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a b s t r a c t

Alternative splicing (AS) events modulate certain pathways and phenotypic plasticity in cancer. Although 
previous studies have computationally analyzed splicing events, it is still a challenge to uncover biological 
functions induced by reliable AS events from tremendous candidates. To provide essential splicing event 
signatures to assess pathway regulation, we developed a database by collecting two datasets: (i) reported 
literature and (ii) cancer transcriptome profile. The former includes knowledge-based splicing signatures 
collected from 63,229 PubMed abstracts using natural language processing, extracted for 202 pathways. The 
latter is the machine learning-based splicing signatures identified from pan-cancer transcriptome for 16 
cancer types and 42 pathways. We established six different learning models to classify pathway activities 
from splicing profiles as a learning dataset. Top-ranked AS events by learning model feature importance 
became the signature for each pathway. To validate our learning results, we performed evaluations by (i) 
performance metrics, (ii) differential AS sets acquired from external datasets, and (iii) our knowledge-based 
signatures. The area under the receiver operating characteristic values of the learning models did not ex-
hibit any drastic difference. However, random-forest distinctly presented the best performance to compare 
with the AS sets identified from external datasets and our knowledge-based signatures. Therefore, we used 
the signatures obtained from the random-forest model. Our database provided the clinical characteristics of 
the AS signatures, including survival test, molecular subtype, and tumor microenvironment. The regulation 
by splicing factors was additionally investigated. Our database for developed signatures supported retrieval 
and visualization system.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Alternative splicing (AS) expands isoform diversity and is im-
plicated in phenotypic plasticity [1]. Each tissue type revealed dis-
tinct differential alternative splicing (DAS); dysregulated AS events 
promote oncogenic signaling and aggressiveness in several diseases, 
such as cancer [2]. Cell cycle, epithelial-mesencymal transition 
(EMT), and apoptosis are well-known biological functions modu-
lated by splicing [1–4]. The advent of high-throughput datasets and 
the accumulation of reliable knowledge have facilitated the rapid 
development of AS analysis methods. Despite increasing informa-
tion, the bona-fide splicing event identification remains a challenge 
for recapitulating biological process regulation.
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Literature on splicing has been extensively published over the 
past decades while studying biological functions, but its essential 
summary profile is insufficient. In the biomedical field, diverse as-
sociations like those between immune cells, miRNA and gene, gene 
and disease, and drug and gene were already well collected from 
previously published literature using the natural language process 
(NLP) [5–7]. However, text mining for splicing was performed for 
restricted information extraction. Previous sentence learning system 
for eukaryote splicing was used for extracting widespread feature 
sets, so it was obscure to recognize essential splicing gene candi-
dates [8]. The catalogs for fusion gene junctions were well developed 
but restricted to only gene IDs extraction for aberrant transcriptome 
[9,10]. Moreover, the demonstration of current mining results was 
restricted to computational performance assessment in a simulated 
or benchmark environment. Existing results of splicing analysis re-
main insufficient to delineate the functional regulation in the com-
plex human transcriptome. Text-mining is useful technology to 
summarize dispersed biological associations of splicing genes.

Cancer transcriptome accompanies the heterogeneous molecular 
subtypes regulated by oncogenic or tumor suppression [11,12]. With 
respect to splicing, previous studies have mostly interrogated aber-
rant splicing using single trans-acting elements like splicing factor 
(SF) mutation [13–15]. However, the aberrant regulation by splicing 
in cancer cells was found to be implicated in multiple factors, such as 
cooperative activation of multiple SFs, variants of trans-acting ele-
ments, polymorphic or somatic cis-element variants, and epigenetic 
regulatory changes [2,16–18]. The complex splicing regulation was 
revealed by identifying AS events involved with biological processes 
or disease [2,16]. In summary, various splicing events simultaneously 
regulate certain cancer pathways, and multiple factors of both trans 
and cis-element variants could disrupt the pathway regulation. The 
complicated splicing regulation was difficult to determine by single 
evidence. Well-organized splicing signatures can be helpful to un-
derstand novel regulatory mechanisms and pathways of cancer.

Here, we identified the splicing gene signatures based on both 
knowledge-based contents extracted from the literature and tran-
scriptome-based evidence acquired from the pan-cancer exon usage 
profile. To obtain knowledge-based splicing signatures associated 
with pathways, text-mining was performed from published ab-
stracts and identified gene and pathway entities. The association 
between splicing genes and pathways was inferred from the con-
nection within a sentence. Next, transcriptome-based signatures 
associated with cancer pathway activity were obtained by machine 
learning (ML) models using The Cancer Genome Atlas (TCGA) spli-
cing profile. We compared our results from multiple learning 
methods to extract AS events following the importance of the fea-
tures. Multiple cross-evaluations demonstrated the predictive per-
formance of the ML models. Additionally, the clinical relevance of 
splicing was investigated from molecular subtype, survival, and 
tumor microenvironment. Next, the association of the splicing factor 
and its binding site was investigated for evaluating the AS signature. 
Our obtained resource is provided in the form of a database and is 
available on the web browser system.

