall performances of SDC were slightly lower than MFCC, but the performances 
between SDC-L and MFCC were almost equivalent. In addition, all classifiers showed the best performance 
with SDC-L except k-NN. Particularly, SVM showed better performance with SDC-L than with SDC; and better 
performance with SDC than with MFCCs, a reference feature. Moreover, MLP showed the best performance 
with SDC-L obtaining 95% accuracy, precision, specificity and F1 score. We also conducted a hybrid deep learn-
ing algorithm by combining cNN with  LSTM39. Its overall performances were improved in comparison with 
cNN alone regardless of the types of the features, but the tendency was preserved: It outperformed with SDC-L. 
The performance is compared graphically in Fig. 3. In addition, the implicit structures of the latent features in 
standard deep learning algorithms were visualized by t-SNE in Fig. 4, where t-SNE is a variation of stochastic 
neighbor  embedding44, but it has been reported to show better visualization for high dimensional  data45.

(8)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

(9)Precision =
(TP)

(TP + FP)

(10)Recall =
(TP)

(TP + FN)

(11)F1 score =
2 · (Precision · Recall)

(Precision+ Recall)

Table 4.  Performance comparison. SVM, support vector machine; k-NN, k-nearest neighbors; RF, random 
forest; MLP, multi-layer perceptron; cNN, convolutionary neural network, LSTM, long short term memory.

Methods Features Accuracy Precision Recall F1 score

SVM

Reference 0.68 0.84 0.68 0.74

SDC 0.75 0.83 0.75 0.78

SDC-L 0.81 0.93 0.81 0.85

k-NN

Reference 0.90 0.85 0.90 0.87

SDC 0.90 0.85 0.90 0.87

SDC-L 0.88 0.84 0.88 0.85

RF

Reference 0.87 0.81 0.87 0.88

SDC 0.88 0.83 0.88 0.84

SDC-L 0.88 0.80 0.88 0.84

MLP

Reference 0.89 0.87 0.89 0.88

SDC 0.89 0.87 0.89 0.88

SDC-L 0.95 0.95 0.95 0.95

cNN

Reference 0.89 0.82 0.89 0.85

SDC 0.85 0.75 0.85 0.80

SDC-L 0.88 0.82 0.88 0.84

cNN + LSTM

Reference 0.91 0.92 0.91 0.88

SDC 0.90 0.86 0.90 0.88

SDC-L 0.94 0.94 0.94 0.93
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Computational costs. We estimated the computational costs to extract the proposed feature according to the 
execution time on average. The machine idle time and hardware latency time were ignored for estimation. The 
task execution time (TET) was considered, and measured by time module in Python 3.9. We used CUDA vesion 
11.4 computing platform with Nvidia GeForce RTX 2070 Graphic driver. The average TETs per 50 fragments 
with 882,000 bits per sample for EMD extraction, reconstruction and SDC-L computation were 7980.3076 s, 
0.0808 s and 2.9929 s, respectively.

Discussion
Respiratory sounds are meaningful indicators of pathological conditions, but the modern practice of auscultation 
in the real world has some limitations. Therefore, digitization of analog sounds and objective assessment based on 
machine learning techniques have consistently been performed. However, lung sound signals are characterized 
as nonstationary and non-periodic signals; this creates difficulties for extracting significant features for classifica-
tion. Mostly, static features such as MFCCs, have been used. These features do not contain temporal dependency 
information and are generally high-dimensional, which may deteriorate the classification performance. There-
fore, it is crucial to develop better features to improve the classification performance. For that reason, this study 
proposed a novel feature, SDC-L, which contains temporal dependency information of multiple nearby frames 
in a reduced hyperspectral dimension. According to our experiments, all classifiers showed better or equivalent 
performances with SDC-L except k-NN. In particular, SVM and MLP outperformed with SDC-L in compari-
son with the static feature of MFCC. In addition, we suggested a schematic procedure, adding a stopping rule 
to the EMD algorithm, to select a finite number of IMFs under the inference framework to reduce the original 
dimension to a subspace. The stopping rule worked successfully and we demonstrated that the first 2 IMFs are 
enough to explain the feature by this stopping rule in the experiment. The result is consistent with the previous 
study concluding that all IMFs except the first IMF are similar to band-pass filtered  signals26. However, SDC-L 
also has some limitations. The number of features per frame could increase in proportion to the size of the block; 
this requires careful treatment if the maximum number of features is limited in the classification method or if a 
signal fails to find IMFs. Nevertheless, classifiers using SDC-L showed promising performance. As features play 
a significant role in classification, SDC-L is worthy of further study as a feature to identify distinctive charac-
teristics of lung sound signals for diagnostic purposes. In a future project, we will explore the effect of temporal 
dependency on the classification performance and plan to derive a compact feature from SDC-L.

Figure 3.  Performance comparison (MFCC vs. SDC vs. SDC-L).
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Data availability
The datasets analyzed during the current study are available in the International Conference on Biomedical and 
Health Informatics respiratory sound database (2017) https:// bhich allen ge. med. auth. gr/.
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