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Abstract

Manual vascular interventional radiology (VIR) procedures have been performed under radiation exposure conditions, and many
commercial master–slave VIR robot systems have recently been developed to overcome this issue. However, master–slave VIR robot
systems still have limitations. The operator must reside near the master device and control the slave robot using only the master
device. In addition, the operator must simultaneously process the recognition of the surgical tool from the X-ray image while operating
the master device. To overcome the limitations of master–slave VIR robot systems, we propose an autonomous VIR robot system with
a deep learning algorithm that excludes the master device. The proposed autonomous VIR robot with a deep learning algorithm
drives surgical tools to the target blood vessel location while simultaneously performing surgical tool recognition. The proposed
autonomous VIR robot system detects the location of the surgical tool based on a supervised learning algorithm, and controls the
surgical tools based on a reinforcement-learning algorithm. Experiments are conducted using two types of vascular phantoms to
verify the effectiveness of the proposed autonomous VIR robot system. The experimental results of the vascular phantom show a
comparison between the master–slave VIR robot system and the proposed autonomous VIR robot system in terms of the repulsive
force, task completion time, and success rate during the operation. The proposed autonomous VIR robot system is shown to exhibit
a significant reduction in repulsive force and a 96% success ratio based on a vascular phantom.
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List of symbols
AI: Artificial intelligence
B : Number of bounding boxes
Ci : Confidence score of the box j in cell i
DOF : Degree of freedom
F/T : Force/torque
IOU: Intersection over union
k1, k2, k3, k4 : Weight of reward function
pi(c) : Coordinates of the conditional class probability for

class c in cell i
R : Reward value
S : Grid size of image
VIR : Vascular interventional radiology
wi, hi : Bounding box width and height
YOLO : You Only Look Once
xi, yi : Coordinate of ith bounding box center inside cell
Xgo, Ygo : Goal position in reinforcement learning environ-

ment
Xca,Yca : Catheter position in reinforcement learning envi-

ronment
Xgi,Ygi : Guidewire position in reinforcement learning en-

vironment

1obj
i : 1 if an object appears in cell i; otherwise 0

1obj
i j : 1 if the jth boundary box in cell i is responsible for

detecting object; otherwise 0
1noobj

i j : 1 if the jth boundary box in cell i is not responsible
for detecting object; otherwise 0

λcoord : Balancing parameter for balancing the loss
λnoobj : Balancing parameter for bounding boxes with and

without objects
∧: Prediction result of neural network

1 Introduction
The first reported attempts to perform vascular treatment em-
ployed an open surgical approach because vascular interven-
tional radiology (VIR) was initially focused on the reconstruction
of blood vessels (Friedman, 2005). The discovery of X-rays and
contrast agents enabled VIR procedures to observe the inside of
the body without opening the body. Owing to these advances, the
VIR procedure has evolved into a minimally invasive surgery for
many types of surgery. The VIR procedure was developed as a per-
cutaneous treatment method that uses a variety of devices such
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Figure 1: Condition of conventional VIR procedure.

as catheters and guidewires with minimal incisions. Recently, the
VIR procedure has been widely used not only for vascular system
treatment, but also for embolization to treat cancer (Wáng et al.,
2015). Angiography and angioplasty are the most commonly per-
formed VIR procedures worldwide (Miller et al., 2003; Goni et al.,
2005; Vano et al., 2006; Pantos et al., 2009; Efstathopoulos et al.,
2011; Mohapatra et al., 2013). With the advancement of the VIR
procedure in the field of minimally invasive surgery, the num-
ber of procedures undertaken has also shown explosive growth
(Anderson et al., 2004; Schanzer et al., 2009). While the number
of VIR procedures is increasing, the number of vascular surgeons
is decreasing (Satiani et al., 2009). From the patient perspective,
the absence of a doctor to apply VIR makes it difficult to man-
age diseases that require emergency surgery. In the case of acute
ischemic stroke and acute myocardial infarction, the mortality
rate depends on the time of vascular intervention after disease
onset (Boersma et al., 1996; Chareonthaitawee et al., 2000; Satiani
et al., 2009; Advani et al., 2017; Mulder et al., 2018). In addition, the
number of vascular interventional procedures performed is signif-
icant from the doctor’s perspective, as there are side effects due
to cumulative radiation exposure. A typical side effect of radia-
tion exposure is skin damage (Weerakkody et al., 2008). To prevent
such side effects, the International Commission on Radiological
Protection regulates radiation dose limits for occupational expo-
sure to radiation. According to Publication 103 (Wrixon, 2008), the
actual dose limit for radiation workers is 50 mSv/year. Unfortu-
nately, both patients and doctors are exposed to large amounts of
X-ray radiation during conventional VIR procedures. In conven-
tional VIR procedures, doctors wear protective gear to prevent ra-
diation exposure, as shown in Fig. 1. However, radiation workers
may experience physical fatigue owing to the apron’s weight. In
addition, radiation protection gloves are rarely used during surgi-
cal procedures in operating theatres. Consequently, hands are still
exposed to high doses (Efstathopoulos et al., 2011). To overcome
these limitations of conventional VIR procedures, many types of
remote master–slave VIR robot systems have been developed to
reduce the cumulative radiation exposure of doctors while per-
forming VIR procedures.

Hansen Medical Co. developed the Magellan and Sensei robot
systems (Duran et al., 2014). The Magellan robot system uses 6
French robot catheter and a 0.035-inch guidewire for various VIR
procedures. The operator uses the master console of the Magellan
robot system to perform VIR at a certain distance from the X-ray
source. The Sensei robot system also has robotic catheter force
sensing. The sensed force provides haptic feedback to the mas-
ter device of the master console through vibrations, allowing the
doctor to feel the force generated by the catheter.

The Corindus developed the CorPath GRX VIR robotic system
(Britz et al., 2019), which also controls the catheter and guidewire
by using the master device of the master console. As CorPath GRX
is also a master–slave robot system, the results of a clinical trial
showed that radiation exposure to doctors reduced by approxi-
mately 97%, and radiation exposure to patients decreased by ap-
proximately 20% (Mahmud et al., 2020; Patel et al., 2020). In addi-
tion, the performance of the CorPath GRX robot system was eval-
uated and announced to be equal to or better than that in cases
involving manual procedures (Granada et al., 2011).