2. Material and methods

Splicing signatures to elucidate pathways were collected from 
two different data sources. The first was obtained from PubMed 
abstracts (Fig. 1). Entity recognition methods for genes and pathway 
names were combined with a dictionary and rule-based mining. The 
gene-pathway associations were ranked for co-occurrence reliability. 
The second was obtained from the splicing profile of TCGA pan- 
cancer RNA-seq (Fig. 1) [13]. ML algorithms were used to classify 
pathway activity, and splicing events were ranked in order of im-
portance of the learned model features. These two different sig-
natures referred to equal pathway terms and gene sets collected 

from MSigDB [19–21], causing a match between knowledge and 
transcriptome-based signatures. We used knowledge-based sig-
natures to evaluate transcriptome signatures for each pathway. Ad-
ditionally, computational, and external dataset comparisons were 
also performed to verify our ML results, which are described in the 
subsequent section.

2.1. Text mining to extract splicing genes involved in pathway 
regulation

To prepare AS genes associated with a specific pathway for eva-
luation, we collected pathway-related splicing genes using different 
data sources and text mining. First, we collected 63,229 abstracts 
published in PubMed related to human alternative splicing from 
January 1970 to October 2019 (Fig. 2A) using its retrieval query with 
search keywords ‘splicing,’ ‘splice,’ ‘spliced,’ ‘exon skip,’ ‘exon skip-
ping’ or ‘skipped exon,’ and excluded abstracts containing model 
organism keywords like ‘mouse,’ ‘Drosophila,’ ‘C. elegans,’ and ‘an-
imal.’ We expected that search condition, word ‘splicing’ could ex-
plore wide-range splicing event types, like novel exon skipping in 
disease or splicing on polyadenylation site. We tried to transform the 
terminology of complex phrases into an entity recognized as genes 
or pathways. To recognize the entities, both dictionary and rule- 
based approaches were generally applied. More specific details were 
described below. Integrative usage of dictionary and rule-based ap-
proaches improves the collection of novel terms from diverse texts 
[22]. Next, the association between gene and pathway was ranked in 
the order of reliability measured from the co-occurrence in a single 
sentence [7]. Therefore, the functional association of splicing genes 
was acquired from accumulated publications.

Next, to recognize pathway names, we employed both rule-based 
and dictionary-based approaches. To unify various pathway ter-
minologies to denote one pathway, the rule-based approach using 
ML technique was applied [22]. For example, the rule-based method 
identifies one entity ‘T-cell receptor pathway’ from several phrases 
like ‘T-cell receptor signaling pathway,’ ‘T-cell receptor signaling,’ or 
‘TCR signaling.’ First, the pathway name dictionary (n = 2508) was 
prepared from MSigDB: curated (C2), ontology (C5), and hallmark 
(H) gene sets [19–21]. The ontologies of GO terms have hierarchical 
structures, and upper-layer GO terms cover expansive meanings 
including lower-layer terms like ‘metabolic process,’ ‘RNA proces-
sing,’ or ‘cell cycle.’ Therefore, we used terms from GO level 5 for the 
dictionary to avoid ambiguous pathways, and additionally filter out 
pathways with too small (< 20) or large gene set size (> 500). First, 
simple pathway terms were collected using a dictionary-based ap-
proach while referring to the pathway name dictionary [22]. Next, 
novel phases were recognized using a rule-based NER package, 
pathNER, to acquire 4046 pathway terms [22]. We manually re-
moved false pathway terms and merged those with duplicate 
meanings into a single pathway entity. Next, we tested pathway 
redundancy to confirm the pathway entity phase similarity, using 
the Jaccard index between two gene sets for each pathway pair 
(Jaccard index > 0.5) merged into a single pathway. Consequently, we 
determined the final reference pathway entities (n = 762).

In the final step, we measured gene-pathway associations. The 
association between gene and pathway entity was determined by 
co-occurrence of gene-pathway pairs within a single sentence 
(Fig. 2B). The reliability of gene-pathway co-occurrence was assessed 
from several measures extensively used in text-mining, namely 
Pearson correlation, Bayesian probability, and log-likelihood. These 
three measures were transformed into ranks and merged into one 
representative rank using the Monte Carlo method of the TopKLists 
package [26]. Finally, we obtained the ranking of splicing gene- 
pathway associations.
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2.2. Knowledge-based splicing signature’s performance evaluation

To evaluate the splicing signature obtained from text-mining, we 
compared signatures with DAS results derived from external RNA- 
seq datasets. We collected 11 published results to identify three 
pathway regulations (EMT, cell cycle, and apoptosis), and the pre-
vious studies were validated via biological experiments 
(Supplementary Table S1). Our signatures for the three pathways 
were compared with the external dataset DAS results. Chi-squared 
test was performed for DAS sets and gene sets were randomly 
chosen (n = 100, 200, 500).

2.3. Establishing a machine learning-based model for obtaining 
transcriptome-based splicing signature

To identify the AS signature events regulating cancer pathways, 
we collected TCGA pan-cancer transcriptome and pathway gene sets. 
Cancer transcriptome was acquired from the TCGA project RNA-seq 
dataset of 16 cancer types [27]. Splicing profile and percent spliced 
in index (PSI) matrix were assessed from the TCGA level 3 tran-
scriptome profile using SUPPA2 [28]. AS events were filtered out, 
revealing low variance of exon usage (PSI standard deviation < 0.1), 
low gene expression (average RPKM < 1), and dominant frequency 
(> 95%) of extreme value outliers or missing values in PSI profile. PSI 
profile was imputed after filtering and normalized for each tumor 
type. We estimated sample-level pathway activity scores using Gene 
Set Variation Analysis (GSVA) for MSigDB pathways to classify 
cancer samples by pathway activities [21,29]. The pathways ex-
hibiting low standard deviations (< 0.2) were excluded with respect 
to the biological function of non-delineating tumor heterogeneity. 
Finally, 42 pathways were selected (Supplementary Fig. S1).

ML methods were then used to learn models based on the as-
sociation between AS events and cancer pathway activity. We 
trained separate classifiers for each cancer type per pathway where 

the binary response variable indicated pathway activation, using 
median GSVA scores as the threshold values. The normalized PSI 
profiles of the filtered AS events (n = 11,116–14,977 across tumors) 
were used to train ML models. We investigated six different learning 
methods representing two broad types of models, which learn non- 
linear (random-forest (RF), and gradient Boosting Machines 
(XGBoost)) and linear functions (Naïve Bayes (NB), Lasso, Ridge, and 
Elastic nets). For each cancer type, training and test samples were 
randomly divided in a 9:1 ratio. All learning models were trained 
with five-fold cross-validation, in which the best set of hyperpara-
meters was selected via grid search based on the validation error, as 
summarized in Supplementary Table S2.

2.4. Transcriptome signature performance evaluation and splicing 
signature index scoring

The learned ML models were evaluated using three approaches: 
1) assessment of predictive accuracy on held-aside test sets of TCGA 
samples, 2) enrichment test of the knowledge-based signatures and 
3) comparison with previous studies using external datasets. The 
learned models’ predictive accuracy was assessed using the area 
under the receiver operating characteristic (AUROC) and the preci-
sion-recall curve (AUCPR), computed with the R PRROC package [30]. 
Next, we extracted top-ranked AS events from each learned model 
(n = 100, 300, 500, and 1000) based on the importance of features 
and tested the degree of enrichment with the knowledge-based 
signatures. Additionally, the enrichment test was performed against 
previous publications to validate functionality by splicing regulation 
from wet-lab experiments. The external datasets for three pathways 
(EMT, cell cycle, and apoptosis) were utilized (Supplementary 
Table S1).

RF model was selected based on its predictive power and su-
perior performance than that of other methods in detecting func-
tional splicing events to determine the final AS event signatures. The 

Fig. 1. The workflow of splicing signature development. Knowledge-based signature development process from literature collection to gene-pathway association ranking. 
Transcriptome-based signature was obtained based on the splicing profile learnings and used for multiple evaluations. Collected database was supported by web server functions, 
namely, search, visualization, clinical profile summary, and data download.

K. Lee, D. Hyung, S.Y. Cho et al. Computational and Structural Biotechnology Journal 21 (2023) 1978–1988

1980



top 100 AS events of the highest positive feature importance were 
obtained from the learned RF model. Next, the AS signatures of 
compact size were augmented with our knowledge-based splicing 
gene signatures revealing high recurrence (> 50%) of positive feature 
importance. Additionally, we re-trained RF models with the same 
learning procedure but using only the final AS signatures as features 

and evaluated their predictive accuracy on the previously used test 
sets. Lastly, we generated a splicing-signature index (splicing-SI) for 
each cancer type per pathway to determine a representative mea-
sure for the identified splicing signatures. Splicing-SI was estimated 
using principal component analysis (PCA) for the normalized PSI 

Fig. 2. Splicing signature extraction using text-mining and evaluation of pathways with machine learning approaches. A) The number of literatures published from 1972 to 2019 
about text-mining to include splicing keywords. B) An example of entity recognition and co-occurrence investigation from a sentence in text-mining. C) Comparison with previous 
differential splicing analysis results for three pathways: epithelial-to-mesenchymal transition (EMT), cell cycle, and apoptosis. Splicing events of each study were compared with 
our obtained mining results and random sets. Pubmed IDs and accession numbers for 11 references are described in Supplementary Table S1. D) Comparison of ML splicing 
signatures of five methods and random sets with references. Splicing signatures were chosen by feature importance rank (n=100, 300, 500, and 1000).Pre-processing of abstract 
texts was generally performed using Stanford core NLP parser to sequentially proceed with tokenization, segmentation, part-of-speech tanning, and lemmatization [23]. Named 
entity recognition (NER) was used to identify gene name entities using BANNER for reference in the gene name dictionary [24], (n = 60,864) which included official symbols, 
synonyms, and full names collected from the NCBI Gene database [25]. Our aims to interrogate not up-stream splicing regulator, but splicing events. Therefore, we attempted to 
additionally eliminate SF gene names referring to previously collected RNA-binding protein list (n = 1350) [14], which were referred to in the subsequent evaluation step. In the 
final step, we manually removed the false positive gene names, such as those with short names (length ≤ 2) or general nouns of low frequency.
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profiles of the identified AS signatures and quantified as the first 
principal component values.