The Amigo is also based on a master–slave robot system (Khan
et al., 2013). Similar to other VIR robot systems, the Amigo robot
system can reduce the radiation exposure of doctors. However,
because the catheter does not have force-sensing ability, vascu-
lar perforation may occur because of the insertion force of the
catheter during the VIR procedure. Previously, commercial VIR
robot systems focused primarily on the accuracy of the VIR pro-
cedure and the reduction of radiation exposure.

The latest research aimed to solve the disadvantages of conven-
tional surgery using the developed medical robot, and attempted
a new methodology. Recent developments in artificial intelligence
(AI) have seen its application in the fields of surgical robots and
medicine. Thus, many surgical robots and AI algorithm researches
are being conducted. There are several examples of previous stud-
ies on the application of AI in the vascular intervention field. Var-
ious studies have been conducted based on the reinforcement
learning algorithm for catheter and guidewire insertion to the tar-
get point, which is a procedure for VIR after insertion of the in-
troduction sheath. Behr et al. (2019) and Karstensen et al. (2020)
proposed a study to control a guidewire to a random vascular
phantom target point by training a deep Q-network and a deep
deterministic policy gradient agent. Furthermore, Karstensen et
al. (2022) conducted an experiment based on a porcine liver
model to verify learning-based guidewire control without human-
generated data . By adding experience replay and human demon-
stration to the automatic guidewire-driven reinforcement learn-
ing algorithm, Behr et al. proved the results of shortening the
learning time and increasing the success rate by performing a
two-dimensional (2D) phantom-based experiment. Also, Kweon
et al. (2021) evaluated guidewire navigation experiments with
deep Q-learning from human demonstration and transfer learn-
ing to validate the framework in a three-dimensional (3D) coro-
nary artery model. On the other hand, there are also previous
studies on autonomous catheter-driven. Chi et al. (2020) proposed
an autonomous driving catheter with a generative adversarial im-
itation learning algorithm. Chi et al. measured the force gener-
ated between the blood vessel and catheter during catheter inser-
tion using a force sensor. Phantom experiments verified that the
proposed automated robot system minimized the force exerted
against the catheter. In addition, You et al. presented the result
of increasing the success rate of autonomous catheter-driven in
a 3D heart model by applying the simulation learning results and
randomization noise (You et al., 2019).

However, the previous autonomous VIR robots were limited
to operating with only a catheter or guidewire. Robots with only
catheter or guidewire drives may be suitable for interventions tar-
geting large vessels, such as the cardiovascular system, but not
for vessels with tortuous and angulated (Li et al., 2018). For this
reason, Corindus developed the Corpath GRX to treat complex
coronary lesions by adding a catheter-forward motion that was
not presented in the Corpath 200 (Crinnion et al., 2022). There-
fore, to achieve autonomous VIR in general blood vessels, both the
catheter and guidewire are required. In addition, because there is
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Figure 2: Four-DOF VIR slave robot mechanism and module description.

Figure 3: Catheter insertion/rotation and guidewire insertion/rotation motions of VIR slave robot.

no doctor’s intervention in autonomous VIR procedures, there is a
threat of vascular perforation owing to the excessive operation of
the surgical tool of the robot. Thus, it is essential to measure the
force of the catheter.

To overcome the limitations of the developed autonomous VIR
robot system, we propose an autonomous VIR robot system based
on a deep-learning algorithm integrated with a force/torque (F/T)
sensor to measure the repulsive force of the catheter. In this
research, a previously developed five degree-of-freedom (DOF)
slave robot (Cha et al., 2016, 2017; Woo et al., 2019) was used,
and a reinforcement learning algorithm was implemented for au-
tonomous catheter and guidewire manipulation. In addition, the
catheter and guidewire position-tracking algorithm was imple-
mented based on You Only Look Once (YOLO). To reduce the possi-
bility of vascular perforation, an F/T sensor is mounted on the VIR
robot to measure the repulsive force between the vessel wall and
catheter. The objectives of the reinforcement learning algorithm
applied in this study are to automatically drive the catheter and
guidewire from the starting point of the target blood vessel and to
minimize the repulsive force of the catheter. The results obtained
for the proposed autonomous VIR robot system verified the ef-
fectiveness of the autonomous VIR procedure and minimized the
repulsive force of the catheter based on phantom experiments.

2 Four-DOF VIR Slave Robot
The four-DOF VIR slave robot is presented in Fig. 2. The robot for
the VIR procedure (Cha et al., 2016; Woo et al., 2019) was a modified
version from the four-DOF robot (Cha et al., 2017). The four-DOF
VIR robot is equipped with an F/T sensor (ROBOTUS, RFT60-HA01)
to measure the force between the catheter and blood vessel (Cha
et al., 2017).

The four-DOF VIR robot has catheter insertion/rotation and
guidewire insertion/rotation motions, as shown in Fig. 3.

2.1 Conventional master–slave VIR robot system
Previously, VIR robot systems were mainly developed as master–
slave systems (Khan et al., 2013; Duran et al., 2014; Cha et al., 2016,
2017; Britz et al., 2019; Woo et al., 2019; Bassil et al., 2020; Jeong et

al., 2020; Mahmud et al., 2020; Patel et al., 2020; Harel, 2021). Con-
ventional VIR master–slave robot systems have focused on reduc-
ing radiation exposure and the accurate manipulation of surgical
tools. The advantage is that the operator can significantly reduce
radiation exposure using the master device in front of the master
console without the need to be next to the patient (near the X-
ray) in order to control the VIR tools installed on the slave robot,
as shown in Fig. 4. The haptic feedback function of the conven-
tional master–slave VIR robot system is also important for reduc-
ing the task time and possibility of vascular perforation. Accord-
ingly, Tahir et al. presented the effectiveness of haptic feedback
during coronary interventions (Tahir et al., 2022).

To drive the master–slave VIR robot system, an operator should
participate in the operation of the master device. The operator
observes the real-time medical image screen to recognize the cur-
rent status of the procedure, and simultaneously controls the sur-
gical tool to enter the target vessel using the master device. The
workflow of the conventional master–slave VIR robot system is
shown in Fig. 5.