2.5. Comparison analysis with cancer clinical data

We assessed the performance of our splicing-SI across cancer 
types and pathways. Survival analysis was conducted using the R 
package ‘survival’. The Kaplan–Meier model was used to plot the 
patient’s overall survival, and the log-rank test was performed for 
statistical comparison between two subgroups of patients, using Q1 
and Q3 of 1) pathway scores or 2) PSI values for an AS event of in-
terest. Cox proportional hazard regression model was used to esti-
mate hazard ratios. Moreover, the comparison analysis was 
performed between molecular subtypes of a given cancer type, 
wherein subtypes of samples with a size smaller than ten were ex-
cluded (Supplementary Table S3). Additionally, levels of infiltrating 
immune and stromal cells, and tumor purity were calculated using 
the ESTIMATE method [31]. The significance of difference between 
the groups of interest was measured using the Wilcoxon-rank 
sum test.

2.6. Association between the activity of splicing factor and splicing 
signature set

SFs and trans-acting elements directly contributed to step-wise 
alternative splicing, which consequently modulates specific pathway 
regulation. We demonstrate that the splicing signatures that we 
obtained imply SF regulation. To evaluate the regulation, we col-
lected SF genes (n = 165) from reference and classified known 
pathway-associated SFs (n = 113) from initial text-mining results 
including all gene-pathway associations before filtering [14]. We 
categorically excluded known SFs from each pathway just as un-
known SF.

We assumed that splicing-SI scores presented the difference by 
pathway regulation SFs; therefore, we performed the Wilcoxson- 
rank sum method to determine whether splicing-SI scores exhibited 
the difference between low (≤50%) and high (> 50%) SF expression 
groups for all SFs. Additionally, P-values were adjusted using the 
Bonferroni correction. We assumed that known pathway-associated 
SFs presented a more significant difference than unknown SFs. To 
demonstrate this, we evaluated the probability of P-values of known 
SFs being smaller than those of randomly chosen SFs (iteration 
= 1000).

Among SF-associated cancer pathways, we picked up the ‘T-cell 
activation’ pathway, where splicing-SI exhibited strong performance 
in molecular and clinical features. CELF2 and SRSF6 were known SFs 
to regulate the T-cell activation pathway. We focused on binding 
genes of CELF2, the most highly correlated SF across cancer types, 
and evaluated whether the best candidate binds to our splicing 
signature events. CELF2 CLIP-seq in human JSL1 T-cells could be 
acquired (GSE71264) for cases (CELF2-positive, stimulated) and 
controls (CELF2-negative, unstimulated) [32]. Its binding sites were 

annotated using bedtools. Further, we tested whether these distinct 
binding sites in stimulated cases were enriched to our splicing sig-
natures of T-cell activation using the chi-squared test and odds ratio.

3. Results

3.1. Knowledge-based signature extraction and performance evaluation

To obtain spliced gene-pathway association knowledge, we col-
lected 63,229 PubMed abstracts that included splicing terms 
(Fig. 2A). As a text-mining result, pathway-associated spliced gene 
sets were acquired by workflow (Fig. 2B). A total of 442 pathway 
entities were recognized from literature, of which, we finalized 202 
pathways with gene set size of over 10. To evaluate the performance 
of our knowledge-based signatures, we compared them with pub-
lished RNA-seq differential AS (DAS) results. Three pathways were 
found to be frequently published in the literature that included RNA- 
seq datasets and wet-lab experiments. To demonstrate the perfor-
mance of our splicing signatures to elucidate pathways, we com-
pared these DAS sets with our mining sets and randomly chosen 
background gene sets (Fig. 2 C, Supplementary Fig. S2). Expectedly, 
our mining splicing sets exhibited significant enrichment with 
published DAS results, in contrast to random gene sets (Fig. 2 C). 
Additionally, our database provides the knowledge-based splicing 
sets for each pathway including literature PubMed IDs and ranking 
by each gene-pathway co-occurrence. The finalized signature da-
taset is freely downloadable as a text format file on our website.

3.2. Machine learning model establishment and performance 
evaluation

To select the best performance model, we determined the 
learning result by (1) the performance metric, (2) the developed 
knowledge-based signature, and (3) the comparison with external 
datasets. First, the performance was assessed for six ML methods 
from test datasets. AUROC values were calculated from each 
pathway and cancer type; their medians have been summarized in 
Table 1. All methods achieved high AUROC (> 0.85) values, except NB, 
which showed the inferior-most performance. XGBoost exhibited 
the best performance. However, computational measurement was 
insufficient to decide ML model performance. Particularly, AS can-
didates extracted for each ML model should be demonstrated via 
cross-evaluation using external biological datasets. Therefore, we 
additionally assessed the performance by comparison with the 
knowledge-based splicing gene set.

Next, we considered the obtained knowledge-based splicing 
signatures to match with pathways (n = 42) of cancer transcriptome 
analysis. Next, we compared matched AS signatures of learning 
models with knowledge-based signatures (Table 1). To compare with 
known signatures, we selected the events ranked highest by feature 
importance for each model. Except top 500, RF exhibited the best 
performance.

Table 1 
Test set and knowledge-based evaluations for six machine learning models. SD, standard deviation. 