However, master–slave VIR robot systems still have limitations.
Although the VIR master–slave robot system reduced the men-
tal/physical burden compared with the manual VIR procedure,
the robot system still requires much work from the operator’s per-
spective. Further, in the case of teleoperation, a communication
delay still exists, which makes the operation difficult (Lum et al.,
2009). Therefore, in the next section, we propose an autonomous
VIR robot system to prevent the operator from focusing on a large
amount of work and to eliminate difficult situations during tele-
operation due to communication delays.

2.2 Proposed autonomous VIR robot system
In this study, we propose an autonomous VIR robot system by im-
proving the slave robot proposed by Woo et al. (2019), which was
our previous study. The workflow of the proposed autonomous VIR
robot system is illustrated in Fig. 6, which also shows the differ-
ence between the conventional master–slave type VIR robot sys-
tem and the autonomous VIR robot system.

With the autonomous VIR robot, the operator is involved only
in setting the target position, and is not involved in the subse-
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Figure 4: The setting condition of the conventional master–slave VIR robot system in the operating theater.

Figure 5: Description and workflow of the conventional master–slave VIR robot system.

Figure 6: Description of the proposed autonomous VIR robot system workflow.

quent VIR procedure. The first goal of the autonomous VIR robot
aims to control the robot to reach the VIR tool in the target vessel.
The second goal is to minimize the repulsive force based on the
reinforcement learning.

3 AI Algorithms for Autonomous VIR Robot
The algorithms of the autonomous VIR robot system consist of
a reinforcement learning algorithm to control surgical tools and
a supervised learning algorithm to track the position of surgi-
cal tools using camera images. First, the catheter and guidewire
position-tracking algorithm was implemented based on the YOLO
algorithm. The catheter and guidewire position-tracking algo-
rithm draws a square box to indicate the position of the catheter

and guidewire in the output image from the camera. This algo-
rithm was designed to enable the accurate positioning of the sur-
gical tools. The results of the tracking algorithm are used in the re-
inforcement algorithm to determine the state of the surgical tools.
Second, the reinforcement learning algorithm aims to control the
surgical tools. The reinforcement learning algorithm learns how
the robot is controlled to approach the position of the target vessel
based on the position information of the surgical tools received by
the catheter and guidewire position-tracking algorithm.

A block diagram of the autonomous VIR robot software is
shown in Fig. 7. The AI algorithms are implemented based on
Python. The results of the surgical tools position-tracking algo-
rithm is transferred to the reinforcement learning algorithm. The
reinforcement-learning algorithm determines the state, action,
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Figure 7: Description of the proposed autonomous VIR robot system algorithms.

and reward values based on the surgical tools’ position informa-
tion. Then, the determined action is transmitted to the robot con-
trol program through TCP/IP socket communication. The robot
control program is implemented based on C++ visual studio. The
robot control program controls the robot based on the action de-
termined by the reinforcement learning algorithm. In addition,
the repulsive force measured by the F/T sensor is transmitted to
the reinforcement-learning algorithm. This process was repeated
until the surgical tools reached the target position.

3.1 Catheter and guidewire position-tracking
algorithm

This section describes the catheter and guidewire position-
tracking algorithm, which is one of the two core algorithms ap-
plied to the autonomous VIR robot system. In previous studies,
various methods were used for the position-tracking of surgical
tools. Chi et al. (2018) conducted a previous study in which an elec-
tromagnetic sensor was applied to track the position of a catheter.
In a previous study, the model-based catheter tracking algorithm
showed a tracking speed of 23 frames per s (Ma et al., 2013). Also,
a convolution neural network (CNN) was applied for guidewire
position-tracking (Kweon et al., 2021; Karstensen et al., 2022).

However, if the electromagnetic sensor is coupled with a
catheter to recognize a surgical tool’s position, it is unsuitable
for insertion into the body. The CNN-based surgical tool position-
tracking within the image has a less physical burden on blood ves-
sels, and it is feasible to track the position of one tool and two or
more tools simultaneously. In this study, we applied an AI neural
network to track the position of two or more surgical tools faster
without applying a hidden Markov model or Bayesian information
criterion that requires a small amount of computation.

An AI neural network called YOLO was applied to the position-
tracking algorithm of the surgical tools. The YOLO algorithm was
developed for object recognition (Redmon et al., 2016). The YOLO
algorithm redefines the concept of object recognition in an im-
age, from a multi-task to regression. YOLO predicts the bound-
ing box and class probability for the entire image using a single
neural network with only one computation. The YOLO algorithm
in this study shows a fast computation time of about 35 frames

Table 1: Neural network structure used for position tracking of
the catheter and guidewire.

Type Filters Size/stride Output

Convolutional 32 3 × 3/1 608 × 608
Maxpool 2 × 2/2 304 × 304
Convolutional 64 3 × 3/1 304 × 304
Maxpool 2 × 2/2 152 × 152
Convolutional 128 3 × 3/1 152 × 152
Convolutional 64 1 × 1/1 152 × 152
Convolutional 128 3 × 3/1 152 × 152
Maxpool 2 × 2/2 76 × 76
Convolutional 256 3 × 3/1 76 × 76
Convolutional 128 1 × 1/1 76 × 76
Convolutional 256 3 × 3/1 76 × 76
Maxpool 2 × 2/2 76 × 76
Convolutional 512 3 × 3/1 38 × 38
Convolutional 256 1 × 1/1 38 × 38
Convolutional 512 3 × 3/1 38 × 38
Convolutional 256 1 × 1/1 38 × 38
Convolutional 512 3 × 3/1 38 × 38
Maxpool 2 × 2/2 19 × 19
Convolutional 1024 3 × 3/1 19 × 19
Convolutional 512 1 × 1/1 19 × 19
Convolutional 1024 3 × 3/1 19 × 19
Convolutional 512 1 × 1/1 19 × 19
Convolutional 1024 3 × 3/1 19 × 19
Convolutional 35 1 × 1/1 19 × 19

per s. Additionally, if sufficient training data exists for the addi-
tional surgical tool, the YOLO algorithm is a viable method for
tracking additional surgical tools. The bounding box is a rectan-
gular box that wraps around an object to indicate its location. The
class probability is the probability that the object enclosed by the
bounding box corresponds to a particular class. YOLO is charac-
terized by an end-to-end format and fast frame processing speed
because the object detection pipeline is composed of one neu-
ral network. Table 1 shows the neural network structure used for
position tracking of the catheter and guidewire employed in this
research.
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3.2 Preparation of training data for catheter and
guidewire position-tracking algorithm

In this study, we are using an RGB camera to track surgical tools
in vascular phantom environments. The X-rays used in the VIR
procedure is a grayscale images. Therefore, grayscale images from
the RGB camera were used as training data for the catheter and
guidewire position-tracking neural network. YOLO is a supervised
learning method. Thus, we have prepared image boundary box
labeling data using the software LabelImg. A bounding-box label
was conducted for the catheter and guidewire. The grayscale im-
ages and label data were used as a pair of training inputs, with
each input dataset having paired grayscale images of the surgical
tools and bounding box labels, as shown in Fig. 8.

A total of 182 images were collected as training data by insert-
ing a catheter and guidewire into the vascular phantom. Owing
to the limited amount of training data, 10 augmentation datasets
were generated for every part of the training data image, resulting
in a total of 2002 sets of image data. The data augmentation ap-
plied in this research included a rotation range between −9 and
9◦, a change in width shift between −60 and +60 pixels, a change
in height shift between −60 and 60 pixels, and zoom change be-
tween −5 and 5% of the image size.

3.3 Training phase of the catheter and guidewire
position-tracking algorithm

The training phase involves learning the 2002 images of surgical
tools and boundary-box labels. A few concepts will be introduced
before explaining the loss function of the YOLO neural network
used in this research. The YOLO network used in this study is
converted into an image with a 19 × 19 grid as the output after
the image passed through the neural network. Each grid cell has
a confidence score, bounding boxes, and conditional class proba-
bilities. The expressions for the confidence score and conditional
class probability are as follow:

Confidence score = Pr(Object) ∗ IOUtruth
pred (1)

Confidencal class probability = Pr(Classi|Object), (2)

where IOU stands for intersection over union. IOU is defined as
follows:

IOU = Overlapping region
Combined region

. (3)

The class-specific confidence score is obtained by multiplying
the conditional class probability by the confidence score of the
bounding box. The class-specific confidence score is calculated as
follows:

Class specific confidence score

= Conditional class probability ∗ Confidence score

= Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred

= Pr(Classi ) ∗ IOUtruth
pred . (4)

The loss function of the YOLO neural network is as follows:

λcoord

S2∑
i=0

B∑
j=0

1obj
i j

[
(xi − x̂i )

2 − (yi − ŷi )
2
]

(5)

+ λcoord

S2∑
i=0

B∑
j=0

1obj
i j

[(√
wi −

√
ŵi

)2
−

(√
hi −

√
ĥi

)2
]

(6)

+
S2∑

i=0

B∑
j=0

1obj
i j (Ci − Ĉi )

2
(7)

+ λnoobj

S2∑
i=0

B∑
j=0

1noobj
i j (Ci − Ĉi )

2
(8)

+
S2∑

i=0

1obj
i

∑
c∈classes

[pi(c) − p̂i(c)]2
, (9)

where S denotes the grid, B represents the number of bounding
boxes, and C represents the number of conditional class proba-
bilities. Each bounding box is composed of x, y, w, and h confi-
dence. x and y refer to the midpoints of the bounding box. When
calculating the loss function, it is used as a relative value in the
grid cell range. w and h are the relative values of the width and
height of the entire image. For example, if y is at the top of the
grid cell, y = 0; if x is at the middle of the grid cell, x = 0.5; and if
the height of the bounding box is half the image, h = 0.5. There are
several assumptions to be made before calculating the loss func-
tion of Equations (5–9). First, among the several bounding boxes
of the grid cell, the bounding box with the highest IOU and the
ground-truth box is determined as a predictor. According to the
first criterion, the symbols 1ob j

i , 1noob j
i j , and 1obj

i j are used. 1obj
i j is the

predictor bounding box j of i in the grid cell in which the object
exists. 1obj

i j is the grid cell i where the object exists. Thus, Equa-
tion (5) represents the loss of x and y for the predictor bounding
box j of the grid cell i where the object exists. Equation (6) shows
the loss of w and h for the predictor bounding box j of the grid
cell i in which the object exists. Equation (7) presents the loss of
the confidence score for the predictor bounding box j of the grid
cell i where the object exists. Equation (8) shows the loss of confi-
dence score for the predictor bounding box j of the grid cell i where
the object does not exist. Finally, Equation (9) represents the loss
of the conditional class probability for grid cell i where the ob-
ject exists. If the object determined using the neural network is
correct, pi(c) = 1; otherwise, pi(c) = 0. λcoord denotes the balancing
parameter for the loss of coordinates (x, y, w, h) and other losses.
λnoobj denotes the balancing parameter for the balance between
the boxes with and without objects.

The neural network training for catheter and guidewire posi-
tion tracking was conducted in an environment with a batch size
of 64, momentum of 0.9, decay of 0.0005, and a learning rate of
1e-05. During the training process, 1600 data samples were used
for training, and 402 samples were used for validation. A training
and validation data set were randomly selected for each epoch.
An NVIDIA Quadro M4 000 GPU was used for the learning pro-
cess, and the code was implemented using TensorFlow (Version
1.8.0). The loss values based on the learning results are shown in
Fig. 9. Based on the learning results, an RGB camera was installed
on the vascular phantom. The resulting image of the catheter and
guidewire position-tracking algorithm is shown in Fig. 10.

3.4 Reinforcement learning for autonomous
surgical tools control

In this study, reinforcement learning was applied to the VIR
robot for the autonomous VIR procedure. Reinforcement learn-
ing is a method of learning through trial and error. The reinforce-
ment learning agent determines the action and the state changes
through the action. Then, the environment calculates a reward
value based on the reward function according to the state. The en-
vironment also provides to the agent the calculated reward value.
The goal of reinforcement learning is to enable the agent to learn
in a manner that realizes the maximum reward from the environ-
ment. Therefore, the state, reward, action, environment, and agent
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Figure 8: Example of training data. (a) Grayscale image with bounding box label. (b) Bounding box label in extensible markup language format.