Methods Test set evaluation 
(value ±  SD)

Knowledge-based 
evaluation 
(-log P-value)

AUROC AUCPR Accuracy Top 
100

Top 
300

Top 
500

Top 
1000

RF 0.87  ±  0.08 0.88  ±  0.09 0.78  ±  0.08 1.74 2.30 1.06 1.63
Elastic 0.89  ±  0.07 0.90  ±  0.08 0.80  ±  0.08 1.50 1.09 1.01 1.06
Lasso 0.88  ±  0.08 0.88  ±  0.09 0.80  ±  0.08 0.99 1.28 1.28 1.28
NB 0.71  ±  0.1 0.67  ±  0.12 0.68  ±  0.09 NA NA NA NA
Ridge 0.90  ±  0.06 0.90  ±  0.07 0.81  ±  0.07 1.29 1.60 1.00 0.71
XGBoost 0.90  ±  0.07 0.91  ±  0.08 0.82  ±  0.08 0.71 1.10 1.07 1.02
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Third evaluation was performed using an external dataset. We 
selected three pathway signatures (EMT, cell cycle pathway, and 
apoptosis) evaluated from external datasets and their wet-lab ex-
periments (Fig. 2). In addition, randomly chosen sets (n = 100, 300, 
500, 1000) exhibited the least favorable result (Fig. 2D). In both the 
pathways, RF exhibited the best performance. Even though apoptosis 
presented inconsistent performance across all methods, RF exhibited 
favorable results in 300–1000 sets as compared to other methods.

3.3. Transcriptome signature extraction from pan-cancer splicing 
profile

To finalize splicing signatures for cancer transcriptome, we se-
lected RF model learning results. AS events were ranked by learning 
models’ feature importance. To construct the essential AS signature, 
AS events ranked in the top 100 were chosen as the signature for 
each pathway. Loss of knowledge-based splicing genes in tran-
scriptome’s top 100 signatures is inevitable. Therefore, we refined 
our AS signature to include knowledge-based splicing genes. 
Therefore, we added the reliable AS events to be (1) observed in 
knowledge database, (2) recurrent (> 50%) across cancer types, and 
(3) positive in feature importance. The adjusted AS signature is de-
scribed in Table 2. AUROC of adjusted signatures was maintained in 
the top 100, and showed minor increase as compared to original 
dataset. Performance (AUROC) of adjusted signatures exhibited 
better (median -log P-value = 3.96E-20) than that of top 100 (median 
-log P-value = 9.99E-18). Our final cancer transcriptome signatures 
are available in the database.

3.4. Splicing signature indexes to present the clinical characteristics

Transcriptome profile of each cancer type has classified tumor 
patients into molecular subtypes to elucidate the distinct biological 
processes. Moreover, transcriptomic evidence acquired by molecular 
classification is regarded as prognosis predictors and diagnosis 
markers [33–35]. Here, we investigated whether our splicing sig-
natures delineate the tumor regulatory mechanism following mo-
lecular subtypes. Previously identified subtypes were obtained from 
TCGA analysis results (Supplementary Table S3) [36]. Each subtype 
was mostly selected by multi-omics analysis to integrate methyla-
tion, mutation, copy number, and gene expression profile. We as-
sessed that our splicing-SIs correlated with tumor pathway scores 
and molecular subtypes. Additionally, survival was investigated ac-
cording to splicing-SI.

Among the 42 tumor pathways, we extracted 15 splicing sig-
natures to be highly correlative with pathway scores and to classify 
molecular subtypes (Fig. 3 A). Splicing signatures partially de-
termined the prognosis across multiple cancer types. We selected 
stomach cancer (STAD) as a case study from the results. STAD was 
classified into four subtypes: chromosomal instable (CIN), Epstein- 
Barr virus (EBV) infection, genomic stable (GS), and microsatellite 
instability (MSI) [37]. The original study revealed that GS exhibited 
cell migration activation to be most likely EMT characteristics [37]. 
In the EMT pathway, our splicing-SI highly correlated with the 
pathway scores acquired from the gene expression profile (Fig. 3B). 
Moreover, splicing-SI showed distinctly distinguished GS subtype 
(P  <  0.001) than pathway scores (P  <  0.01), and patients with poor 
prognosis were predictable from high splicing-SI (P  <  0.001) like 
pathway scores. We extracted top-ranked EMT splicing signatures 
(Fig. 3 C). Among them, top-ranked ML feature importance skipping 
exon (SE) events in well-known genes modulating EMT: SEC31A, 
ATP5C1, and ARID1B [38–40]. We selected the ENAH SE event as a 
candidate diagnostic marker (Fig. 3 C). ENAH contained 14 exons and 
exon 11a was skipped in EMT at the EVH2 domain location (Fig. 3D) 
[41]. EVH2 domain region binds and bundles F-actin is localized to 
stress fibers due to its importance in cytoskeleton organization and 
actin-based cell motility [42]. ENAH SE was dramatically presented 
in the GS subtype (P  <  0.001) and considered as a prognosis marker 
in overall survival (P = 0.043; Fig. 3D).