Figure 9: Learning graph for loss per learning time.

update methods are essential factors in reinforcement learning,
and must be clearly defined for each component.

Figure 10 shows the reinforcement learning environment. The
grayscale image size of the surgical tool position-tracking algo-
rithm is 1920 × 1080 pixels. In reinforcement learning, the size of
one state is defined as 60 × 60 pixels in the image. To visualize
the reinforcement learning environment, each state is displayed

in a grid pattern, as shown in Fig. 11. The state of reinforcement
learning in this study is analogous to the catheter and guidewire
positions in the image. An example of a state is defined in the en-
vironment, as shown in Equation (10), and the state is delivered
to the reinforcement learning agent in the form of a tuple.

state = [catheter X position, catheter Y position,

guidewire X position, guidewire Y position]. (10)

Figure 11 shows the visualization of the reinforcement learn-
ing environment, the position of the surgical tools, and the target
position.

The reward function used in reinforcement learning is defined
in Equation (11) by modeling the process of the actual VIR proce-
dure. In addition, the value of the F/T sensor was reflected in the
reward function to reduce the repulsive force that may occur be-
tween the vascular phantom and catheter during the autonomous
VIR procedure through reinforcement learning.

R = k1 · e−
√

[(Xgo−Xgi )
2+(Ygo−Ygi )

2] + k2 · e−
√

[(Xgo−Xca )2+(Ygo−Yca )2]

+ k3 · e−
√

[(Xgi−Xca )2+(Ygi−Yca )2]

− k4 · log10(FT − sensorvalue), (11)

where Xgo and Ygo denote the coordinates of x and y on the im-
age of the target position, respectively. Xgi/Ygi and Xca/Yca, respec-
tively, denote the x and y positions of the guidewire and catheter
in the image coordinate system. FT − sensorvalue represents the
value of the F/T sensor. If the F/T sensor value increases, the re-
ward is defined as smaller, and it is finally reflected in the reward
function through a logarithmic function. In this reward function,
the distance between the target position and the surgical tools
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Figure 10: RGB camera installed on the vascular phantom and the resulting image of the catheter and guidewire position-tracking algorithm.

Figure 11: Visualization of the target position and the position of the
surgical tools based on the defined state in the reinforcement learning
environment.

was assigned a greater weight than the distance between the sur-
gical tools and the value of the F/T sensor, such that k1, k2 were
set to 0.3, and k3, k4 were set to 0.2.

The neural network used in reinforcement learning has two
hidden layers. The first hidden layer consists of 64 nodes and the
second hidden layer consists of 128 nodes. The activation func-
tions of the two hidden layers were set as hyperbolic tangents.
The input of the neural network is the state, which is the position
of the catheter and guidewire, as shown in Equation (10). One of
the VIR robot’s eight actions that maximize the reward value is re-
turned as the neural network output. Since the reward function is
defined as Equation (11), the neural network can obtain a higher
reward value as the surgical tools approach the target position
and the F/T sensor value decreases. Figure 12 shows the structure
of the neural network and the relationship between the input and
output.

Mnih et al. (2015) presented the application of an experience
replay buffer and fixed weights to increase learning efficiency in
reinforcement learning. In this study, an experience replay buffer
and fixed weights are applied to train the reinforcement learn-
ing algorithm more efficiently. The experience replay buffer data
consist of [state, action, reward, next state, and next action]. The
experience replay buffer used in the experiment contains 4 000
sets of experience replay data. We randomly selected 64 pieces
of data from the experience replay buffer and updated the aver-
age of the losses with weights for every five learning steps. Train-
ing of the reinforcement learning algorithm was performed when

Figure 12: Schematic of a neural network in reinforcement learning.

the replay buffer was full, and 500 000 training iterations were
performed.

4 Experiments
4.1 Experimental environment of the

autonomous VIR robot
To verify the effectiveness of the deep learning algorithm applied
to the autonomous VIR robot system, two types of phantoms are
employed: abdominal and aortic arch. The target points of the vas-
cular phantom were set, as shown in Fig. 13.

In this experiment, to maintain the characteristics of the VIR
procedure, an experimental environment was built similar to the
actual environment of the VIR procedure. As shown in Fig. 14, the
catheter and guidewire position-tracking algorithm captured the
vascular phantom through the RGB camera in only one location.
This means that only the 2D image of the vascular phantom is
provided to the surgical tool position-tracking algorithm in real
time, similar to the X-ray image of the actual VIR procedure. An
F/T sensor (RFT60-HA01, ROBOTOUS) was used to measure the re-
pulsive force between the surgical tool and the vessel wall, which
occurs during the procedure.
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Figure 13: Target points for autonomous VIR procedure. (a) Target point of the abdominal vascular phantom. (b) Target points of the aortic arch
vascular phantom.

Figure 14: Experimental environment of the autonomous VIR robot.
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Figure 15: Variation in the abdominal target completion time of the
autonomous VIR procedure with the number of learning iterations.

Table 2: Success rate of the autonomous VIR procedure accord-
ing to the number of learning iterations (abdominal vascular
phantom).

Number of learning iterations Success rate

100 000 8%
200 000 36%
300 000 72%
400 000 92%
500 000 96%

4.2 Task-time and success rate of autonomous
VIR procedure based on abdominal and
aortic arch vascular phantoms

In the first experiment with an abdominal vascular phantom, a
commercial 5 French 85 cm catheter (A&A M.D.) and 0.035 arcsec
guidewire (Terumo) were used. We measure the task time of the
autonomous VIR procedure and the success rate for each neural
network training iterations. The task-time and success rate were
measured 25 times for each training iteration. Figure 15 shows the
task-time for each training iteration. Table 2 presents the success
rate of the autonomous VIR procedure according to the number
of learning iteration.

When the neural network was trained 100 000 times, the aver-
age task-time of the autonomous VIR procedure was measured at
200.6 s, and the measured success rate was 8%. When the num-
ber of learning iterations was 200 000, the measured average task-
time was 125.2 s and the success rate was 36%. In the case of
300 000 learning iterations, the average task-time was 107.7 s and
the success rate was 72%. For 400 000 training iterations, the av-
erage task-time was 63.9 s and the success rate was measured as
92%. Finally, for 500 000 training iterations, the average task-time
was 48.3 s and the success rate was 96%. Training iterations in ex-
cess of 500 000 did not reduce the task time or increase the success
rate.