EMT is a biological process that facilitates cancer cell invasion 
and metastasis abundantly in fibroblasts and mesenchymal stroma 
cells. Therefore, we cross-evaluated using an additional metric to 
dissect tumor microenvironments from bulk gene expression pro-
files. We utilized immune and stromal cell scores [43]. Stromal de-
velopment was discovered in the GS subtype, and the stromal cell 
abundance strongly correlated with the EMT pathway score (Fig. 3E). 
Finally, our EMT splicing-SI also showed an association with the 
stromal score. Exon usage of the single marker candidate ENHA SE 
exhibited significant results. In summary, EMT splicing-SI was pi-
votal in distinguishing EMT and stromal status. In our splicing sig-
nature events, a single candidate ENAH SE was found to be a 
diagnostic marker to classify subtypes and predict prognosis.

3.5. Splicing signatures indicate splicing factor regulations and their 
binding sites demonstrated in T-cell activation splicing signature

SFs involved in selective exon usage of mRNA to consequently 
proceed AS, and its alteration exhibited tumor-associated splicing 
machinery [13,44]. We demonstrated that the splicing signatures we 

Table 2 
The performance AUROC values of all AS profiles, ML-ranked top 100, and adjusted final signature for each cancer type. AUCPR has been summarized in Supplementary Table S4. 

Cancer 
type

All 
(AUROC)

Top 100 
(AUROC)

Signature 
(AUROC)

All vs 
Top 100 
(-log P-value)

All vs 
Signature 
(-log P-value)

Pan-cancer 0.86  ±  0.08 0.87  ±  0.08 0.87  ±  0.08 9.99E-18 3.96E-20
BLCA 0.85  ±  0.09 0.86  ±  0.09 0.86  ±  0.09 7.89E-03 6.50E-03
BRCA 0.9  ±  0.06 0.91  ±  0.06 0.91  ±  0.05 2.39E-05 3.58E-05
CESC 0.79  ±  0.1 0.83  ±  0.08 0.83  ±  0.08 6.85E-06 3.54E-06
COAD 0.89  ±  0.06 0.89  ±  0.07 0.9  ±  0.07 7.44E-02 9.54E-03
ESCA 0.85  ±  0.08 0.83  ±  0.09 0.84  ±  0.08 9.66E-01 8.69E-01
HNSC 0.85  ±  0.06 0.87  ±  0.06 0.87  ±  0.06 8.67E-04 4.34E-04
KIRC 0.85  ±  0.08 0.87  ±  0.08 0.87  ±  0.08 3.45E-03 6.69E-03
KIRP 0.87  ±  0.09 0.87  ±  0.1 0.87  ±  0.1 1.34E-01 2.00E-01
LIHC 0.83  ±  0.08 0.85  ±  0.08 0.85  ±  0.08 2.07E-06 9.61E-07
LUAD 0.86  ±  0.07 0.87  ±  0.06 0.87  ±  0.06 1.56E-03 5.70E-04
LUSC 0.84  ±  0.08 0.85  ±  0.07 0.85  ±  0.07 3.88E-02 1.18E-02
OV 0.85  ±  0.08 0.85  ±  0.08 0.85  ±  0.08 6.70E-01 7.07E-01
PRAD 0.85  ±  0.06 0.89  ±  0.05 0.88  ±  0.05 1.40E-06 2.68E-07
SKCM 0.86  ±  0.06 0.86  ±  0.06 0.86  ±  0.06 4.33E-01 4.78E-01
STAD 0.91  ±  0.05 0.92  ±  0.05 0.92  ±  0.05 3.88E-02 4.25E-02
THCA 0.88  ±  0.07 0.89  ±  0.06 0.89  ±  0.06 7.92E-04 1.66E-03

K. Lee, D. Hyung, S.Y. Cho et al. Computational and Structural Biotechnology Journal 21 (2023) 1978–1988

1983



Fig. 3. The clinical relevance of splicing signatures, and a case study of epithelial-to-mesenchymal (EMT) pathway in stomach cancer (STAD). A) Heatmap summarizing the 15 
pathway splicing signatures correlated with tumor subtypes and survivals. Other pathways have been summarized in Supplementary Fig. S3. B) EMT pathway score and splicing- 
signature index (SI) status following four subtypes: chromosomal instable (CIN), Epstein-Barr virus (EBV), genomic stable (GS), and microsatellite instability (MSI). This includes a 
scatter plot between the EMT pathway score and splicing-signature index (SI), two boxplots of pathway scores and splicing-SI according to four subtypes, and two overall survival 
plots by pathway score and splicing-SI. C) Splicing event percent-spliced in (PSI) heatmap. Columns were sorted by EMT pathway scores and AS events by machine-learning 
feature importance. D) Gene structure of ENAH skipping exon (SE), and a PSI boxplot of four subtypes, showing a survival curve of ENAH PSI in high and low patient groups. E) 
Evaluation using stromal scores (y-axis). This includes a boxplot of stromal cell scores in four subtypes, and three scatter plots of stromal scores (Y-axis) with pathway, splicing-SI, 
and ENAH PSI (X-axis). Survival tests were performed using the log-rank test. The Cox regression model was used to acquire hazard ratio (HR) and 90% confidence interval (CI). In 
boxplots, asterisks indicated P-values (* P  <  0.1, ** P  <  0.01, *** P  <  0.001) by the Wilcoxon-rank sum test. In scatter plots, Pearson correlation coefficients (R) and their P-values 
were specified.
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obtained indicate SF regulation. Following previous studies, we 
identified 165 splicing factor genes, of which 113 were identified as 
known mining SFs regulating 23 specific pathways acquired from 
our initial text-mining results (Supplementary Table S5). Our spli-
cing-SI scores indicated that mining SFs regulated pathways were 
expected to be more significant than other unknown SFs. We de-
termined that the mining SFs maintained their statistical sig-
nificance as compared to randomly chosen sets via permutation test. 
Splicing-SI scores of 16 pathways exhibited a significant difference 