In the second experiment with the aortic arch vascular phan-
tom, a commercial straight type of 5 French 100 cm catheter and
0.035 arcsec guidewire were used. As in the case with the abdom-
inal vascular phantom experiment, we measure the task-time of
the autonomous VIR procedure and the success rate for each neu-
ral network training iterations. The task-time and success rate
were measured 25 times for each training iteration. Figure 16

Figure 16: Variation of aortic arch target completion time of the
autonomous VIR procedure with the number of learning iterations. (a)
Target 1. (b) Target 2. (c) Target 3.

shows the task-time obtained for each training iteration. Table 3
presents the success rate of the autonomous VIR procedure ac-
cording to the number of learning iteration. In addition, the sta-
tistical analysis result of task-time according to the number of
learning iterations was p < 0.001.

For aortic arch target 1, when the neural network was trained
100 000 times, the average task-time of the autonomous VIR pro-
cedure was measured as 73.9 s, and the measured success rate
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Table 3: Success rate of the autonomous VIR procedure accord-
ing to the number of learning iterations (aortic arch vascular
phantom).

Aortic arch
target

Number of learning
iterations

Success
rate

1 100 000 52%
200000 84%
300000 92%
400000 100%
500000 100%

2 100 000 12%
200000 36%
300000 76%
400000 88%
500000 96%

3 100000 8%
200000 24%
300000 72%
400000 88%
500000 96%

Figure 17: The two-DOF joystick structure master device of the
master–slave VIR robot.

was 52%. When the number of learning iterations was 200 000, the
measured average task-time was 57.5 s and the success rate was
84%. In the case of 300 000 learning iterations, the average task-
time was 48.2 s and the success rate was 92%. For 400 000 training
iterations, the average task-time was 40.4 s and the success rate
was 100%. Finally, for 500 000 training iterations, the average task-
time was 31.1 s and the success rate was 100%. Training iterations
in excess of 500 000 did not reduce the task time or increase the
success rate.

For aortic arch target 2, when the neural network was trained
100 000 times, the average task-time of the autonomous VIR pro-
cedure was measured as 282.9 s, and the measured success rate
was 12%. When the number of learning iterations was 200 000, the
measured average task-time was 215.6 s and the success rate was
36%. In the case of 300 000 learning iterations, the average task-
time was 162.4 s and the success rate was 76%. For 400 000 training
iterations, the average task-time was 108.6 s and the success rate
was 88%. Finally, for 500 000 training iterations, the average task-
time was 92.9 s and the success rate was 96%. Training iterations
in excess of 500 000 did not reduce the task time or increase the
success rate.

For aortic arch target 3, when the neural network was trained
100 000 times, the average task-time of the autonomous VIR pro-

Figure 18: Repulsive force of abdominal vascular phantom for the
master–slave VIR robot system and autonomous VIR robot system.

cedure was measured as 379.1 s and the measured success rate
was 8%. When the number of learning iterations was 200 000, the
measured average task-time was 307.2 s and the success rate was
24%. In the case of 300 000 learning iterations, the average task-
time was 241.8 s and the success rate was 72%. For 400 000 training
iterations, the average task-time was 188.4 s and the success rate
was 88%. Finally, for 500 000 training iterations, the average task-
time was 144.5 s and the success rate was 96%. Training iterations
in excess of 500 000 did not reduce the task time or increase the
success rate. The statistical analysis result of task-time according
to the number of learning iterations for all aortic arch targets was
p < 0.001.

4.3 Comparison of the repulsive force between
the autonomous VIR procedure and
operator-driven master–slave VIR robot
procedure

To verify the effect of reducing the repulsive force between the
walls of the blood vessel and the surgical tool that occurs in the
autonomous VIR procedure, an experiment was conducted us-
ing a master–slave robot system. However, unlike an autonomous
VIR robot, the master–slave robot system allows the operator to
manipulate surgical tools only through the master device. In the
master–slave system operation, the operator is provided with only
real-time 2D images installed in the vascular phantom, similar to
the case of the autonomous VIR. The master device of the master–
slave VIR robot system is a two-DOF joystick structure master de-
vice, as shown in Fig. 17.

In the first experiment with an abdominal vascular phantom
master–slave VIR robot procedure, the repulsive force generated
between the vessel wall and the surgical tool was measured.
Three cases are compared in the experiment: the operator-driven
master–slave method (novice and expert) and the autonomous
VIR robot. Figure 18 presents one case of the experimental re-
sults of the repulsive force measurement of the master–slave VIR
procedure and autonomous VIR procedure. For an expert operat-
ing the master–slave VIR procedure, the task-time was 38.2 s, the
average force was 0.807 N, the maximum force was 2.259 N, and
the total force over the entire operation time was 27.821 N. For a
novice operating the master–slave VIR procedure, the task-time
was 81.7 s, the average force was 0.675 N, the maximum force was
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Table 4: Repulsive force of abdominal vascular phantom for master–slave VIR procedure and autonomous VIR procedure.

Type of VIR procedure Average of repulsive force (N) Maximum force (N) STDEV force (N) Total force (N∗Sec)

Master–slave VIR procedure (expert) 0.813 2.259 0.673 27.821
Master–slave VIR procedure (novice) 0.673 2.057 0.651 53.619
Autonomous VIR procedure 0.206 0.752 0.133 8.656

Figure 19: Repulsive force of aortic arch target 1 vascular phantom for
the master–slave VIR robot system and autonomous VIR robot system.

2.057 N, and the total force over the entire operation time was
53.617 N. In the case of the autonomous VIR procedure, the task-
time was 41.9 s, the average force was 0.206 N, the maximum force
was 0.752 N, and the total force over the entire operation time was
8.656 N.

Compared to the master–slave VIR robot with the autonomous
VIR robot operated by an expert, the autonomous VIR robot sys-
tem reduced the average repulsive force by approximately 74%.
Compared to the master–slave VIR robot with the autonomous
VIR robot operated by a novice, the autonomous VIR robot system
reduced the average repulsive force by approximately 69%. Mean-
while, the maximum force reduction effect of the autonomous
VIR robot system was reduced by 65% compared with the master–
slave VIR procedure.

Table 4 summarizes the results of the repulsive force measure-
ment.

In the second experiment with the aortic arch target 1 vascular
phantom master–slave VIR robot procedure, the repulsive force
generated between the vessel wall and the surgical tool was mea-
sured. Figure 19 presents one case of the experimental results of
the repulsive force measurement of the master–slave VIR proce-
dure and the autonomous VIR procedure. For an expert operat-
ing the master–slave VIR procedure, the task-time was 27.7 s, the
average force was 0.174 N, the maximum force was 0.872 N, and
the total force over the entire operation time was 4.832 N. For a
novice operating the master–slave VIR procedure, the task-time
was 106.9 s, the average force was 0.336 N, the maximum force

Figure 20: Repulsive force of aortic arch target 2 vascular phantom for
the master–slave VIR robot system and autonomous VIR robot system.

was 1.011 N, and the total force over the entire operation time
was 35.927 N. In the case of the autonomous VIR procedure, the
task-time was 23.7 s, the average force was 0.358 N, the maximum
force was 1.091 N, and total force over the entire operation time
was 8.511 N.

Compared to the master–slave VIR robot with the autonomous
VIR robot obtained by an expert, the autonomous VIR robot sys-
tem increased the average repulsive force by approximately 51%.
Compared to the master–slave VIR robot with the autonomous
VIR robot by novice, the autonomous VIR robot increased the re-
pulsive force by 6%. In the expert case, the maximum force pro-
motion of the autonomous VIR robot system was increased by 13%
compared with the master–slave VIR procedure.

Table 5 summarizes the results of the repulsive force measure-
ment.

In the aortic arch target 2 vascular phantom master–slave VIR
robot procedure, the repulsive force generated between the ves-
sel wall and the surgical tool was measured. Figure 20 presents
one case of the experimental results of the repulsive force mea-
surement of the master–slave VIR procedure and the autonomous
VIR procedure. For an expert operating the master–slave VIR pro-
cedure, the task-time was 64.2 s, the average force was 0.456 N,
the maximum force was 1.969 N, and the total force over the entire
operation time was 29.301 N. For a novice operating the master–
slave VIR procedure, the task-time was 129.6 s, the average force
was 0.383 N, the maximum force was 2.593 N, and the total force
over the entire operation time was 49.726 N. In the case of the

Table 5: Repulsive force of aortic arch target 1 vascular phantom for master–slave VIR procedure and autonomous VIR procedure.

Type of VIR procedure Average of repulsive force (N) Maximum force (N) STDEV force (N) Total force (N∗Sec)

Master–slave VIR procedure (expert) 0.174 0.872 0.167 4.832
Master–slave VIR procedure (novice) 0.336 1.011 0.234 35.927
Autonomous VIR procedure 0.358 1.091 0.214 8.511
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Table 6: Repulsive force of aortic arch target 2 vascular phantom for master–slave VIR procedure and autonomous VIR procedure.

Type of VIR procedure Average of repulsive force (N) Maximum force (N) STDEV force (N) Total force (N∗Sec)

Master–slave VIR procedure (expert) 0.456 1.969 0.355 29.301
Master–slave VIR procedure (novice) 0.383 2.593 0.458 49.726
Autonomous VIR procedure 0.331 1.853 0.181 22.753

Figure 21: Repulsive force of aortic arch target 3 vascular phantom for
the master–slave VIR robot system and autonomous VIR robot system.

autonomous VIR procedure, the task-time was 68.8 s, the average
force was 0.331 N, the maximum force was 1.853 N, and the total
force over the entire operation time was 22.753 N.

Compared to the master–slave VIR robot with the autonomous
VIR robot operated by an expert, the autonomous VIR robot sys-
tem reduced the average repulsive force by approximately 27%.
Compared to the master–slave VIR robot with the autonomous
VIR robot operated by a novice, the autonomous VIR robot sys-
tem reduced the average repulsive force by approximately 13%.
The maximum force reduction effect of the autonomous VIR robot
system was reduced by 17% compared with the master–slave VIR
procedure.

Table 6 summarizes the results of the repulsive force measure-
ment.

In the aortic arch target 3 vascular phantom master–slave VIR
robot procedure, the repulsive force generated between the ves-
sel wall and the surgical tool was measured. Figure 21 presents
one case of the experimental results of the repulsive force mea-
surement of the master–slave VIR procedure and the autonomous
VIR procedure. For an expert operating the master–slave VIR pro-
cedure, the task-time was 87.34 s, the average force was 0.469 N,
the maximum force was 3.841 N, and the total force over the entire
operation time was 40.989 N. For a novice operating the master–
slave VIR procedure, the task-time was 102.39 s, the average force
was 0.812 N, the maximum force was 3.125 N, and the total force

over the entire operation time was 83.213 N. In the case of the au-
tonomous VIR procedure, the task-time was 68.88 s, the average
force was 0.331 N, the maximum force was 1.291 N, and the total
force over the entire operation time was 53.775 N.

Compared to the master–slave VIR robot with the autonomous
VIR robot operated by expert, the autonomous VIR robot system
reduced the average repulsive force by approximately 29%. Com-
pared to the master–slave VIR robot with the autonomous VIR
robot operated by a novice, the autonomous VIR robot system
reduced the average repulsive force by approximately 59%. The
maximum force reduction effect of the autonomous VIR robot
system was reduced by 62% compared with the master–slave VIR
procedure.

Table 7 summarizes the results of the repulsive force measure-
ment.

5 Discussion
The effectiveness of the autonomous VIR robot system based on
a vascular phantom demonstrated a 96% success rate for the au-
tonomous manipulation tool. In addition, the autonomous VIR
robot system reduced the average repulsive force between the ves-
sel wall and the surgical tool by 20–71% in all three targets except
for the aortic arch target 1. In the case of the aortic arch target 1
experiment, the starting and the target points are arranged in a
straight line, and it is relatively easy to access compared to other
target points. Accordingly, in the case of aortic arch target 1, the
measured force is smaller when the expert operator conducted
the operation. On the other hand, the measured force is consid-
erably large when the novice operator conducts the operation. In
the proposed system, the maximum repulsive force of the exper-
iment excluding the aortic arch target 1 tended to decrease from
6 to 66% compared to the expert-driven master–slave VIR robot
system. The maximum repulsive force decreased from 28 to 63%
compared to the novice-driven master–slave VIR robot system.