following SF regulation (permutation P-value < 0.1, Fig. 4A). We also 
tested mining SFs’ regulation for cancer types of each pathway. The 
test pathways that did not pass the permutation test in pathway- 
level exhibited lower cancer-type recurrence (Supplementary Table 
S5). Therefore, we speculate that splicing regulation of specific 
pathways proceeds in a cancer-type specific manner. Meanwhile, our 
results obtained multiple SFs to participate in a certain pathway 
from gene expression and text-mining analysis.

Fig. 4. Activities of splicing factors determine splicing-SI scores. A) Bar plot of log-scale P-values to test the splicing-SI difference for mining SFs (observed), and other SFs 
(permutation) chosen for permutation test. P-values denote whether mining SFs to regulate certain pathways were significant or not. Observed P-values (red) were obtained by 
Wilcoxon-test, and permutation test P-values (purple) were performed with iteration 1000. A percentage bar plot shows cancer-type recurrence to pass the test, and the 
consequent count exhibited detected SFs including novel candidates. Details are summarized in Supplementary Table S5. B) A heatmap of spearman correlation between splicing 
factor expression and splicing-SI for the T-cell activation pathway. Left panel depicts the median difference in test P-value of splicing-SI between low (≤50%) and high (> 50%) SF 
groups for each cancer type. Bottom heatmap shows the correlations between immune and stromal scores and tumor purity with T-cell activation pathway splicing-SI score. C) P- 
value and odds ratio bar plots of enrichment test between CELF2 binding site gene set and the obtained splicing set of T-cell activation pathway. CELF2 binding site was obtained 
from CLIP-seq to stimulate T-cell activation. Three immune-associated pathways are denoted in red and remaining in blue. Vertical dot line indicates the median P-value and odds 
ratio for immune-associated pathways and others.
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Among these, splicing-SI of ‘T-cell activation’ recurrently de-
termined molecular subtypes across multiple cancer types (n = 14, 
P  <  0.05, Fig. 3A). Therefore, we explored whether our splicing sig-
nature events were regulated by specific SF. T-cell activation was 
chosen for a case study to show clinical relevance. When calculating 
the correlation between each splicing factor gene expression and 
splicing-SI, CELF2 was correlated in multiple cancer types (Fig. 4B) 
and was known as signal-dependent splicing in T-cells [32]. Immune 
cell abundance was also highly correlated with CELF2 expression, 
while tumor purity exhibited the opposite relation (Fig. 4B).

The stimulation of T-cells was found to be downwardly cascaded 
with CELF2-overexpression [32]. The activation of splicing factor 
CELF2 facilitated distinct splicing events to participate in T-cell sti-
mulation. Therefore, we investigated the CELF2 binding sites by T- 
cell stimulation and identified the sites from CLIP-seq under-sti-
mulated and unstimulated T-cell conditions. Unique CELF2-binding 
genes in T-cell stimulated conditions were extracted after excluding 
binding sites in unstimulated conditions. Next, we interrogated 
whether the stimulated condition’s binding sites enriched the T-cell 
activation signature events. When testing for all pathways, three 
immune response-related pathway signatures (T-cell activation, 
primary immunodeficiency, and inflammatory response) were found 
to be enriched on the binding sites (median P  <  0.001, median OR = 
2.65; Fig. 4B). The remaining pathways exhibited dramatically de-
clined associations (n = 39, median P = 0.84, median OR = 0.84; 
Supplementary Fig. S4). Although around 100 AS events were ex-
tracted for each pathway signature, the events were representative 
to elucidate SF regulation. Collectively, in the T-cell activation 
pathway, the obtained splicing signatures were found to accompany 
the events and bind to specific splicing factors.

3.6. Database browser to retrieve splicing signatures

Knowledge and transcriptome-based splicing signature data-
bases were provided on our database website. The entirety of the 
contents can be retrieved and downloaded. The use case workflow 
presented an effective way to understand the splicing profile (Fig. 5). 
When starting the AS event search from cancer transcriptome sig-
nature, users can select cancer type and pathway of interest 
(Fig. 5A). Top-ranked AS signatures were visualized in a heatmap of 
PSI profile, and additional search and sorting were provided. When 
selecting a single splicing event among multiple, its clinical details 
were presented, namely, overall survival of PSI high and low groups, 
exon usage difference among TCGA molecular subtypes, PSI dis-
tributions according to the tumor microenvironment, immune cell 
abundance, stromal abundance, and tumor purity. In addition to the 
cancer profile, pathway-level information was hyperlinked with 
knowledge-based AS signature for the selected pathway (Fig. 5B). 
Sequence profile of each selected event was linked with an addi-
tional AS sequence profile database ASpedia (Fig. 5C), which is a 
previously developed database and supports spliced region’s multi- 
omics evidence like variants, RNA-binding protein, protein domain, 
and protein-protein interaction [41]. Our resources encompassing 
knowledge-based and transcriptome-based splicing signatures are 
available in downloadable format on the website.

4. Discussion

Transcriptomic signatures provide advantageous knowledge- 
based evidence to objectively understand biological processes. Well- 
defined gene-level signatures have been utilized to estimate the 
pathway scores, cell decomposition, and so on [45]. The applications 
potentiated the various transcriptome-based studies across bulk and 
single-cell analysis. Although AS plays a major role in conferring 
functional diversity and phenotypic plasticity, splicing evidence is 
relatively insufficient to compare gene-level databases and depict 

biological function. The determining scoring approaches and re-
sources for AS are insufficient. Therefore, we developed the AS event 
signature for each pathway and evaluated it in multiple ways. Par-
ticularly, knowledge-based splicing pathway signatures provided a 
novel clue about the hidden regulation features.

During the evaluation of knowledge-based signatures, our data-
base exhibited remarkable concordance with external studies in-
cluding RNA-seq analysis and wet-lab experiment. However, 
knowledge-based signatures providing only gene-level evidence 
without exon or isoform-level profile is a limitation. We considered 
the isoform name or exon number recognition, which expressed 
using irregular terminology or substantial literature was absent in 
exonic information. For example, the mutually exclusive splicing 
event of FGFR2 was described as ‘exon IIIb’ or ‘FGFR2-IIIb’ isoform, 
and three splicing variants of CaMKII marked with βM, β, and βe′ 
[46,47]. The terminology diversity hinders the determination of 
high-coverage regular expression for entity recognition. In-depth 
recognition drastically decreased the number of recognized entities 
and consequently declined the possibility to identify the associations 
between genes and pathways. To obtain statistical power, gene-level 
pathway associations are required to be collected. However, the 
obtained transcriptome-based signatures were limited to support 
precise splicing event-level signatures. It can compensate for the 
weak point of the knowledge-based dataset. Further, we expect to 
generate a higher-resolution splicing profile using text-mining with 
further research.

None of the ML model methods achieved outstanding perfor-
mance in AUROC. Therefore, we compared our results with the ob-
tained knowledge-based signature collection and external datasets. 
Particularly, the external datasets were obtained using DAS analysis 
from RNA-seq and confirmed in wet-lab experiments for biological 
function verification. Therefore, the external datasets were found to 
be the strongest biological evidence for evaluation. Although RF was 
not computationally outperformed, it exhibited favorable compar-
ison results between external datasets and knowledge-based sig-
natures. RF was chosen to learn the splicing profile, implying that 
the performance metric is a versatile measurement to demonstrate 
learning models. Our investigation elucidated that various cross- 
evaluations of biological aspects are useful in selecting the analysis 
model.

Tumor molecular subtypes indicate intra-tumor heterogeneity 
and elucidate biological processes. In the TCGA project, patients 
were clustered using integrative analysis encompassing a multi- 
omics profile [36]. The classification also included factors of clinical 
relevance like diagnosis markers, therapeutic targets, and prognosis. 
However, previous cancer splicing studies focused mostly on tu-
morigenesis to compare normal and tumor samples, or uncovered 
aberrant AS events induced from a single SF [11,48]. The approaches 
were insufficient to indicate the mechanism by which specific spli-
cing events modulate tumor subtypes and biological functions. 
Especially, molecular subtypes of the TCGA project were derived by 
integrative analysis from multi-omics profiles, including methyla-
tion, mutation, transcriptome, and proteomics. The splicing candi-
dates approximately manifest the various oncogenic pathways 
within each tumor type, and the splicing-SI scores successfully 
classified various molecular subtypes. Meanwhile, pathway-level 
cases presented the clinical relevance details of AS events in the EMT 
pathway and of the regulation by splicing factors in T-cell activation. 
In summary, the obtained splicing signatures provide implicated 
profile delineating biological processes for cancer transcriptome.

The obtained signature set was supported in the website with the 
previously developed database ASpedia [41]. The database includes 
the comprehensive multi-omics contents of the splicing regions, 
encompassing DNA, RNA, and protein. In the browser, the multi- 
omics splicing profile was interconnected with our splicing 
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signatures. The integrative database can be useful in determining the 
functional evidence of splicing events.

In conclusion, both knowledge and transcriptome-based sig-
natures exhibited plausible performance with multiple evaluations. 
Our splicing signature database is an informative resource to support 
clinical relevance and reliable biological functions. Moreover, it is 
applicable to an identified benchmark for biological and computa-
tional studies. We believe that our resource can become a solid re-
ference to reveal the biological functions during spliceosome 
studies.
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Fig. 5. AS signature search workflow. A) Transcriptome signature retrieval from cancer type and pathway selection of interest (Step1). Splicing browser presents an exon usage 
heatmap (Step 2) and clinical information for each selected AS event (Step 3). B) Knowledge-based signature was provided for the corresponding pathway. C) Multi-omics 
sequence profile of AS event can be browsed in table contents and UCSC genome browser (Step 4).
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