Reducing the maximum repulsive force is minimizing the vas-
cular perforation during the VIR procedure. In addition, the pro-
posed system decreased the standard deviation of the repulsive
force from 49 to 80% compared to the case of expert -driven
master–slave operation. In addition, the proposed system de-
creased the standard deviation of the repulsive force from 58 to
79% compared to the novice-driven master–slave operation. The
low standard deviation of the repulsive force indicates that the
autonomous VIR robot procedure exhibits less excessive move-
ment than the master–slave VIR robot procedure. Except for the
expert-driven master–slave operation for the aortic arch target 3

Table 7: Repulsive force of aortic arch target 3 vascular phantom for master–slave VIR procedure and autonomous VIR procedure.

Type of VIR procedure Average of repulsive force (N) Maximum force (N) STDEV force (N) Total force (N∗Sec)

Master–slave VIR procedure (expert) 0.469 3.841 0.648 40.989
Master–slave VIR procedure (novice) 0.812 3.125 0.416 83.213
Autonomous VIR procedure 0.331 1.291 0.171 53.775
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Figure 22: Example of in vivo VIR procedure X-ray image.

experiment, the autonomous VI robot system exhibited less re-
pulsive force during the VIR procedure. For aortic arch target 3,
the task completion time of the autonomous VIR robot system
was prolonged because it was the most difficult target point to
approach. Owing to the prolonged operation time, the total re-
pulsive force of the procedure was larger than that of the expert-
driven master–slave VIR robot system. The more difficult it is to
approach the location, the greater is the difference in task com-
pletion time between the autonomous VIR robot system and the
master–slave robot system. The more complex the vessels to ac-
cess, the deeper the neural network should be applied to the au-
tonomous VIR robot system to decrease the task completion time.
For abdominal vascular target and aortic arch target 1, the pro-
posed autonomous VIR robot was possible only with catheter ma-
nipulation. However, aortic arch targets 2 and 3 could not be ac-
cessed with a single guidewire or catheter manipulation, and au-
tonomous vascular intervention was possible only with simulta-
neous manipulation.

However, the proposed autonomous VIR robot system still has
many aspects to overcome: technical challenges, legal issues re-
garding the performance of autonomous surgery, and medical de-
vice certification for AI-based surgical robots. From a technical
perspective, this study only showed the effectiveness based on the
phantom, and the experiment was conducted using an RGB cam-
era image rather than an X-ray image. If training of the surgical
tool position-tracking algorithm is performed based on the X-ray
image, it is expected that the surgical tool can be clearly identified
on the X-ray image. However, in vivo experiments using pig mod-
els or humans will be more challenging than phantom-based ex-
periments because not only the surgical tools and blood vessels,
but also other body organs will appear in the screen as shown
in Fig. 22. Moreover, in vivo experiments, injection of a contrast
median is essential to display blood vessels on X-ray images. Fu-
ture work will integrate remote drug injection equipment and the
autonomous VIR robot system to overcome this limitation.

This research has been executed under the condition that the
proposed autonomous VIR robot can only be applied when know-
ing the structure of blood vessels. In real clinical trial, each pa-
tient has its own blood vessel structure. To solve this problem, the
agent must learn in a sophisticated simulation environment to
enable autonomous manipulation of the surgical tool for the pa-

tient’s blood vessel structure before the VIR procedure. Another
limitation of the proposed autonomous VIR robot system is the
need to set up a target position for each blood vessel branch. This
limitation can be solved by applying the setting subgoal and final
goal position method proposed by Kweon et al. (2021). In addition,
the autonomous VIR robot system will become more complex be-
cause in vivo experiments must consider breathing motion. In fu-
ture work compensation algorithm for breathing motion will be
included. This research focuses only on the autonomous driving of
the guidewire and catheter; additional research is needed on the
intervention of additional surgical tools for blockage, rupture, or
deformation of blood vessels. Also, there are still communication
delays in the proposed autonomous VIR robot system while pre-
dicting the position of the surgical tool and making the tool move-
ment decision. The proposed autonomous VIR robot system could
not completely eliminate the delay because our system takes an
average of 0.1 s to recognize the position of the surgical tool and
determine the action. Also, in this study, the autonomous VIR pro-
cedure in 3D phantom model was conducted using only 2D image
and F/T sensor data. We plan to conduct research using biplane
X-rays for precise 3D surgical tool position control. Nevertheless,
our future study will involve an animal experiment on pig mod-
els to verify the effectiveness of AI-based autonomous VIR robot
systems and overcome these limitations.

Regarding the certification aspect of medical robots based on
AI, as reported by Haidegger, the certification of commercialized
medical robots has been approved by proving that they are equiv-
alent to existing approved devices (Haidegger, 2019). For a newly
developed surgical robot system to be certified as a medical robot
that is not equivalent to an approved device, the certification pe-
riod is five times longer, and the cost is over three times higher.
Thus, it is necessary to publish international safety standards so
that autonomous surgical robots can be equally certified as med-
ical devices.

6 Conclusions and Future Works
This paper presents an autonomous VIR robot system based on
deep learning algorithms, and its effectiveness was proven by per-
forming vascular phantom-based experiments. The autonomous
VIR robot system does not require the operator to control the
master device; thus, the fatigue of the operator will be less than
the master–slave VIR robot system. Furthermore, the autonomous
VIR robot system will be free from communication delays caused
by the limitation of the physical distance between the master de-
vice and slave robot. Furthermore, the autonomous VIR robot sys-
tem learned to reduce the repulsive force between the vessel wall
and the surgical tool, minimizing side effects such as vessel per-
foration. The experimental results of this research are conducted
with respect to the abdominal and aortic arch vascular phantoms.
Therefore, the autonomous VIR robot proves applicability to gen-
eral VIR procedures. Based on the experimental results of a vas-
cular phantom employing an autonomous VIR robot system, we
believe that the autonomous VIR procedure can be applied in the
near future as the autonomous VIR robot system will provide ad-
vantages for both patients and doctors.
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